/* Copyright 2017 Jason Williams * Copyright 2018 Jack Humbert * Copyright 2018 Yiancar * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #ifdef __AVR__ #include <avr/interrupt.h> #include <avr/io.h> #include <util/delay.h> #else #include "wait.h" #endif #include "is31fl3733.h" #include <string.h> #include "i2c_master.h" #include "progmem.h" // This is a 7-bit address, that gets left-shifted and bit 0 // set to 0 for write, 1 for read (as per I2C protocol) // The address will vary depending on your wiring: // 00 <-> GND // 01 <-> SCL // 10 <-> SDA // 11 <-> VCC // ADDR1 represents A1:A0 of the 7-bit address. // ADDR2 represents A3:A2 of the 7-bit address. // The result is: 0b101(ADDR2)(ADDR1) #define ISSI_ADDR_DEFAULT 0x50 #define ISSI_COMMANDREGISTER 0xFD #define ISSI_COMMANDREGISTER_WRITELOCK 0xFE #define ISSI_INTERRUPTMASKREGISTER 0xF0 #define ISSI_INTERRUPTSTATUSREGISTER 0xF1 #define ISSI_PAGE_LEDCONTROL 0x00 //PG0 #define ISSI_PAGE_PWM 0x01 //PG1 #define ISSI_PAGE_AUTOBREATH 0x02 //PG2 #define ISSI_PAGE_FUNCTION 0x03 //PG3 #define ISSI_REG_CONFIGURATION 0x00 //PG3 #define ISSI_REG_GLOBALCURRENT 0x01 //PG3 #define ISSI_REG_RESET 0x11// PG3 #define ISSI_REG_SWPULLUP 0x0F //PG3 #define ISSI_REG_CSPULLUP 0x10 //PG3 #ifndef ISSI_TIMEOUT #define ISSI_TIMEOUT 100 #endif #ifndef ISSI_PERSISTENCE #define ISSI_PERSISTENCE 0 #endif // Transfer buffer for TWITransmitData() uint8_t g_twi_transfer_buffer[20]; // These buffers match the IS31FL3733 PWM registers. // The control buffers match the PG0 LED On/Off registers. // Storing them like this is optimal for I2C transfers to the registers. // We could optimize this and take out the unused registers from these // buffers and the transfers in IS31FL3733_write_pwm_buffer() but it's // probably not worth the extra complexity. uint8_t g_pwm_buffer[DRIVER_COUNT][192]; bool g_pwm_buffer_update_required = false; uint8_t g_led_control_registers[DRIVER_COUNT][24] = { { 0 }, { 0 } }; bool g_led_control_registers_update_required = false; void IS31FL3733_write_register( uint8_t addr, uint8_t reg, uint8_t data ) { g_twi_transfer_buffer[0] = reg; g_twi_transfer_buffer[1] = data; #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) == 0) break; } #else i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT); #endif } void IS31FL3733_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer ) { // assumes PG1 is already selected // transmit PWM registers in 12 transfers of 16 bytes // g_twi_transfer_buffer[] is 20 bytes // iterate over the pwm_buffer contents at 16 byte intervals for ( int i = 0; i < 192; i += 16 ) { g_twi_transfer_buffer[0] = i; // copy the data from i to i+15 // device will auto-increment register for data after the first byte // thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer for ( int j = 0; j < 16; j++ ) { g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j]; } #if ISSI_PERSISTENCE > 0 for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) { if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) == 0) break; } #else i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT); #endif } } void IS31FL3733_init( uint8_t addr ) { // In order to avoid the LEDs being driven with garbage data // in the LED driver's PWM registers, shutdown is enabled last. // Set up the mode and other settings, clear the PWM registers, // then disable software shutdown. // Unlock the command register. IS31FL3733_write_register( addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5 ); // Select PG0 IS31FL3733_write_register( addr, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL ); // Turn off all LEDs. for ( int i = 0x00; i <= 0x17; i++ ) { IS31FL3733_write_register( addr, i, 0x00 ); } // Unlock the command register. IS31FL3733_write_register( addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5 ); // Select PG1 IS31FL3733_write_register( addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM ); // Set PWM on all LEDs to 0 // No need to setup Breath registers to PWM as that is the default. for ( int i = 0x00; i <= 0xBF; i++ ) { IS31FL3733_write_register( addr, i, 0x00 ); } // Unlock the command register. IS31FL3733_write_register( addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5 ); // Select PG3 IS31FL3733_write_register( addr, ISSI_COMMANDREGISTER, ISSI_PAGE_FUNCTION ); // Set global current to maximum. IS31FL3733_write_register( addr, ISSI_REG_GLOBALCURRENT, 0xFF ); // Disable software shutdown. IS31FL3733_write_register( addr, ISSI_REG_CONFIGURATION, 0x01 ); // Wait 10ms to ensure the device has woken up. #ifdef __AVR__ _delay_ms( 10 ); #else wait_ms(10); #endif } void IS31FL3733_set_color( int index, uint8_t red, uint8_t green, uint8_t blue ) { if ( index >= 0 && index < DRIVER_LED_TOTAL ) { is31_led led = g_is31_leds[index]; g_pwm_buffer[led.driver][led.r] = red; g_pwm_buffer[led.driver][led.g] = green; g_pwm_buffer[led.driver][led.b] = blue; g_pwm_buffer_update_required = true; } } void IS31FL3733_set_color_all( uint8_t red, uint8_t green, uint8_t blue ) { for ( int i = 0; i < DRIVER_LED_TOTAL; i++ ) { IS31FL3733_set_color( i, red, green, blue ); } } void IS31FL3733_set_led_control_register( uint8_t index, bool red, bool green, bool blue ) { is31_led led = g_is31_leds[index]; uint8_t control_register_r = led.r / 8; uint8_t control_register_g = led.g / 8; uint8_t control_register_b = led.b / 8; uint8_t bit_r = led.r % 8; uint8_t bit_g = led.g % 8; uint8_t bit_b = led.b % 8; if ( red ) { g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r); } else { g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r); } if ( green ) { g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g); } else { g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g); } if ( blue ) { g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b); } else { g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b); } g_led_control_registers_update_required = true; } void IS31FL3733_update_pwm_buffers( uint8_t addr1, uint8_t addr2 ) { if ( g_pwm_buffer_update_required ) { // Firstly we need to unlock the command register and select PG1 IS31FL3733_write_register( addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5 ); IS31FL3733_write_register( addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM ); IS31FL3733_write_pwm_buffer( addr1, g_pwm_buffer[0] ); //IS31FL3733_write_pwm_buffer( addr2, g_pwm_buffer[1] ); } g_pwm_buffer_update_required = false; } void IS31FL3733_update_led_control_registers( uint8_t addr1, uint8_t addr2 ) { if ( g_led_control_registers_update_required ) { // Firstly we need to unlock the command register and select PG0 IS31FL3733_write_register( addr1, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5 ); IS31FL3733_write_register( addr1, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL ); for ( int i=0; i<24; i++ ) { IS31FL3733_write_register(addr1, i, g_led_control_registers[0][i] ); //IS31FL3733_write_register(addr2, i, g_led_control_registers[1][i] ); } } }