// SPDX-License-Identifier: GPL-2.0
#ifdef __clang__
// Clang has a bug on zero-initialization of C structs.
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
#endif
#include "ssrf.h"
#include <stdio.h>
#include <unistd.h>
#include <inttypes.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "gettext.h"
#include "dive.h"
#include "subsurface-string.h"
#include "device.h"
#include "divelist.h"
#include "display.h"
#include <libdivecomputer/version.h>
#include <libdivecomputer/usbhid.h>
#include <libdivecomputer/serial.h>
#include <libdivecomputer/irda.h>
#include "libdivecomputer.h"
#include "core/version.h"
#include "core/qthelper.h"
#include "core/membuffer.h"
#include "core/file.h"
#include <QtGlobal>
//
// If we have an old libdivecomputer, it doesn't
// have the new DC_TANKINFO bits, but just volume
// type information.
//
#ifndef DC_TANKINFO_METRIC
#define DC_TANKINFO_METRIC DC_TANKVOLUME_METRIC
#define DC_TANKINFO_IMPERIAL DC_TANKVOLUME_IMPERIAL
#define DC_TANKINFO_CC_O2 0
#define DC_TANKINFO_CC_DILUENT 0
#endif
char *dumpfile_name;
char *logfile_name;
const char *progress_bar_text = "";
void (*progress_callback)(const char *text) = NULL;
double progress_bar_fraction = 0.0;
static int stoptime, stopdepth, ndl, po2, cns, heartbeat, bearing;
static bool in_deco, first_temp_is_air;
static int current_gas_index;
/* logging bits from libdivecomputer */
#ifndef __ANDROID__
#define INFO(context, fmt, ...) fprintf(stderr, "INFO: " fmt "\n", ##__VA_ARGS__)
#define ERROR(context, fmt, ...) fprintf(stderr, "ERROR: " fmt "\n", ##__VA_ARGS__)
#else
#include <android/log.h>
#define INFO(context, fmt, ...) __android_log_print(ANDROID_LOG_DEBUG, __FILE__, "INFO: " fmt "\n", ##__VA_ARGS__)
#define ERROR(context, fmt, ...) __android_log_print(ANDROID_LOG_DEBUG, __FILE__, "ERROR: " fmt "\n", ##__VA_ARGS__)
#endif
/*
* Directly taken from libdivecomputer's examples/common.c to improve
* the error messages resulting from libdc's return codes
*/
const char *errmsg (dc_status_t rc)
{
switch (rc) {
case DC_STATUS_SUCCESS:
return "Success";
case DC_STATUS_UNSUPPORTED:
return "Unsupported operation";
case DC_STATUS_INVALIDARGS:
return "Invalid arguments";
case DC_STATUS_NOMEMORY:
return "Out of memory";
case DC_STATUS_NODEVICE:
return "No device found";
case DC_STATUS_NOACCESS:
return "Access denied";
case DC_STATUS_IO:
return "Input/output error";
case DC_STATUS_TIMEOUT:
return "Timeout";
case DC_STATUS_PROTOCOL:
return "Protocol error";
case DC_STATUS_DATAFORMAT:
return "Data format error";
case DC_STATUS_CANCELLED:
return "Cancelled";
default:
return "Unknown error";
}
}
static dc_status_t create_parser(device_data_t *devdata, dc_parser_t **parser)
{
return dc_parser_new(parser, devdata->device);
}
static int parse_gasmixes(device_data_t *devdata, struct dive *dive, dc_parser_t *parser, unsigned int ngases)
{
static bool shown_warning = false;
unsigned int i;
int rc;
#if DC_VERSION_CHECK(0, 5, 0) && defined(DC_GASMIX_UNKNOWN)
unsigned int ntanks = 0;
rc = dc_parser_get_field(parser, DC_FIELD_TANK_COUNT, 0, &ntanks);
if (rc == DC_STATUS_SUCCESS) {
if (ntanks && ntanks < ngases) {
shown_warning = true;
report_error("Warning: different number of gases (%d) and cylinders (%d)", ngases, ntanks);
} else if (ntanks > ngases) {
shown_warning = true;
report_error("Warning: smaller number of gases (%d) than cylinders (%d). Assuming air.", ngases, ntanks);
}
}
#endif
bool no_volume = true;
for (i = 0; i < MAX_CYLINDERS && (i < ngases || i < ntanks); i++) {
if (i < ngases) {
dc_gasmix_t gasmix = { 0 };
int o2, he;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX, i, &gasmix);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED)
return rc;
o2 = lrint(gasmix.oxygen * 1000);
he = lrint(gasmix.helium * 1000);
/* Ignore bogus data - libdivecomputer does some crazy stuff */
if (o2 + he <= O2_IN_AIR || o2 > 1000) {
if (!shown_warning) {
shown_warning = true;
report_error("unlikely dive gas data from libdivecomputer: o2 = %d he = %d", o2, he);
}
o2 = 0;
}
if (he < 0 || o2 + he > 1000) {
if (!shown_warning) {
shown_warning = true;
report_error("unlikely dive gas data from libdivecomputer: o2 = %d he = %d", o2, he);
}
he = 0;
}
dive->cylinder[i].gasmix.o2.permille = o2;
dive->cylinder[i].gasmix.he.permille = he;
} else {
dive->cylinder[i].gasmix.o2.permille = 0;
dive->cylinder[i].gasmix.he.permille = 0;
}
#if DC_VERSION_CHECK(0, 5, 0) && defined(DC_GASMIX_UNKNOWN)
if (i < ntanks) {
dc_tank_t tank = { 0 };
rc = dc_parser_get_field(parser, DC_FIELD_TANK, i, &tank);
if (rc == DC_STATUS_SUCCESS) {
cylinder_t *cyl = dive->cylinder + i;
cyl->type.size.mliter = lrint(tank.volume * 1000);
cyl->type.workingpressure.mbar = lrint(tank.workpressure * 1000);
cyl->cylinder_use = OC_GAS;
if (tank.type & DC_TANKINFO_CC_O2)
cyl->cylinder_use = OXYGEN;
if (tank.type & DC_TANKINFO_CC_DILUENT)
cyl->cylinder_use = DILUENT;
if (tank.type & DC_TANKINFO_IMPERIAL) {
if (same_string(devdata->model, "Suunto EON Steel")) {
/* Suunto EON Steele gets this wrong. Badly.
* but on the plus side it only supports a few imperial sizes,
* so let's try and guess at least the most common ones.
