aboutsummaryrefslogtreecommitdiffstats
path: root/keyboard/planck/beeps.c
diff options
context:
space:
mode:
Diffstat (limited to 'keyboard/planck/beeps.c')
-rw-r--r--keyboard/planck/beeps.c204
1 files changed, 123 insertions, 81 deletions
diff --git a/keyboard/planck/beeps.c b/keyboard/planck/beeps.c
index 335bfa7d4..a1e697be4 100644
--- a/keyboard/planck/beeps.c
+++ b/keyboard/planck/beeps.c
@@ -5,7 +5,6 @@
#include <avr/io.h>
#define PI 3.14159265
-#define CHANNEL OCR1C
void delay_us(int count) {
while(count--) {
@@ -16,91 +15,17 @@ void delay_us(int count) {
int voices = 0;
double frequency = 0;
int volume = 0;
+int position = 0;
double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
-
-void beeps() {
- // DDRB |= (1<<7);
- // PORTB &= ~(1<<7);
-
- // // Use full 16-bit resolution.
- // ICR1 = 0xFFFF;
-
- // // I could write a wall of text here to explain... but TL;DW
- // // Go read the ATmega32u4 datasheet.
- // // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
-
- // // Pin PB7 = OCR1C (Timer 1, Channel C)
- // // Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
- // // (i.e. start high, go low when counter matches.)
- // // WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
- // // Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
-
- // TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
- // TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
-
-
- // // Turn off PWM control on PB7, revert to output low.
- // // TCCR1A &= ~(_BV(COM1C1));
- // // CHANNEL = ((1 << level) - 1);
-
- // // Turn on PWM control of PB7
- // TCCR1A |= _BV(COM1C1);
- // // CHANNEL = level << OFFSET | 0x0FFF;
- // // CHANNEL = 0b1010101010101010;
-
- // float x = 12;
- // float y = 24;
- // float length = 50;
- // float scale = 1;
-
- // // int f1 = 1000000/440;
- // // int f2 = 1000000/880;
- // // for (uint32_t i = 0; i < length * 1000; i++) {
- // // // int frequency = 1/((sin(PI*2*i*scale*pow(2, x/12.0))*.5+1 + sin(PI*2*i*scale*pow(2, y/12.0))*.5+1) / 2);
-
- // // ICR1 = f1; // Set max to the period
- // // OCR1C = f1 >> 1; // Set compare to half the period
- // // // _delay_us(10);
- // // }
- // int frequency = 1000000/440;
- // ICR1 = frequency; // Set max to the period
- // OCR1C = frequency >> 1; // Set compare to half the period
- // _delay_us(500000);
-
- // TCCR1A &= ~(_BV(COM1C1));
- // CHANNEL = 0;
-play_notes();
-
-
- // play_note(55*pow(2, 0/12.0), 1);
- // play_note(55*pow(2, 12/12.0), 1);
- // play_note(55*pow(2, 24/12.0), 1);
- // play_note(55*pow(2, 0/12.0), 1);
- // play_note(55*pow(2, 12/12.0), 1);
- // play_note(55*pow(2, 24/12.0), 1);
-
- // play_note(0, 4);
-
- // play_note(55*pow(2, 0/12.0), 8);
- // play_note(55*pow(2, 12/12.0), 4);
- // play_note(55*pow(2, 10/12.0), 4);
- // play_note(55*pow(2, 12/12.0), 8);
- // play_note(55*pow(2, 10/12.0), 4);
- // play_note(55*pow(2, 7/12.0), 2);
- // play_note(55*pow(2, 8/12.0), 2);
- // play_note(55*pow(2, 7/12.0), 16);
- // play_note(0, 4);
- // play_note(55*pow(2, 3/12.0), 8);
- // play_note(55*pow(2, 5/12.0), 4);
- // play_note(55*pow(2, 7/12.0), 4);
- // play_note(55*pow(2, 7/12.0), 8);
- // play_note(55*pow(2, 5/12.0), 4);
- // play_note(55*pow(2, 3/12.0), 4);
- // play_note(55*pow(2, 2/12.0), 16);
+bool sliding = false;
+#define RANGE 1000
+volatile int i=0; //elements of the wave
+void beeps() {
+ play_notes();
}
void send_freq(double freq, int vol) {
@@ -114,6 +39,7 @@ void stop_all_notes() {
TCCR3A = 0;
TCCR3B = 0;
frequency = 0;
+ volume = 0;
for (int i = 0; i < 8; i++) {
frequencies[i] = 0;
@@ -135,21 +61,28 @@ void stop_note(double freq) {
}
}
voices--;
+ if (voices < 0)
