#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <inttypes.h>
#include <glib/gi18n.h>
#include "dive.h"
#include "divelist.h"
#include "display.h"
#include "display-gtk.h"
#include "libdivecomputer.h"
#include "libdivecomputer/version.h"
/* Christ. Libdivecomputer has the worst configuration system ever. */
#ifdef HW_FROG_H
#define NOT_FROG , 0
#define LIBDIVECOMPUTER_SUPPORTS_FROG
#else
#define NOT_FROG
#endif
static const char *progress_bar_text = "";
static double progress_bar_fraction = 0.0;
static int stoptime, stopdepth, ndl, po2, cns;
static GError *error(const char *fmt, ...)
{
va_list args;
GError *error;
va_start(args, fmt);
error = g_error_new_valist(
g_quark_from_string("subsurface"),
DIVE_ERROR_PARSE, fmt, args);
va_end(args);
return error;
}
static dc_status_t create_parser(device_data_t *devdata, dc_parser_t **parser)
{
return dc_parser_new(parser, devdata->device);
}
static int parse_gasmixes(device_data_t *devdata, struct dive *dive, dc_parser_t *parser, int ngases)
{
int i;
for (i = 0; i < ngases; i++) {
int rc;
dc_gasmix_t gasmix = {0};
int o2, he;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX, i, &gasmix);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED)
return rc;
if (i >= MAX_CYLINDERS)
continue;
o2 = gasmix.oxygen * 1000 + 0.5;
he = gasmix.helium * 1000 + 0.5;
/* Ignore bogus data - libdivecomputer does some crazy stuff */
if (o2 + he <= AIR_PERMILLE || o2 >= 1000)
o2 = 0;
if (he < 0 || he >= 800 || o2+he >= 1000)
he = 0;
dive->cylinder[i].gasmix.o2.permille = o2;
dive->cylinder[i].gasmix.he.permille = he;
}
return DC_STATUS_SUCCESS;
}
static void handle_event(struct divecomputer *dc, struct sample *sample, dc_sample_value_t value)
{
int type, time;
/* we mark these for translation here, but we store the untranslated strings
* and only translate them when they are displayed on screen */
static const char *events[] = {
N_("none"), N_("deco stop"), N_("rbt"), N_("ascent"), N_("ceiling"), N_("workload"),
N_("transmitter"), N_("violation"), N_("bookmark"), N_("surface"), N_("safety stop"),
N_("gaschange"), N_("safety stop (voluntary)"), N_("safety stop (mandatory)"),
N_("deepstop"), N_("ceiling (safety stop)"), N_("unknown"), N_("divetime"),
N_("maxdepth"), N_("OLF"), N_("PO2"), N_("airtime"), N_("rgbm"), N_("heading"),
N_("tissue level warning"), N_("gaschange"), N_("non stop time")
};
const int nr_events = sizeof(events) / sizeof(const char *);
const char *name;
/*
* Just ignore surface events. They are pointless. What "surface"
* means depends on the dive computer (and possibly even settings
* in the dive computer). It does *not* necessarily mean "depth 0",
* so don't even turn it into that.
*/
if (value.event.type == SAMPLE_EVENT_SURFACE)
return;
/* an early development version of libdivecomputer 0.3 provided us with deco / ndl information for
* a couple of dive computers through events; this got fixed later in the release cycle but for a
* short while I'll keep the code around that converts the events into our preferred sample format here */
#if 0
if (value.event.type == SAMPLE_EVENT_DECOSTOP) {
/* packed value - time in seconds in high 16 bit
* depth in m(!) in low 16 bits */
stoptime = value.event.value >> 16;
stopdepth = (value.event.value & 0xFFFF) * 1000;
ndl = 0;
}
if (value.event.type == SAMPLE_EVENT_NDL) {
stopdepth = 0;
stoptime = 0;
ndl = value.event.value;
}
if (value.event.type == SAMPLE_EVENT_DECOSTOP || value.event.type == SAMPLE_EVENT_NDL)
/* don't create a Subsurface event for these */
return;
#endif
/*
* Other evens might be more interesting, but for now we just print them out.
*/
type = value.event.type;
name = N_("invalid event number");
if (type < nr_events)
name = events[type];
time = value.event.time;
if (sample)
time += sample->time.seconds;
add_event(dc, time, type, value.event.flags, value.event.value, name);
}
void
sample_cb(dc_sample_type_t type, dc_sample_value_t value, void *userdata)
{
int i;
struct divecomputer *dc = userdata;
struct sample *sample;
/*
* We fill in the "previous" sample - except for DC_SAMPLE_TIME,
* which creates a new one.