* First, the pressures are off by a constant factor. WTF?
* Then we can round the wet sizes so we get to multiples of 10
* for cuft sizes (as that's all that you can enter) */
dive->cylinder[i].type.workingpressure.mbar = lrint(
dive->cylinder[i].type.workingpressure.mbar * 206.843 / 206.7 );
char name_buffer[17];
int rounded_size = lrint(ml_to_cuft(gas_volume(&dive->cylinder[i],
dive->cylinder[i].type.workingpressure)));
rounded_size = (int)((rounded_size + 5) / 10) * 10;
switch (dive->cylinder[i].type.workingpressure.mbar) {
case 206843:
snprintf(name_buffer, sizeof(name_buffer), "AL%d", rounded_size);
break;
case 234422: /* this is wrong - HP tanks tend to be 3440, but Suunto only allows 3400 */
snprintf(name_buffer, sizeof(name_buffer), "HP%d", rounded_size);
break;
case 179263:
snprintf(name_buffer, sizeof(name_buffer), "LP+%d", rounded_size);
break;
case 165474:
snprintf(name_buffer, sizeof(name_buffer), "LP%d", rounded_size);
break;
default:
snprintf(name_buffer, sizeof(name_buffer), "%d cuft", rounded_size);
break;
}
dive->cylinder[i].type.description = copy_string(name_buffer);
dive->cylinder[i].type.size.mliter = lrint(cuft_to_l(rounded_size) * 1000 /
mbar_to_atm(dive->cylinder[i].type.workingpressure.mbar));
}
}
if (tank.gasmix != i) { // we don't handle this, yet
shown_warning = true;
report_error("gasmix %d for tank %d doesn't match", tank.gasmix, i);
}
}
if (!IS_FP_SAME(tank.volume, 0.0))
no_volume = false;
// this new API also gives us the beginning and end pressure for the tank
// normally 0 is not a valid pressure, but for some Uwatec dive computers we
// don't get the actual start and end pressure, but instead a start pressure
// that matches the consumption and an end pressure of always 0
// In order to make this work, we arbitrary shift this up by 30bar so the
// rest of the code treats this as if they were valid values
if (!IS_FP_SAME(tank.beginpressure, 0.0)) {
if (!IS_FP_SAME(tank.endpressure, 0.0)) {
dive->cylinder[i].start.mbar = lrint(tank.beginpressure * 1000);
dive->cylinder[i].end.mbar = lrint(tank.endpressure * 1000);
} else if (same_string(devdata->vendor, "Uwatec")) {
dive->cylinder[i].start.mbar = lrint(tank.beginpressure * 1000 + 30000);
dive->cylinder[i].end.mbar = 30000;
}
}
}
#endif
if (no_volume) {
/* for the first tank, if there is no tanksize available from the
* dive computer, fill in the default tank information (if set) */
fill_default_cylinder(&dive->cylinder[i]);
}
/* whatever happens, make sure there is a name for the cylinder */
if (empty_string(dive->cylinder[i].type.description))
dive->cylinder[i].type.description = strdup(translate("gettextFromC", "unknown"));
}
return DC_STATUS_SUCCESS;
}
static void handle_event(struct divecomputer *dc, struct sample *sample, dc_sample_value_t value)
{
int type, time;
struct event *ev;
/* we mark these for translation here, but we store the untranslated strings
* and only translate them when they are displayed on screen */
static const char *events[] = {
[SAMPLE_EVENT_NONE] = QT_TRANSLATE_NOOP("gettextFromC", "none"),
[SAMPLE_EVENT_DECOSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "deco stop"),
[SAMPLE_EVENT_RBT] = QT_TRANSLATE_NOOP("gettextFromC", "rbt"),
[SAMPLE_EVENT_ASCENT] = QT_TRANSLATE_NOOP("gettextFromC", "ascent"),
[SAMPLE_EVENT_CEILING] = QT_TRANSLATE_NOOP("gettextFromC", "ceiling"),
[SAMPLE_EVENT_WORKLOAD] = QT_TRANSLATE_NOOP("gettextFromC", "workload"),
[SAMPLE_EVENT_TRANSMITTER] = QT_TRANSLATE_NOOP("gettextFromC", "transmitter"),
[SAMPLE_EVENT_VIOLATION] = QT_TRANSLATE_NOOP("gettextFromC", "violation"),
[SAMPLE_EVENT_BOOKMARK] = QT_TRANSLATE_NOOP("gettextFromC", "bookmark"),
[SAMPLE_EVENT_SURFACE] = QT_TRANSLATE_NOOP("gettextFromC", "surface"),
[SAMPLE_EVENT_SAFETYSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "safety stop"),
[SAMPLE_EVENT_GASCHANGE] = QT_TRANSLATE_NOOP("gettextFromC", "gaschange"),
[SAMPLE_EVENT_SAFETYSTOP_VOLUNTARY] = QT_TRANSLATE_NOOP("gettextFromC", "safety stop (voluntary)"),
[SAMPLE_EVENT_SAFETYSTOP_MANDATORY] = QT_TRANSLATE_NOOP("gettextFromC", "safety stop (mandatory)"),
[SAMPLE_EVENT_DEEPSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "deepstop"),
[SAMPLE_EVENT_CEILING_SAFETYSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "ceiling (safety stop)"),
[SAMPLE_EVENT_FLOOR] = QT_TRANSLATE_NOOP3("gettextFromC", "below floor", "event showing dive is below deco floor and adding deco time"),
[SAMPLE_EVENT_DIVETIME] = QT_TRANSLATE_NOOP("gettextFromC", "divetime"),
[SAMPLE_EVENT_MAXDEPTH] = QT_TRANSLATE_NOOP("gettextFromC", "maxdepth"),
[SAMPLE_EVENT_OLF] = QT_TRANSLATE_NOOP("gettextFromC", "OLF"),
[SAMPLE_EVENT_PO2] = QT_TRANSLATE_NOOP("gettextFromC", "pO₂"),
[SAMPLE_EVENT_AIRTIME] = QT_TRANSLATE_NOOP("gettextFromC", "airtime"),
[SAMPLE_EVENT_RGBM] = QT_TRANSLATE_NOOP("gettextFromC", "rgbm"),
[SAMPLE_EVENT_HEADING] = QT_TRANSLATE_NOOP("gettextFromC", "heading"),
[SAMPLE_EVENT_TISSUELEVEL] = QT_TRANSLATE_NOOP("gettextFromC", "tissue level warning"),
[SAMPLE_EVENT_GASCHANGE2] = QT_TRANSLATE_NOOP("gettextFromC", "gaschange"),
};
const int nr_events = sizeof(events) / sizeof(const char *);
const char *name;
/*
* Other evens might be more interesting, but for now we just print them out.
