diff options
Diffstat (limited to 'lib/lufa/LUFA/Common/Endianness.h')
-rw-r--r-- | lib/lufa/LUFA/Common/Endianness.h | 493 |
1 files changed, 0 insertions, 493 deletions
diff --git a/lib/lufa/LUFA/Common/Endianness.h b/lib/lufa/LUFA/Common/Endianness.h deleted file mode 100644 index 8be9e0d69..000000000 --- a/lib/lufa/LUFA/Common/Endianness.h +++ /dev/null @@ -1,493 +0,0 @@ -/* - LUFA Library - Copyright (C) Dean Camera, 2017. - - dean [at] fourwalledcubicle [dot] com - www.lufa-lib.org -*/ - -/* - Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com) - - Permission to use, copy, modify, distribute, and sell this - software and its documentation for any purpose is hereby granted - without fee, provided that the above copyright notice appear in - all copies and that both that the copyright notice and this - permission notice and warranty disclaimer appear in supporting - documentation, and that the name of the author not be used in - advertising or publicity pertaining to distribution of the - software without specific, written prior permission. - - The author disclaims all warranties with regard to this - software, including all implied warranties of merchantability - and fitness. In no event shall the author be liable for any - special, indirect or consequential damages or any damages - whatsoever resulting from loss of use, data or profits, whether - in an action of contract, negligence or other tortious action, - arising out of or in connection with the use or performance of - this software. -*/ - -/** \file - * \brief Endianness and Byte Ordering macros and functions. - * - * \copydetails Group_Endianness - */ - -/** \ingroup Group_Endianness - * \defgroup Group_ByteSwapping Byte Reordering - * \brief Macros and functions for forced byte reordering. - */ - -/** \ingroup Group_Endianness - * \defgroup Group_EndianConversion Endianness Conversion - * \brief Macros and functions for automatic endianness conversion. - */ - -/** \ingroup Group_Common - * \defgroup Group_Endianness Endianness and Byte Ordering - * \brief Convenience macros and functions relating to byte (re-)ordering - * - * Common library convenience macros and functions relating to byte (re-)ordering. - * - * @{ - */ - -#ifndef __LUFA_ENDIANNESS_H__ -#define __LUFA_ENDIANNESS_H__ - - /* Enable C linkage for C++ Compilers: */ - #if defined(__cplusplus) - extern "C" { - #endif - - /* Preprocessor Checks: */ - #if !defined(__INCLUDE_FROM_COMMON_H) - #error Do not include this file directly. Include LUFA/Common/Common.h instead to gain this functionality. - #endif - - #if !(defined(ARCH_BIG_ENDIAN) || defined(ARCH_LITTLE_ENDIAN)) - #error ARCH_BIG_ENDIAN or ARCH_LITTLE_ENDIAN not set for the specified architecture. - #endif - - /* Public Interface - May be used in end-application: */ - /* Macros: */ - /** Swaps the byte ordering of a 16-bit value at compile-time. Do not use this macro for swapping byte orderings - * of dynamic values computed at runtime, use \ref SwapEndian_16() instead. The result of this macro can be used - * inside struct or other variable initializers outside of a function, something that is not possible with the - * inline function variant. - * - * \hideinitializer - * - * \ingroup Group_ByteSwapping - * - * \param[in] x 16-bit value whose byte ordering is to be swapped. - * - * \return Input value with the byte ordering reversed. - */ - #define SWAPENDIAN_16(x) (uint16_t)((((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)) - - /** Swaps the byte ordering of a 32-bit value at compile-time. Do not use this macro for swapping byte orderings - * of dynamic values computed at runtime- use \ref SwapEndian_32() instead. The result of this macro can be used - * inside struct or other variable initializers outside of a function, something that is not possible with the - * inline function variant. - * - * \hideinitializer - * - * \ingroup Group_ByteSwapping - * - * \param[in] x 32-bit value whose byte ordering is to be swapped. - * - * \return Input value with the byte ordering reversed. - */ - #define SWAPENDIAN_32(x) (uint32_t)((((x) & 