*/
sample = dc->samples ? dc->sample+dc->samples-1 : NULL;
switch (type) {
case DC_SAMPLE_TIME:
if (sample) {
sample->ndl.seconds = ndl;
sample->stoptime.seconds = stoptime;
sample->stopdepth.mm = stopdepth;
sample->po2 = po2;
sample->cns = cns;
}
sample = prepare_sample(dc);
sample->time.seconds = value.time;
finish_sample(dc);
break;
case DC_SAMPLE_DEPTH:
sample->depth.mm = value.depth * 1000 + 0.5;
break;
case DC_SAMPLE_PRESSURE:
sample->cylinderindex = value.pressure.tank;
sample->cylinderpressure.mbar = value.pressure.value * 1000 + 0.5;
break;
case DC_SAMPLE_TEMPERATURE:
sample->temperature.mkelvin = (value.temperature + 273.15) * 1000 + 0.5;
break;
case DC_SAMPLE_EVENT:
handle_event(dc, sample, value);
break;
case DC_SAMPLE_RBT:
printf(" <rbt>%u</rbt>\n", value.rbt);
break;
case DC_SAMPLE_HEARTBEAT:
printf(" <heartbeat>%u</heartbeat>\n", value.heartbeat);
break;
case DC_SAMPLE_BEARING:
printf(" <bearing>%u</bearing>\n", value.bearing);
break;
case DC_SAMPLE_VENDOR:
printf(" <vendor type=\"%u\" size=\"%u\">", value.vendor.type, value.vendor.size);
for (i = 0; i < value.vendor.size; ++i)
printf("%02X", ((unsigned char *) value.vendor.data)[i]);
printf("</vendor>\n");
break;
#if DC_VERSION_CHECK(0, 3, 0)
case DC_SAMPLE_SETPOINT:
/* for us a setpoint means constant pO2 from here */
sample->po2 = po2 = value.setpoint * 1000 + 0.5;
break;
case DC_SAMPLE_PPO2:
sample->po2 = po2 = value.ppo2 * 1000 + 0.5;
break;
case DC_SAMPLE_CNS:
sample->cns = cns = value.cns * 100 + 0.5;
break;
case DC_SAMPLE_DECO:
if (value.deco.type == DC_DECO_NDL) {
ndl = value.deco.time;
} else if (value.deco.type == DC_DECO_DECOSTOP ||
value.deco.type == DC_DECO_DEEPSTOP) {
stopdepth = value.deco.depth * 1000.0 + 0.5;
stoptime = value.deco.time;
}
#endif
default:
break;
}
}
static void dev_info(device_data_t *devdata, const char *fmt, ...)
{
static char buffer[256];
va_list ap;
va_start(ap, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, ap);
va_end(ap);
progress_bar_text = buffer;
}
static int import_dive_number = 0;
static int parse_samples(device_data_t *devdata, struct divecomputer *dc, dc_parser_t *parser)
{
// Parse the sample data.
return dc_parser_samples_foreach(parser, sample_cb, dc);
}
static inline int match_dc(struct divecomputer *a, struct divecomputer *b)
{
if (a->when != b->when)
return 0;
if (a->model && b->model && strcasecmp(a->model, b->model))
return 0;
return 1;
}
/*
* Check if this dive already existed before the import
*/
static int find_dive(struct divecomputer *match)
{
int i;
for (i = 0; i < dive_table.preexisting; i++) {
struct dive *old = dive_table.dives[i];
struct divecomputer *dc = &old->dc;
/* Old-style dive with no explicit divecomputer information? */
if (!dc->when && old->when == match->when)
return 1;
do {
if (match_dc(dc, match))
return 1;
dc = dc->next;
} while (dc);
}
return 0;
}
static inline int year(int year)
{
if (year < 70)
return year + 2000;
if (year < 100)
return year + 1900;
return year;
}
/*
* Like g_strdup_printf(), but without the stupid g_malloc/g_free confusion.
* And we limit the string to some arbitrary size.
*/
static char *str_printf(const char *fmt, ...)
{
va_list args;
char buf[80];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf)-1, fmt, args);
va_end(args);
buf[sizeof(buf)-1] = 0;
return strdup(buf);
}
/*
* The dive ID for libdivecomputer dives is the first word of the
* SHA1 of the fingerprint, if it exists.
*
* NOTE! This is byte-order dependent, and I don't care.