*/
type = value.event.type;
name = QT_TRANSLATE_NOOP("gettextFromC", "invalid event number");
if (type < nr_events && events[type])
name = events[type];
#ifdef SAMPLE_EVENT_STRING
if (type == SAMPLE_EVENT_STRING)
name = value.event.name;
#endif
time = value.event.time;
if (sample)
time += sample->time.seconds;
ev = add_event(dc, time, type, value.event.flags, value.event.value, name);
if (event_is_gaschange(ev) && ev->gas.index >= 0)
current_gas_index = ev->gas.index;
}
static void handle_gasmix(struct divecomputer *dc, struct sample *sample, int idx)
{
if (idx < 0 || idx >= MAX_CYLINDERS)
return;
add_event(dc, sample->time.seconds, SAMPLE_EVENT_GASCHANGE2, idx+1, 0, "gaschange");
current_gas_index = idx;
}
void
sample_cb(dc_sample_type_t type, dc_sample_value_t value, void *userdata)
{
static unsigned int nsensor = 0;
struct divecomputer *dc = userdata;
struct sample *sample;
/*
* We fill in the "previous" sample - except for DC_SAMPLE_TIME,
* which creates a new one.
*/
sample = dc->samples ? dc->sample + dc->samples - 1 : NULL;
/*
* Ok, sanity check.
* If first sample is not a DC_SAMPLE_TIME, Allocate a sample for us
*/
if (sample == NULL && type != DC_SAMPLE_TIME)
sample = prepare_sample(dc);
switch (type) {
case DC_SAMPLE_TIME:
nsensor = 0;
// Create a new sample.
// Mark depth as negative
sample = prepare_sample(dc);
sample->time.seconds = value.time;
sample->depth.mm = -1;
// The current sample gets some sticky values
// that may have been around from before, these
// values will be overwritten by new data if available
sample->in_deco = in_deco;
sample->ndl.seconds = ndl;
sample->stoptime.seconds = stoptime;
sample->stopdepth.mm = stopdepth;
sample->setpoint.mbar = po2;
sample->cns = cns;
sample->heartbeat = heartbeat;
sample->bearing.degrees = bearing;
finish_sample(dc);
break;
case DC_SAMPLE_DEPTH:
sample->depth.mm = lrint(value.depth * 1000);
break;
case DC_SAMPLE_PRESSURE:
add_sample_pressure(sample, value.pressure.tank, lrint(value.pressure.value * 1000));
break;
case DC_SAMPLE_GASMIX:
handle_gasmix(dc, sample, value.gasmix);
break;
case DC_SAMPLE_TEMPERATURE:
sample->temperature.mkelvin = C_to_mkelvin(value.temperature);
break;
case DC_SAMPLE_EVENT:
handle_event(dc, sample, value);
break;
case DC_SAMPLE_RBT:
sample->rbt.seconds = (!strncasecmp(dc->model, "suunto", 6)) ? value.rbt : value.rbt * 60;
break;
case DC_SAMPLE_HEARTBEAT:
sample->heartbeat = heartbeat = value.heartbeat;
break;
case DC_SAMPLE_BEARING:
sample->bearing.degrees = bearing = value.bearing;
break;
#ifdef DEBUG_DC_VENDOR
case DC_SAMPLE_VENDOR:
printf(" <vendor time='%u:%02u' type=\"%u\" size=\"%u\">", FRACTION(sample->time.seconds, 60),
value.vendor.type, value.vendor.size);
for (int i = 0; i < value.vendor.size; ++i)
printf("%02X", ((unsigned char *)value.vendor.data)[i]);
printf("</vendor>\n");
break;
#endif
#if DC_VERSION_CHECK(0, 3, 0)
case DC_SAMPLE_SETPOINT:
/* for us a setpoint means constant pO2 from here */
sample->setpoint.mbar = po2 = lrint(value.setpoint * 1000);
break;
case DC_SAMPLE_PPO2:
if (nsensor < 3)
sample->o2sensor[nsensor].mbar = lrint(value.ppo2 * 1000);
else
report_error("%d is more o2 sensors than we can handle", nsensor);
nsensor++;
// Set the amount of detected o2 sensors
if (nsensor > dc->no_o2sensors)
dc->no_o2sensors = nsensor;
break;
case DC_SAMPLE_CNS:
sample->cns = cns = lrint(value.cns * 100);
break;
case DC_SAMPLE_DECO:
if (value.deco.type == DC_DECO_NDL) {
sample->ndl.seconds = ndl = value.deco.time;
sample->stopdepth.mm = stopdepth = lrint(value.deco.depth * 1000.0);
sample->in_deco = in_deco = false;
} else if (value.deco.type == DC_DECO_DECOSTOP ||
value.deco.type == DC_DECO_DEEPSTOP) {
sample->in_deco = in_deco = true;
sample->stopdepth.mm = stopdepth = lrint(value.deco.depth * 1000.0);
sample->stoptime.seconds = stoptime = value.deco.time;
ndl = 0;
} else if (value.deco.type == DC_DECO_SAFETYSTOP) {
sample->in_deco = in_deco = false;
sample->stopdepth.mm = stopdepth = lrint(value.deco.depth * 1000.0);
sample->stoptime.seconds = stoptime = value.deco.time;
}
#endif
default:
break;
}
}
static void dev_info(device_data_t *devdata, const char *fmt, ...)
{
UNUSED(devdata);
static char buffer[1024];
va_list ap;
va_start(ap, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, ap);
va_end(ap);
progress_bar_text = buffer;
if (progress_callback)
(*progress_callback)(buffer);
}
static int import_dive_number = 0;
static int parse_samples(device_data_t *devdata, struct divecomputer *dc, dc_parser_t *parser)
{
UNUSED(devdata);
// Parse the sample data.
return dc_parser_samples_foreach(parser, sample_cb, dc);
}
static int might_be_same_dc(struct divecomputer *a, struct divecomputer *b)
{
if (!a->model || !b->model)
return 1;
if (strcasecmp(a->model, b->model))
return 0;
if (!a->deviceid || !b->deviceid)
return 1;
return a->deviceid == b->deviceid;
}
static int match_one_dive(struct divecomputer *a, struct dive *dive)
{
struct divecomputer *b = &dive->dc;
/*
* Walk the existing dive computer data,
* see if we have a match (or an anti-match:
* the same dive computer but a different
* dive ID).