0xFF000000UL) >> 24UL) | (((x) & 0x00FF0000UL) >> 8UL) | \ - (((x) & 0x0000FF00UL) << 8UL) | (((x) & 0x000000FFUL) << 24UL)) - - #if defined(ARCH_BIG_ENDIAN) && !defined(le16_to_cpu) - #define le16_to_cpu(x) SwapEndian_16(x) - #define le32_to_cpu(x) SwapEndian_32(x) - #define be16_to_cpu(x) (x) - #define be32_to_cpu(x) (x) - #define cpu_to_le16(x) SwapEndian_16(x) - #define cpu_to_le32(x) SwapEndian_32(x) - #define cpu_to_be16(x) (x) - #define cpu_to_be32(x) (x) - #define LE16_TO_CPU(x) SWAPENDIAN_16(x) - #define LE32_TO_CPU(x) SWAPENDIAN_32(x) - #define BE16_TO_CPU(x) (x) - #define BE32_TO_CPU(x) (x) - #define CPU_TO_LE16(x) SWAPENDIAN_16(x) - #define CPU_TO_LE32(x) SWAPENDIAN_32(x) - #define CPU_TO_BE16(x) (x) - #define CPU_TO_BE32(x) (x) - #elif !defined(le16_to_cpu) - /** \name Run-time endianness conversion */ - //@{ - - /** Performs a conversion between a Little Endian encoded 16-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref LE16_TO_CPU instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define le16_to_cpu(x) (x) - - /** Performs a conversion between a Little Endian encoded 32-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref LE32_TO_CPU instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define le32_to_cpu(x) (x) - - /** Performs a conversion between a Big Endian encoded 16-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref BE16_TO_CPU instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define be16_to_cpu(x) SwapEndian_16(x) - - /** Performs a conversion between a Big Endian encoded 32-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref BE32_TO_CPU instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define be32_to_cpu(x) SwapEndian_32(x) - - /** Performs a conversion on a natively encoded 16-bit piece of data to ensure that it - * is in Little Endian format regardless of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref CPU_TO_LE16 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define cpu_to_le16(x) (x) - - /** Performs a conversion on a natively encoded 32-bit piece of data to ensure that it - * is in Little Endian format regardless of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref CPU_TO_LE32 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define cpu_to_le32(x) (x) - - /** Performs a conversion on a natively encoded 16-bit piece of data to ensure that it - * is in Big Endian format regardless of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref CPU_TO_BE16 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define cpu_to_be16(x) SwapEndian_16(x) - - /** Performs a conversion on a natively encoded 32-bit piece of data to ensure that it - * is in Big Endian format regardless of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for run-time conversion of data - for compile-time endianness - * conversion, use \ref CPU_TO_BE32 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define cpu_to_be32(x) SwapEndian_32(x) - - //@} - - /** \name Compile-time endianness conversion */ - //@{ - - /** Performs a conversion between a Little Endian encoded 16-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run time endianness - * conversion, use \ref le16_to_cpu instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define LE16_TO_CPU(x) (x) - - /** Performs a conversion between a Little Endian encoded 32-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run time endianness - * conversion, use \ref le32_to_cpu instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define LE32_TO_CPU(x) (x) - - /** Performs a conversion between a Big Endian encoded 16-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run-time endianness - * conversion, use \ref be16_to_cpu instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define BE16_TO_CPU(x) SWAPENDIAN_16(x) - - /** Performs a conversion between a Big Endian encoded 32-bit piece of data and the - * Endianness of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run-time endianness - * conversion, use \ref be32_to_cpu instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define