*/
static uint32_t calculate_diveid(const unsigned char *fingerprint, unsigned int fsize)
{
uint32_t csum[5];
if (!fingerprint || !fsize)
return 0;
SHA1(fingerprint, fsize, (unsigned char *)csum);
return csum[0];
}
static int dive_cb(const unsigned char *data, unsigned int size,
const unsigned char *fingerprint, unsigned int fsize,
void *userdata)
{
int rc;
dc_parser_t *parser = NULL;
device_data_t *devdata = userdata;
dc_datetime_t dt = {0};
struct tm tm;
struct dive *dive;
/* reset the deco / ndl data */
ndl = stoptime = stopdepth = 0;
rc = create_parser(devdata, &parser);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Unable to create parser for %s %s"), devdata->vendor, devdata->product);
return rc;
}
rc = dc_parser_set_data(parser, data, size);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Error registering the data"));
dc_parser_destroy(parser);
return rc;
}
import_dive_number++;
dive = alloc_dive();
rc = dc_parser_get_datetime(parser, &dt);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the datetime"));
dc_parser_destroy(parser);
return rc;
}
dive->dc.model = str_printf("%s %s", devdata->vendor, devdata->product);
dive->dc.deviceid = devdata->deviceid;
dive->dc.diveid = calculate_diveid(fingerprint, fsize);
tm.tm_year = dt.year;
tm.tm_mon = dt.month-1;
tm.tm_mday = dt.day;
tm.tm_hour = dt.hour;
tm.tm_min = dt.minute;
tm.tm_sec = dt.second;
dive->when = dive->dc.when = utc_mktime(&tm);
// Parse the divetime.
dev_info(devdata, _("Dive %d: %s %d %04d"), import_dive_number,
monthname(tm.tm_mon), tm.tm_mday, year(tm.tm_year));
unsigned int divetime = 0;
rc = dc_parser_get_field (parser, DC_FIELD_DIVETIME, 0, &divetime);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the divetime"));
dc_parser_destroy(parser);
return rc;
}
dive->duration.seconds = divetime;
// Parse the maxdepth.
double maxdepth = 0.0;
rc = dc_parser_get_field(parser, DC_FIELD_MAXDEPTH, 0, &maxdepth);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the maxdepth"));
dc_parser_destroy(parser);
return rc;
}
dive->maxdepth.mm = maxdepth * 1000 + 0.5;
// Parse the gas mixes.
unsigned int ngases = 0;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX_COUNT, 0, &ngases);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the gas mix count"));
dc_parser_destroy(parser);
return rc;
}
#ifdef DC_FIELD_SALINITY
// Check if the libdivecomputer version already supports salinity
double salinity = 1.03;
rc = dc_parser_get_field(parser, DC_FIELD_SALINITY, 0, &salinity);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error obtaining water salinity"));
dc_parser_destroy(parser);
return rc;
}
dive->salinity = salinity * 10000.0 + 0.5;
#endif
rc = parse_gasmixes(devdata, dive, parser, ngases);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Error parsing the gas mix"));
dc_parser_destroy(parser);
return rc;
}
// Initialize the sample data.
rc = parse_samples(devdata, &dive->dc, parser);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Error parsing the samples"));
dc_parser_destroy(parser);
return rc;
}
dc_parser_destroy(parser);
/* If we already saw this dive, abort. */
if (!devdata->force_download && find_dive(&dive->dc))
return 0;
dive->downloaded = TRUE;
record_dive(dive);
mark_divelist_changed(TRUE);
return 1;
}
static dc_status_t import_device_data(dc_device_t *device, device_data_t *devicedata)
{
return dc_device_foreach(device, dive_cb, devicedata);
}
/*
* The device ID for libdivecomputer devices is the first 32-bit word
* of the SHA1 hash of the model/firmware/serial numbers.
*
* NOTE! This is byte-order-dependent. And I can't find it in myself to
* care.