*/
do {
int match = match_one_dc(a, b);
if (match)
return match > 0;
b = b->next;
} while (b);
/* Ok, no exact dive computer match. Does the date match? */
b = &dive->dc;
do {
if (a->when == b->when && might_be_same_dc(a, b))
return 1;
b = b->next;
} while (b);
return 0;
}
/*
* Check if this dive already existed before the import
*/
static int find_dive(struct divecomputer *match)
{
int i;
for (i = dive_table.preexisting - 1; i >= 0; i--) {
struct dive *old = dive_table.dives[i];
if (match_one_dive(match, old))
return 1;
}
return 0;
}
/*
* Like g_strdup_printf(), but without the stupid g_malloc/g_free confusion.
* And we limit the string to some arbitrary size.
*/
static char *str_printf(const char *fmt, ...)
{
va_list args;
char buf[1024];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf) - 1, fmt, args);
va_end(args);
buf[sizeof(buf) - 1] = 0;
return strdup(buf);
}
/*
* The dive ID for libdivecomputer dives is the first word of the
* SHA1 of the fingerprint, if it exists.
*
* NOTE! This is byte-order dependent, and I don't care.
*/
static uint32_t calculate_diveid(const unsigned char *fingerprint, unsigned int fsize)
{
uint32_t csum[5];
if (!fingerprint || !fsize)
return 0;
SHA1(fingerprint, fsize, (unsigned char *)csum);
return csum[0];
}
#ifdef DC_FIELD_STRING
static uint32_t calculate_string_hash(const char *str)
{
return calculate_diveid((const unsigned char *)str, strlen(str));
}
/*
* Find an existing device ID for this device model and serial number
*/
static void dc_match_serial(void *_dc, const char *model, uint32_t deviceid, const char *nickname, const char *serial, const char *firmware)
{
UNUSED(nickname);
UNUSED(firmware);
struct divecomputer *dc = _dc;
if (!deviceid)
return;
if (!dc->model || !model || strcasecmp(dc->model, model))
return;
if (!dc->serial || !serial || strcasecmp(dc->serial, serial))
return;
dc->deviceid = deviceid;
}
/*
* Set the serial number.
*
* This also sets the device ID by looking for existing devices that
* have that serial number.
*
* If no existing device ID exists, create a new by hashing the serial
* number string.
*/
static void set_dc_serial(struct divecomputer *dc, const char *serial)
{
dc->serial = serial;
call_for_each_dc(dc, dc_match_serial, false);
if (!dc->deviceid)
dc->deviceid = calculate_string_hash(serial);
}
static void parse_string_field(struct dive *dive, dc_field_string_t *str)
{
// Our dive ID is the string hash of the "Dive ID" string
if (!strcmp(str->desc, "Dive ID")) {
if (!dive->dc.diveid)
dive->dc.diveid = calculate_string_hash(str->value);
return;
}
add_extra_data(&dive->dc, str->desc, str->value);
if (!strcmp(str->desc, "Serial")) {
set_dc_serial(&dive->dc, str->value);
return;
}
if (!strcmp(str->desc, "FW Version")) {
dive->dc.fw_version = strdup(str->value);
return;
}
}
#endif
static dc_status_t libdc_header_parser(dc_parser_t *parser, device_data_t *devdata, struct dive *dive)
{
dc_status_t rc = 0;
dc_datetime_t dt = { 0 };
struct tm tm;
rc = dc_parser_get_datetime(parser, &dt);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error parsing the datetime"));
return rc;
}
dive->dc.deviceid = devdata->deviceid;
if (rc == DC_STATUS_SUCCESS) {
tm.tm_year = dt.year;
tm.tm_mon = dt.month - 1;
tm.tm_mday = dt.day;
tm.tm_hour = dt.hour;
tm.tm_min = dt.minute;
tm.tm_sec = dt.second;
dive->when = dive->dc.when = utc_mktime(&tm);
}
// Parse the divetime.
char *date_string = get_dive_date_c_string(dive->when);
dev_info(devdata, translate("gettextFromC", "Dive %d: %s"), import_dive_number, date_string);
free(date_string);
unsigned int divetime = 0;
rc = dc_parser_get_field(parser, DC_FIELD_DIVETIME, 0, &divetime);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error parsing the divetime"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
dive->dc.duration.seconds = divetime;
// Parse the maxdepth.
double maxdepth = 0.0;
rc = dc_parser_get_field(parser, DC_FIELD_MAXDEPTH, 0, &maxdepth);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error parsing the maxdepth"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
dive->dc.maxdepth.mm = lrint(maxdepth * 1000);
#if DC_VERSION_CHECK(0, 5, 0) && defined(DC_GASMIX_UNKNOWN)
// if this is defined then we have a fairly late version of libdivecomputer
// from the 0.5 development cylcle - most likely temperatures and tank sizes
// are supported
// Parse temperatures
double temperature;
dc_field_type_t temp_fields[] = {DC_FIELD_TEMPERATURE_SURFACE,
DC_FIELD_TEMPERATURE_MAXIMUM,
DC_FIELD_TEMPERATURE_MINIMUM};
for (int i = 0; i < 3; i++) {
rc = dc_parser_get_field(parser, temp_fields[i], 0, &temperature);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error parsing temperature"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
switch(i) {
case 0:
dive->dc.airtemp.mkelvin = C_to_mkelvin(temperature);
break;
case 1: // we don't distinguish min and max water temp here, so take min if given, max otherwise
case 2:
dive->dc.watertemp.mkelvin = C_to_mkelvin(temperature);
break;
}
}
#endif
// Parse the gas mixes.