+ voices = 0;
if (voices == 0) {
TCCR3A = 0;
TCCR3B = 0;
frequency = 0;
+ volume = 0;
} else {
double freq = frequencies[voices - 1];
int vol = volumes[voices - 1];
if (frequency < freq) {
+ sliding = true;
for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) {
send_freq(f, vol);
}
+ sliding = false;
} else if (frequency > freq) {
+ sliding = true;
for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) {
send_freq(f, vol);
}
+ sliding = false;
}
send_freq(freq, vol);
frequency = freq;
@@ -157,6 +90,115 @@ void stop_note(double freq) {
}
}
+void init_notes() {
+ // TCCR1A = (1 << COM1A1) | (0 << COM1A0) | (1 << WGM11) | (1 << WGM10);
+ // TCCR1B = (1 << COM1B1) | (0 << COM1A0) | (1 << WGM13) | (1 << WGM12) | (0 << CS12) | (0 << CS11) | (1 << CS10);
+
+ // DDRC |= (1<<6);
+
+ // TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
+ // TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (0 << CS31) | (1 << CS30);
+
+ // ICR3 = 0xFFFF;
+ // OCR3A = (int)((float)wave[i]*ICR3/RANGE); //go to next array element
+
+
+ // cli();
+
+ // /* Enable interrupt on timer2 == 127, with clk/8 prescaler. At 16MHz,
+ // this gives a timer interrupt at 15625Hz. */
+ // TIMSK3 = (1 << OCIE3A);
+
+ // /* clear/reset timer on match */
+ // // TCCR3A = 1<<WGM31 | 0<<WGM30; CTC mode, reset on match
+ // // TCCR3B = 0<<CS32 | 1<<CS31 | 0<<CS30; /* clk, /8 prescaler */
+
+ // TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
+ // TCCR3B = (0 << WGM33) | (0 << WGM32) | (0 << CS32) | (0 << CS31) | (1 << CS30);
+
+
+ // TCCR1A = (1 << COM1A1) | (0 << COM1A0) | (1 << WGM11) | (0 << WGM10);
+ // TCCR1B = (1 << WGM12) | (0 << CS12) | (0 << CS11) | (1 << CS10);
+ // // SPCR = 0x50;
+ // // SPSR = 0x01;
+ // DDRC |= (1<<6);
+ // // ICR3 = 0xFFFF;
+ // // OCR3A=80;
+ // PORTC |= (1<<6);
+
+ // sei();
+}
+
+// #define highByte(c) ((c >> 8) & 0x00FF)
+// #define lowByte(c) (c & 0x00FF)
+
+ISR(TIMER3_COMPA_vect) {
+
+ if (ICR3 > 0 && !sliding) {
+ switch (position) {
+ case 0: {
+ int duty = (((double)F_CPU) / (frequency));
+ ICR3 = duty; // Set max to the period
+ OCR3A = duty >> 1; // Set compare to half the period
+ break;
+ }
+ case 1: {
+ int duty = (((double)F_CPU) / (frequency*2));
+ ICR3 = duty; // Set max to the period
+ OCR3A = duty >> 1; // Set compare to half the period
+ break;
+ }
+ case 2: {
+ int duty = (((double)F_CPU) / (frequency*3));
+ ICR3 = duty; // Set max to the period
+ OCR3A = duty >> 1; // Set compare to half the period
+ break;
+ }
+ }
+ position = (position + 1) % 3;
+ }
+// /* OCR2A has been cleared, per TCCR2A above */
+// // OCR3A = 127;
+
+// // pos1 += incr1;
+// // pos2 += incr2;
+// // pos3 += incr3;
+
+// // sample = sinewave[highByte(pos1)] + sinewave[highByte(pos2)] + sinewave[highByte(pos3)];
+
+// // OCR3A = sample;
+
+
+// OCR3A=pgm_read_byte(&sinewave[pos1]);
+// pos1++;
+// // PORTC &= ~(1<<6);
+
+// /* buffered, 1x gain, active mode */
+// // SPDR = highByte(sample) | 0x70;
+// // while (!(SPSR & (1<<SPIF)));
+
+// // SPDR = lowByte(sample);
+// // while (!(SPSR & (1<<SPIF)));
+
+// // PORTC |= (1<<6);
+}
+
+void loop() {
+}
+// ISR(TIMER1_COMPA_vect)
+// {
+// // if (i<(sizeof(wave)/sizeof(int))) //don't exceed ends of vector... sizeof(wave)
+// if (i<pow(2, 10)) //don't exceed ends of vector... sizeof(wave)
+// {
+// OCR3A = (int)((float)wave[i]*ICR3/RANGE); //go to next array element
+// // int x = 1;
+// // int y = 5;
+// // OCR3A = (int) (round(sin(i*440*pow(2, x/12.0))*.5+.5 + sin(i*440*pow(2, y/12.0))*.5+.5) / 2 * ICR3);
+// i++; //increment
+// }
+// else i=0; //reset
+// }
+
void play_note(double freq, int vol) {
if (freq > 0) {