*/
static uint32_t calculate_sha1(unsigned int model, unsigned int firmware, unsigned int serial)
{
SHA_CTX ctx;
uint32_t csum[5];
SHA1_Init(&ctx);
SHA1_Update(&ctx, &model, sizeof(model));
SHA1_Update(&ctx, &firmware, sizeof(firmware));
SHA1_Update(&ctx, &serial, sizeof(serial));
SHA1_Final((unsigned char *)csum, &ctx);
return csum[0];
}
static void event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata)
{
const dc_event_progress_t *progress = data;
const dc_event_devinfo_t *devinfo = data;
const dc_event_clock_t *clock = data;
device_data_t *devdata = userdata;
switch (event) {
case DC_EVENT_WAITING:
dev_info(devdata, _("Event: waiting for user action"));
break;
case DC_EVENT_PROGRESS:
if (!progress->maximum)
break;
progress_bar_fraction = (double) progress->current / (double) progress->maximum;
break;
case DC_EVENT_DEVINFO:
dev_info(devdata, _("model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)"),
devinfo->model, devinfo->model,
devinfo->firmware, devinfo->firmware,
devinfo->serial, devinfo->serial);
devdata->deviceid = calculate_sha1(devinfo->model, devinfo->firmware, devinfo->serial);
break;
case DC_EVENT_CLOCK:
dev_info(devdata, _("Event: systime=%"PRId64", devtime=%u\n"),
(uint64_t)clock->systime, clock->devtime);
break;
default:
break;
}
}
static int import_thread_done = 0, import_thread_cancelled;
static int
cancel_cb(void *userdata)
{
return import_thread_cancelled;
}
static const char *do_device_import(device_data_t *data)
{
dc_status_t rc;
dc_device_t *device = data->device;
// Register the event handler.
int events = DC_EVENT_WAITING | DC_EVENT_PROGRESS | DC_EVENT_DEVINFO | DC_EVENT_CLOCK;
rc = dc_device_set_events(device, events, event_cb, data);
if (rc != DC_STATUS_SUCCESS)
return _("Error registering the event handler.");
// Register the cancellation handler.
rc = dc_device_set_cancel(device, cancel_cb, data);
if (rc != DC_STATUS_SUCCESS)
return _("Error registering the cancellation handler.");
rc = import_device_data(device, data);
if (rc != DC_STATUS_SUCCESS)
return _("Dive data import error");
/* All good */
return NULL;
}
static const char *do_libdivecomputer_import(device_data_t *data)
{
dc_status_t rc;
const char *err;
import_dive_number = 0;
data->device = NULL;
data->context = NULL;
rc = dc_context_new(&data->context);
if (rc != DC_STATUS_SUCCESS)
return _("Unable to create libdivecomputer context");
err = _("Unable to open %s %s (%s)");
rc = dc_device_open(&data->device, data->context, data->descriptor, data->devname);
if (rc == DC_STATUS_SUCCESS) {
err = do_device_import(data);
dc_device_close(data->device);
}
dc_context_free(data->context);
return err;
}
static void *pthread_wrapper(void *_data)
{
device_data_t *data = _data;
const char *err_string = do_libdivecomputer_import(data);
import_thread_done = 1;
return (void *)err_string;
}
/* this simply ends the dialog without a response and asks not to be fired again
* as we set this function up in every loop while uemis_download is waiting for
* the download to finish */
static gboolean timeout_func(gpointer _data)
{
GtkDialog *dialog = _data;
if (!import_thread_cancelled)
gtk_dialog_response(dialog, GTK_RESPONSE_NONE);
return FALSE;
}
GError *do_import(device_data_t *data)
{
pthread_t pthread;
void *retval;
GtkDialog *dialog = data->dialog;
/* I'm sure there is some better interface for waiting on a thread in a UI main loop */
import_thread_done = 0;
progress_bar_text = "";
progress_bar_fraction = 0.0;
pthread_create(&pthread, NULL, pthread_wrapper, data);
/* loop here until the import is done or was cancelled by the user;
* in order to get control back from gtk we register a timeout function
* that ends the dialog with no response every 100ms; we then update the
* progressbar and setup the timeout again - unless of course the user
* pressed cancel, in which case we just wait for the download thread
* to react to that and exit */
while (!import_thread_done) {
if (!import_thread_cancelled) {
int result;
g_timeout_add(100, timeout_func, dialog);
update_progressbar(&data->progress, progress_bar_fraction);
update_progressbar_text(&data->progress, progress_bar_text);
result = gtk_dialog_run(dialog);
switch (result) {
case GTK_RESPONSE_CANCEL:
import_thread_cancelled = TRUE;
progress_bar_text = "Cancelled...";
break;
default:
/* nothing */
break;
}
} else {
update_progressbar(&data->progress, progress_bar_fraction);
update_progressbar_text(&data->progress, progress_bar_text);
usleep(100000);
}
}
if (pthread_join(pthread, &retval) < 0)
retval = _("Odd pthread error return");
if (retval)
return error(retval, data->vendor, data->product, data->devname);
return NULL;
}