unsigned int ngases = 0;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX_COUNT, 0, &ngases);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error parsing the gas mix count"));
return rc;
}
#if DC_VERSION_CHECK(0, 3, 0)
// Check if the libdivecomputer version already supports salinity & atmospheric
dc_salinity_t salinity = {
.type = DC_WATER_SALT,
.density = SEAWATER_SALINITY / 10.0
};
rc = dc_parser_get_field(parser, DC_FIELD_SALINITY, 0, &salinity);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error obtaining water salinity"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
dive->dc.salinity = lrint(salinity.density * 10.0);
double surface_pressure = 0;
rc = dc_parser_get_field(parser, DC_FIELD_ATMOSPHERIC, 0, &surface_pressure);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error obtaining surface pressure"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
dive->dc.surface_pressure.mbar = lrint(surface_pressure * 1000.0);
#endif
#ifdef DC_FIELD_STRING
// The dive parsing may give us more device information
int idx;
for (idx = 0; idx < 100; idx++) {
dc_field_string_t str = { NULL };
rc = dc_parser_get_field(parser, DC_FIELD_STRING, idx, &str);
if (rc != DC_STATUS_SUCCESS)
break;
if (!str.desc || !str.value)
break;
parse_string_field(dive, &str);
}
#endif
#if DC_VERSION_CHECK(0, 5, 0) && defined(DC_GASMIX_UNKNOWN)
dc_divemode_t divemode;
rc = dc_parser_get_field(parser, DC_FIELD_DIVEMODE, 0, &divemode);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error obtaining dive mode"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
switch(divemode) {
case DC_DIVEMODE_FREEDIVE:
dive->dc.divemode = FREEDIVE;
break;
case DC_DIVEMODE_GAUGE:
case DC_DIVEMODE_OC: /* Open circuit */
dive->dc.divemode = OC;
break;
case DC_DIVEMODE_CCR: /* Closed circuit rebreather*/
dive->dc.divemode = CCR;
break;
case DC_DIVEMODE_SCR: /* Semi-closed circuit rebreather */
dive->dc.divemode = PSCR;
break;
}
#endif
rc = parse_gasmixes(devdata, dive, parser, ngases);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, translate("gettextFromC", "Error parsing the gas mix"));
return rc;
}
return DC_STATUS_SUCCESS;
}
/* returns true if we want libdivecomputer's dc_device_foreach() to continue,
* false otherwise */
static int dive_cb(const unsigned char *data, unsigned int size,
const unsigned char *fingerprint, unsigned int fsize,
void *userdata)
{
int rc;
dc_parser_t *parser = NULL;
device_data_t *devdata = userdata;
struct dive *dive = NULL;
/* reset static data, that is only valid per dive */
stoptime = stopdepth = po2 = cns = heartbeat = 0;
ndl = bearing = -1;
in_deco = false;
current_gas_index = -1;
rc = create_parser(devdata, &parser);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, translate("gettextFromC", "Unable to create parser for %s %s"), devdata->vendor, devdata->product);
return false;
}
rc = dc_parser_set_data(parser, data, size);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, translate("gettextFromC", "Error registering the data"));
goto error_exit;
}
import_dive_number++;
dive = alloc_dive();
// Fill in basic fields
dive->dc.model = strdup(devdata->model);
dive->dc.diveid = calculate_diveid(fingerprint, fsize);
/* Should we add it to the cached fingerprint file? */
if (fingerprint && fsize && !devdata->fingerprint) {
devdata->fingerprint = calloc(fsize, 1);
if (devdata->fingerprint) {
devdata->fsize = fsize;
devdata->fdiveid = dive->dc.diveid;
memcpy(devdata->fingerprint, fingerprint, fsize);
}
}
// Parse the dive's header data
rc = libdc_header_parser (parser, devdata, dive);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, translate("getextFromC", "Error parsing the header"));
goto error_exit;
}
// Initialize the sample data.
rc = parse_samples(devdata, &dive->dc, parser);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, translate("gettextFromC", "Error parsing the samples"));
goto error_exit;
}
/* If we already saw this dive, abort. */
if (!devdata->force_download && find_dive(&dive->dc)) {
char *date_string = get_dive_date_c_string(dive->when);
dev_info(devdata, translate("gettextFromC", "Already downloaded dive at %s"), date_string);
free(date_string);
goto error_exit;
}
dc_parser_destroy(parser);
/* Various libdivecomputer interface fixups */
if (dive->dc.airtemp.mkelvin == 0 && first_temp_is_air && dive->dc.samples) {
dive->dc.airtemp = dive->dc.sample[0].temperature;
dive->dc.sample[0].temperature.mkelvin = 0;
}
if (devdata->create_new_trip) {
if (!devdata->trip)
devdata->trip = create_and_hookup_trip_from_dive(dive);
else
add_dive_to_trip(dive, devdata->trip);
}
dive->downloaded = true;
record_dive_to_table(dive, devdata->download_table);
mark_divelist_changed(true);
return true;
error_exit:
dc_parser_destroy(parser);
free(dive);
return false;
}
/*
* The device ID for libdivecomputer devices is the first 32-bit word
* of the SHA1 hash of the model/firmware/serial numbers.
*
* NOTE! This is byte-order-dependent. And I can't find it in myself to
* care.
*/
static uint32_t calculate_sha1(unsigned int model, unsigned int firmware, unsigned int serial)
{
SHA_CTX ctx;
uint32_t csum[5];
SHA1_Init(&ctx);
SHA1_Update(&ctx, &model, sizeof(model));
SHA1_Update(&ctx, &firmware, sizeof(firmware));
SHA1_Update(&ctx, &serial, sizeof(serial));
SHA1_Final((unsigned char *)csum, &ctx);
return csum[0];
}
/*
* libdivecomputer has returned two different serial numbers for the
* same device in different versions. First it used to just do the four
* bytes as one 32-bit number, then it turned it into a decimal number
* with each byte giving two digits (0-99).
*
* The only way we can tell is by looking at the format of the number,
* so we'll just fix it to the first format.
