/* Copyright 2011 Jun Wako <wakojun@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include <util/delay.h> #include "print.h" #include "debug.h" #include "util.h" #include "timer.h" #include "matrix.h" #include "hhkb_avr.h" #include <avr/wdt.h> #include "suspend.h" #include "lufa.h" // matrix power saving #define MATRIX_POWER_SAVE 10000 static uint32_t matrix_last_modified = 0; // matrix state buffer(1:on, 0:off) static matrix_row_t *matrix; static matrix_row_t *matrix_prev; static matrix_row_t _matrix0[MATRIX_ROWS]; static matrix_row_t _matrix1[MATRIX_ROWS]; inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { #ifdef DEBUG debug_enable = true; debug_keyboard = true; #endif KEY_INIT(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix0[i] = 0x00; for (uint8_t i=0; i < MATRIX_ROWS; i++) _matrix1[i] = 0x00; matrix = _matrix0; matrix_prev = _matrix1; } __attribute__ ((weak)) void matrix_scan_user(void) { } void matrix_scan_kb(void) { matrix_scan_user(); } uint8_t matrix_scan(void) { uint8_t *tmp; tmp = matrix_prev; matrix_prev = matrix; matrix = tmp; // power on if (!KEY_POWER_STATE()) KEY_POWER_ON(); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { for (uint8_t col = 0; col < MATRIX_COLS; col++) { KEY_SELECT(row, col); _delay_us(5); // Not sure this is needed. This just emulates HHKB controller's behaviour. if (matrix_prev[row] & (1<<col)) { KEY_PREV_ON(); } _delay_us(10); // NOTE: KEY_STATE is valid only in 20us after KEY_ENABLE. // If V-USB interrupts in this section we could lose 40us or so // and would read invalid value from KEY_STATE. uint8_t last = TIMER_RAW; KEY_ENABLE(); // Wait for KEY_STATE outputs its value. // 1us was ok on one HHKB, but not worked on another. // no wait doesn't work on Teensy++ with pro(1us works) // no wait does work on tmk PCB(8MHz) with pro2 // 1us wait does work on both of above // 1us wait doesn't work on tmk(16MHz) // 5us wait does work on tmk(16MHz) // 5us wait does work on tmk(16MHz/2) // 5us wait does work on tmk(8MHz) // 10us wait does work on Teensy++ with pro // 10us wait does work on 328p+iwrap with pro // 10us wait doesn't work on tmk PCB(8MHz) with pro2(very lagged scan) _delay_us(5); if (KEY_STATE()) { matrix[row] &= ~(1<<col); } else { matrix[row] |= (1<<col); } // Ignore if this code region execution time elapses more than 20us. // MEMO: 20[us] * (TIMER_RAW_FREQ / 1000000)[count per us] // MEMO: then change above using this rule: a/(b/c) = a*1/(b/c) = a*(c/b) if (TIMER_DIFF_RAW(TIMER_RAW, last) > 20/(1000000/TIMER_RAW_FREQ)) { matrix[row] = matrix_prev[row]; } _delay_us(5); KEY_PREV_OFF(); KEY_UNABLE(); // NOTE: KEY_STATE keep its state in 20us after KEY_ENABLE. // This takes 25us or more to make sure KEY_STATE returns to idle state. // Looks like JP needs faster scan due to its twice larger matrix // or it can drop keys in fast key typing _delay_us(30); } if (matrix[row] ^ matrix_prev[row]) matrix_last_modified = timer_read32(); } // power off if (KEY_POWER_STATE() && (USB_DeviceState == DEVICE_STATE_Suspended || USB_DeviceState == DEVICE_STATE_Unattached ) && timer_elapsed32(matrix_last_modified) > MATRIX_POWER_SAVE) { KEY_POWER_OFF(); suspend_power_down(); } matrix_scan_quantum(); return 1; } bool matrix_is_modified(void) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) { if (matrix[i] != matrix_prev[i]) return true; } return false; } inline bool matrix_has_ghost(void) { return false; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & (1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print("\nr/c 01234567\n"); for (uint8_t row = 0; row < matrix_rows(); row++) { xprintf("%02X: %08b\n", row, bitrev(matrix_get_row(row))); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { count += bitpop16(matrix_get_row(r)); } return count; } void matrix_power_up(void) { KEY_POWER_ON(); } void matrix_power_down(void) { KEY_POWER_OFF(); }