BE32_TO_CPU(x) SWAPENDIAN_32(x) - - /** Performs a conversion on a natively encoded 16-bit piece of data to ensure that it - * is in Little Endian format regardless of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run-time endianness - * conversion, use \ref cpu_to_le16 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define CPU_TO_LE16(x) (x) - - /** Performs a conversion on a natively encoded 32-bit piece of data to ensure that it - * is in Little Endian format regardless of the currently selected CPU architecture. - * - * On little endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run-time endianness - * conversion, use \ref cpu_to_le32 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define CPU_TO_LE32(x) (x) - - /** Performs a conversion on a natively encoded 16-bit piece of data to ensure that it - * is in Big Endian format regardless of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run-time endianness - * conversion, use \ref cpu_to_be16 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define CPU_TO_BE16(x) SWAPENDIAN_16(x) - - /** Performs a conversion on a natively encoded 32-bit piece of data to ensure that it - * is in Big Endian format regardless of the currently selected CPU architecture. - * - * On big endian architectures, this macro does nothing. - * - * \note This macro is designed for compile-time conversion of data - for run-time endianness - * conversion, use \ref cpu_to_be32 instead. - * - * \ingroup Group_EndianConversion - * - * \param[in] x Data to perform the endianness conversion on. - * - * \return Endian corrected version of the input value. - */ - #define CPU_TO_BE32(x) SWAPENDIAN_32(x) - - //! @} - #endif - - /* Inline Functions: */ - /** Function to reverse the byte ordering of the individual bytes in a 16 bit value. - * - * \ingroup Group_ByteSwapping - * - * \param[in] Word Word of data whose bytes are to be swapped. - * - * \return Input data with the individual bytes reversed. - */ - static inline uint16_t SwapEndian_16(const uint16_t Word) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYS_INLINE; - static inline uint16_t SwapEndian_16(const uint16_t Word) - { - if (GCC_IS_COMPILE_CONST(Word)) - return SWAPENDIAN_16(Word); - - uint8_t Temp; - - union - { - uint16_t Word; - uint8_t Bytes[2]; - } Data; - - Data.Word = Word; - - Temp = Data.Bytes[0]; - Data.Bytes[0] = Data.Bytes[1]; - Data.Bytes[1] = Temp; - - return Data.Word; - } - - /** Function to reverse the byte ordering of the individual bytes in a 32 bit value. - * - * \ingroup Group_ByteSwapping - * - * \param[in] DWord Double word of data whose bytes are to be swapped. - * - * \return Input data with the individual bytes reversed. - */ - static inline uint32_t SwapEndian_32(const uint32_t DWord) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYS_INLINE; - static inline uint32_t SwapEndian_32(const uint32_t DWord) - { - if (GCC_IS_COMPILE_CONST(DWord)) - return SWAPENDIAN_32(DWord); - - uint8_t Temp; - - union - { - uint32_t DWord; - uint8_t Bytes[4]; - } Data; - - Data.DWord = DWord; - - Temp = Data.Bytes[0]; - Data.Bytes[0] = Data.Bytes[3]; - Data.Bytes[3] = Temp; - - Temp = Data.Bytes[1]; - Data.Bytes[1] = Data.Bytes[2]; - Data.Bytes[2] = Temp; - - return Data.DWord; - } - - /** Function to reverse the byte ordering of the individual bytes in a n byte value. - * - * \ingroup Group_ByteSwapping - * - * \param[in,out] Data Pointer to a number containing an even number of bytes to be reversed. - * \param[in] Length Length of the data in bytes. - * - * \return Input data with the individual bytes reversed. - */ - static inline void SwapEndian_n(void* const Data, - uint8_t Length) ATTR_NON_NULL_PTR_ARG(1); - static inline void SwapEndian_n(void* const Data, - uint8_t Length) - { - uint8_t* CurrDataPos = (uint8_t*)Data; - - while (Length > 1) - { - uint8_t Temp = *CurrDataPos; - *CurrDataPos = *(CurrDataPos + Length - 1); - *(CurrDataPos + Length - 1) = Temp; - - CurrDataPos++; - Length -= 2; - } - } - - /* Disable C linkage for C++ Compilers: */ - #if defined(__cplusplus) - } - #endif - -#endif - -/** @} */ - |