*/
static unsigned int undo_libdivecomputer_suunto_nr_changes(unsigned int serial)
{
unsigned char b0, b1, b2, b3;
/*
* The second format will never have more than 8 decimal
* digits, so do a cheap check first
*/
if (serial >= 100000000)
return serial;
/* The original format seems to be four bytes of values 00-99 */
b0 = (serial >> 0) & 0xff;
b1 = (serial >> 8) & 0xff;
b2 = (serial >> 16) & 0xff;
b3 = (serial >> 24) & 0xff;
/* Looks like an old-style libdivecomputer serial number */
if ((b0 < 100) && (b1 < 100) && (b2 < 100) && (b3 < 100))
return serial;
/* Nope, it was converted. */
b0 = serial % 100;
serial /= 100;
b1 = serial % 100;
serial /= 100;
b2 = serial % 100;
serial /= 100;
b3 = serial % 100;
serial = b0 + (b1 << 8) + (b2 << 16) + (b3 << 24);
return serial;
}
static unsigned int fixup_suunto_versions(device_data_t *devdata, const dc_event_devinfo_t *devinfo)
{
unsigned int serial = devinfo->serial;
char serial_nr[13] = "";
char firmware[13] = "";
first_temp_is_air = 1;
serial = undo_libdivecomputer_suunto_nr_changes(serial);
if (serial) {
snprintf(serial_nr, sizeof(serial_nr), "%02d%02d%02d%02d",
(devinfo->serial >> 24) & 0xff,
(devinfo->serial >> 16) & 0xff,
(devinfo->serial >> 8) & 0xff,
(devinfo->serial >> 0) & 0xff);
}
if (devinfo->firmware) {
snprintf(firmware, sizeof(firmware), "%d.%d.%d",
(devinfo->firmware >> 16) & 0xff,
(devinfo->firmware >> 8) & 0xff,
(devinfo->firmware >> 0) & 0xff);
}
create_device_node(devdata->model, devdata->deviceid, serial_nr, firmware, "");
return serial;
}
#ifndef O_BINARY
#define O_BINARY 0
#endif
static void do_save_fingerprint(device_data_t *devdata, const char *tmp, const char *final)
{
int fd, written = -1;
fd = subsurface_open(tmp, O_WRONLY | O_BINARY | O_CREAT | O_TRUNC, 0666);
if (fd < 0)
return;
/* The fingerprint itself.. */
written = write(fd, devdata->fingerprint, devdata->fsize);
/* ..followed by the dive ID of the fingerprinted dive */
if (write(fd, &devdata->fdiveid, 4) != 4)
written = -1;
/* I'd like to do fsync() here too, but does Windows support it? */
if (close(fd) < 0)
written = -1;
if (written == devdata->fsize) {
if (!subsurface_rename(tmp, final))
return;
}
unlink(tmp);
}
/*
* Save the fingerprint after a successful download
*/
static void save_fingerprint(device_data_t *devdata)
{
char *dir, *tmp, *final;
if (!devdata->fingerprint)
return;
dir = format_string("%s/fingerprints", system_default_directory());
subsurface_mkdir(dir);
tmp = format_string("%s/%04x.tmp", dir, devdata->deviceid);
final = format_string("%s/%04x", dir, devdata->deviceid);
free(dir);
do_save_fingerprint(devdata, tmp, final);
free(tmp);
free(final);
free(devdata->fingerprint);
devdata->fingerprint = NULL;
}
static int has_dive(unsigned int deviceid, unsigned int diveid)
{
int i;
struct dive *dive;
for_each_dive (i, dive) {
struct divecomputer *dc;
for_each_dc (dive, dc) {
if (dc->deviceid != deviceid)
continue;
if (dc->diveid != diveid)
continue;
return 1;
}
}
return 0;
}
/*
* The fingerprint cache files contain the actual libdivecomputer
* fingerprint, followed by 4 bytes of diveid data. Before we use
* the fingerprint data, verify that we actually do have that
* fingerprinted dive.
*/
static void verify_fingerprint(dc_device_t *device, device_data_t *devdata, const unsigned char *buffer, size_t size)
{
unsigned int diveid, deviceid;
if (size <= 4)
return;
size -= 4;
/* Get the dive ID from the end of the fingerprint cache file.. */
memcpy(&diveid, buffer + size, 4);
/* .. and the device ID from the device data */
deviceid = devdata->deviceid;
/* Only use it if we *have* that dive! */
if (has_dive(deviceid, diveid))
dc_device_set_fingerprint(device, buffer, size);
}
/*
* Look up the fingerprint from the fingerprint caches, and
* give it to libdivecomputer to avoid downloading already
* downloaded dives.
*/
static void lookup_fingerprint(dc_device_t *device, device_data_t *devdata)
{
char *cachename;
struct memblock mem;
if (devdata->force_download)
return;
cachename = format_string("%s/fingerprints/%04x",
system_default_directory(), devdata->deviceid);
if (readfile(cachename, &mem) > 0) {
verify_fingerprint(device, devdata, mem.buffer, mem.size);
free(mem.buffer);
}
free(cachename);
}
static void event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata)
{
UNUSED(device);
const dc_event_progress_t *progress = data;
const dc_event_devinfo_t *devinfo = data;
const dc_event_clock_t *clock = data;
const dc_event_vendor_t *vendor = data;
device_data_t *devdata = userdata;
unsigned int serial;
switch (event) {
case DC_EVENT_WAITING:
dev_info(devdata, translate("gettextFromC", "Event: waiting for user action"));
break;
case DC_EVENT_PROGRESS:
if (!progress->maximum)
break;
progress_bar_fraction = (double)progress->current / (double)progress->maximum;
break;
case DC_EVENT_DEVINFO:
if (dc_descriptor_get_model(devdata->descriptor) != devinfo->model) {
fprintf(stderr, "EVENT_DEVINFO gave us the correct detected product (model %d instead of %d)\n",
devinfo->model, dc_descriptor_get_model(devdata->descriptor));
dc_descriptor_t *better_descriptor = get_descriptor(dc_descriptor_get_type(devdata->descriptor), devinfo->model);
if (better_descriptor != NULL) {
devdata->descriptor = better_descriptor;
devdata->product = dc_descriptor_get_product(better_descriptor);
devdata->vendor = dc_descriptor_get_vendor(better_descriptor);
devdata->model = str_printf("%s %s", devdata->vendor, devdata->product);
}
}
dev_info(devdata, translate("gettextFromC", "model=%s firmware=%u serial=%u"),
devdata->product, devinfo->firmware, devinfo->serial);
if (devdata->libdc_logfile) {
fprintf(devdata->libdc_logfile, "Event: model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)\n",
devinfo->model, devinfo->model,
devinfo->firmware, devinfo->firmware,
devinfo->serial, devinfo->serial);
}
/*
* libdivecomputer doesn't give serial numbers in the proper string form,
* so we have to see if we can do some vendor-specific munging.
*/
serial = devinfo->serial;
if (!strcmp(devdata->vendor, "Suunto"))
serial = fixup_suunto_versions(devdata, devinfo);
devdata->deviceid = calculate_sha1(devinfo->model, devinfo->firmware, serial);
/* really, serial and firmware version are NOT numbers. We'll try to save them here
* in something that might work, but this really needs to be handled with the
* DC_FIELD_STRING interface instead */
devdata->libdc_serial = devinfo->serial;
devdata->libdc_firmware = devinfo->firmware;
lookup_fingerprint(device, devdata);
break;
case DC_EVENT_CLOCK:
dev_info(devdata, translate("gettextFromC", "Event: systime=%" PRId64 ", devtime=%u\n"),
(uint64_t)clock->systime, clock->devtime);
if (devdata->libdc_logfile) {
fprintf(devdata->libdc_logfile, "Event: systime=%" PRId64 ", devtime=%u\n",
(uint64_t)clock->systime, clock->devtime);
}
break;
case DC_EVENT_VENDOR:
if (devdata->libdc_logfile) {
fprintf(devdata->libdc_logfile, "Event: vendor=");
for (unsigned int i = 0; i < vendor->size; ++i)
fprintf(devdata->libdc_logfile, "%02X", vendor->data[i]);
fprintf(devdata->libdc_logfile, "\n");
}
break;
default:
break;
}
}
int import_thread_cancelled;
static int cancel_cb(void *userdata)
{
UNUSED(userdata);
return import_thread_cancelled;
}
static const char *do_device_import(device_data_t *data)
{
dc_status_t rc;
dc_device_t *device = data->device;
data->model = str_printf("%s %s", data->vendor, data->product);
// Register the event handler.
int events = DC_EVENT_WAITING | DC_EVENT_PROGRESS | DC_EVENT_DEVINFO | DC_EVENT_CLOCK | DC_EVENT_VENDOR;
rc = dc_device_set_events(device, events, event_cb, data);
if (rc != DC_STATUS_SUCCESS)
return translate("gettextFromC", "Error registering the event handler.");
// Register the cancellation handler.
rc = dc_device_set_cancel(device, cancel_cb, data);
if (rc != DC_STATUS_SUCCESS)
return translate("gettextFromC", "Error registering the cancellation handler.");
if (data->libdc_dump) {
dc_buffer_t *buffer = dc_buffer_new(0);
rc = dc_device_dump(device, buffer);
if (rc == DC_STATUS_SUCCESS && dumpfile_name) {
FILE *fp = subsurface_fopen(dumpfile_name, "wb");
if (fp != NULL) {
fwrite(dc_buffer_get_data(buffer), 1, dc_buffer_get_size(buffer), fp);
fclose(fp);
}
}
dc_buffer_free(buffer);
} else {
rc = dc_device_foreach(device, dive_cb, data);
}
if (rc != DC_STATUS_SUCCESS) {
progress_bar_fraction = 0.0;
return translate("gettextFromC", "Dive data import error");
}
/* All good */
return NULL;
}
void logfunc(dc_context_t *context, dc_loglevel_t loglevel, const char *file, unsigned int line, const char *function, const char *msg, void *userdata)
{
UNUSED(context);
const char *loglevels[] = { "NONE", "ERROR", "WARNING", "INFO", "DEBUG", "ALL" };
FILE *fp = (FILE *)userdata;
if (loglevel == DC_LOGLEVEL_ERROR || loglevel == DC_LOGLEVEL_WARNING) {
fprintf(fp, "%s: %s [in %s:%d (%s)]\n", loglevels[loglevel], msg, file, line, function);
} else {
fprintf(fp, "%s: %s\n", loglevels[loglevel], msg);
}
}
char *transport_string[] = {
"SERIAL",
"USB",
"USBHID",
"IRDA",
"BT",
"BLE"
};
/*
* Get the transports supported by us (as opposed to
* the list of transports supported by a particular
* dive computer).
*
* This could have various platform rules too..
*/
unsigned int get_supported_transports(device_data_t *data)
{
#if defined(Q_OS_IOS)
// BLE only - don't bother with being clever.
return DC_TRANSPORT_BLE;
#endif
// start out with the list of transports that libdivecomputer claims to support
// dc_context_get_transports ignores its context argument...
unsigned int supported = dc_context_get_transports(NULL);
// then add the ones that we have our own implementations for
#if defined(BT_SUPPORT)
supported |= DC_TRANSPORT_BLUETOOTH;
#endif
#if defined(BLE_SUPPORT)
supported |= DC_TRANSPORT_BLE;
#endif
if (data) {
/*
* If we have device data available, we can refine this:
* We don't support BT or BLE unless bluetooth_mode was set,
* and if it was we won't try any of the other transports.
*/
if (data->bluetooth_mode) {
supported &= (DC_TRANSPORT_BLUETOOTH | DC_TRANSPORT_BLE);
if (!strncmp(data->devname, "LE:", 3))
supported &= DC_TRANSPORT_BLE;
} else {
supported &= ~(DC_TRANSPORT_BLUETOOTH | DC_TRANSPORT_BLE);
}
}
return supported;
}
dc_status_t divecomputer_device_open(device_data_t *data)
{
dc_status_t rc;
dc_descriptor_t *descriptor = data->descriptor;
dc_context_t *context = data->context;
unsigned int transports, supported;
transports = dc_descriptor_get_transports(descriptor);
supported = get_supported_transports(data);
transports &= supported;
if (!transports) {
report_error("Dive computer transport not supported");
return DC_STATUS_UNSUPPORTED;
}
#ifdef BT_SUPPORT
if (transports & DC_TRANSPORT_BLUETOOTH) {
rc = rfcomm_stream_open(&data->iostream, context, data->devname);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
#endif
#ifdef BLE_SUPPORT
if (transports & DC_TRANSPORT_BLE) {
rc = ble_packet_open(&data->iostream, context, data->devname, data);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
#endif
if (transports & DC_TRANSPORT_USBHID) {
// Discover the usbhid device.
dc_iterator_t *iterator = NULL;
dc_usbhid_device_t *device = NULL;
dc_usbhid_iterator_new (&iterator, context, descriptor);
while (dc_iterator_next (iterator, &device) == DC_STATUS_SUCCESS)
break;
dc_iterator_free (iterator);
if (device) {
rc = dc_usbhid_open(&data->iostream, context, device);
dc_usbhid_device_free(device);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
}
/* The dive computer backend does this all internally */
if (transports & DC_TRANSPORT_USB)
return DC_STATUS_SUCCESS;
if (transports & DC_TRANSPORT_SERIAL) {
#ifdef SERIAL_FTDI
if (!strcmp(data->devname, "ftdi")) {
rc = ftdi_open(&data->iostream, context);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
#endif
rc = dc_serial_open(&data->iostream, context, data->devname);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
if (transports & DC_TRANSPORT_IRDA) {
unsigned int address = 0;
dc_iterator_t *iterator = NULL;
dc_irda_device_t *device = NULL;
dc_irda_iterator_new (&iterator, context, descriptor);
while (dc_iterator_next (iterator, &device) == DC_STATUS_SUCCESS) {
address = dc_irda_device_get_address (device);
dc_irda_device_free (device);
break;
}
dc_iterator_free (iterator);
if (!address)
address = strtoul(data->devname, NULL, 0);
rc = dc_irda_open(&data->iostream, context, address, 1);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
return DC_STATUS_UNSUPPORTED;
}
const char *do_libdivecomputer_import(device_data_t *data)
{
dc_status_t rc;
const char *err;
FILE *fp = NULL;
import_dive_number = 0;
first_temp_is_air = 0;
data->device = NULL;
data->context = NULL;
data->iostream = NULL;
data->fingerprint = NULL;
data->fsize = 0;
if (data->libdc_log && logfile_name)
fp = subsurface_fopen(logfile_name, "w");
data->libdc_logfile = fp;
rc = dc_context_new(&data->context);
if (rc != DC_STATUS_SUCCESS)
return translate("gettextFromC", "Unable to create libdivecomputer context");
if (fp) {
dc_context_set_loglevel(data->context, DC_LOGLEVEL_ALL);
dc_context_set_logfunc(data->context, logfunc, fp);
fprintf(data->libdc_logfile, "Subsurface: v%s, ", subsurface_git_version());
fprintf(data->libdc_logfile, "built with libdivecomputer v%s\n", dc_version(NULL));
}
err = translate("gettextFromC", "Unable to open %s %s (%s)");
rc = divecomputer_device_open(data);
if (rc != DC_STATUS_SUCCESS) {
report_error(errmsg(rc));
} else {
rc = dc_device_open(&data->device, data->context, data->descriptor, data->iostream);
INFO(0, "dc_device_open error value of %d", rc);
if (rc != DC_STATUS_SUCCESS && subsurface_access(data->devname, R_OK | W_OK) != 0)
#if defined(SUBSURFACE_MOBILE)
err = translate("gettextFromC", "Error opening the device %s %s (%s).\nIn most cases, in order to debug this issue, it is useful to send the developers the log files. You can copy them to the clipboard in the About dialog.");
#else
err = translate("gettextFromC", "Error opening the device %s %s (%s).\nIn most cases, in order to debug this issue, a libdivecomputer logfile will be useful.\nYou can create this logfile by selecting the corresponding checkbox in the download dialog.");
#endif
}
if (rc == DC_STATUS_SUCCESS) {
err = do_device_import(data);
/* TODO: Show the logfile to the user on error. */
dc_device_close(data->device);
data->device = NULL;
dc_iostream_close(data->iostream);
data->iostream = NULL;
if (!downloadTable.nr)
dev_info(data, translate("gettextFromC", "No new dives downloaded from dive computer"));
}
dc_context_free(data->context);
data->context = NULL;
if (fp) {
fclose(fp);
}
/*
* Note that we save the fingerprint unconditionally.
* This is ok because we only have fingerprint data if
* we got a dive header, and because we will use the
* dive id to verify that we actually have the dive
* it refers to before we use the fingerprint data.
*/
save_fingerprint(data);
return err;
}
/*
* Parse data buffers instead of dc devices downloaded data.
* Intended to be used to parse profile data from binary files during import tasks.
* Actually included Uwatec families because of works on datatrak and smartrak logs
* and OSTC families for OSTCTools logs import.
* For others, simply include them in the switch (check parameters).
* Note that dc_descriptor_t in data *must* have been filled using dc_descriptor_iterator()
* calls.
*/
dc_status_t libdc_buffer_parser(struct dive *dive, device_data_t *data, unsigned char *buffer, int size)
{
dc_status_t rc;
dc_parser_t *parser = NULL;
switch (dc_descriptor_get_type(data->descriptor)) {
case DC_FAMILY_UWATEC_ALADIN:
case DC_FAMILY_UWATEC_MEMOMOUSE:
case DC_FAMILY_UWATEC_SMART:
case DC_FAMILY_UWATEC_MERIDIAN:
case DC_FAMILY_HW_OSTC:
case DC_FAMILY_HW_FROG:
case DC_FAMILY_HW_OSTC3:
rc = dc_parser_new2(&parser, data->context, data->descriptor, 0, 0);
break;
default:
report_error("Device type not handled!");
return DC_STATUS_UNSUPPORTED;
}
if (rc != DC_STATUS_SUCCESS) {
report_error("Error creating parser.");
dc_parser_destroy (parser);
return rc;
}
rc = dc_parser_set_data(parser, buffer, size);
if (rc != DC_STATUS_SUCCESS) {
report_error("Error registering the data.");
dc_parser_destroy (parser);
return rc;
}
// Do not parse Aladin/Memomouse headers as they are fakes
// Do not return on error, we can still parse the samples
if (dc_descriptor_get_type(data->descriptor) != DC_FAMILY_UWATEC_ALADIN && dc_descriptor_get_type(data->descriptor) != DC_FAMILY_UWATEC_MEMOMOUSE) {
rc = libdc_header_parser (parser, data, dive);
if (rc != DC_STATUS_SUCCESS) {
report_error("Error parsing the dive header data. Dive # %d\nStatus = %s", dive->number, errmsg(rc));
}
}
rc = dc_parser_samples_foreach (parser, sample_cb, &dive->dc);
if (rc != DC_STATUS_SUCCESS) {
report_error("Error parsing the sample data. Dive # %d\nStatus = %s", dive->number, errmsg(rc));
dc_parser_destroy (parser);
return rc;
}
dc_parser_destroy(parser);
return DC_STATUS_SUCCESS;
}
/*
* Returns a dc_descriptor_t structure based on dc model's number and family.
*
* That dc_descriptor_t needs to be freed with dc_descriptor_free by the reciver.
*/
dc_descriptor_t *get_descriptor(dc_family_t type, unsigned int model)
{
dc_descriptor_t *descriptor = NULL, *needle = NULL;
dc_iterator_t *iterator = NULL;
dc_status_t rc;
rc = dc_descriptor_iterator(&iterator);
if (rc != DC_STATUS_SUCCESS) {
fprintf(stderr, "Error creating the device descriptor iterator.\n");
return NULL;
}
while ((dc_iterator_next(iterator, &descriptor)) == DC_STATUS_SUCCESS) {
unsigned int desc_model = dc_descriptor_get_model(descriptor);
dc_family_t desc_type = dc_descriptor_get_type(descriptor);
if (model == desc_model && type == desc_type) {
needle = descriptor;
break;
}
dc_descriptor_free(descriptor);
}
dc_iterator_free(iterator);
return needle;
}