/* profile.c */
/* creates all the necessary data for drawing the dive profile
*/
#include "gettext.h"
#include <limits.h>
#include <string.h>
#include "dive.h"
#include "display.h"
#include "divelist.h"
#include "profile.h"
#include "deco.h"
#include "libdivecomputer/parser.h"
#include "libdivecomputer/version.h"
#include "membuffer.h"
int selected_dive = -1; /* careful: 0 is a valid value */
char zoomed_plot = 0;
char dc_number = 0;
static struct plot_data *last_pi_entry = NULL;
#ifdef DEBUG_PI
/* debugging tool - not normally used */
static void dump_pi (struct plot_info *pi)
{
int i;
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
" maxpressure:%d mintemp:%d maxtemp:%d\n",
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
pi->maxpressure, pi->mintemp, pi->maxtemp);
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = &pi->entry[i];
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
i, entry->cylinderindex, entry->sec,
entry->pressure[0], entry->pressure[1],
entry->sec / 60, entry->sec % 60,
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
entry->po2, entry->phe, entry->pn2,
entry->po2 + entry->phe + entry->pn2);
}
printf(" }\n");
}
#endif
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
#define DIV_UP(x,y) (((x)+(y)-1)/(y))
/*
* When showing dive profiles, we scale things to the
* current dive. However, we don't scale past less than
* 30 minutes or 90 ft, just so that small dives show
* up as such unless zoom is enabled.
* We also need to add 180 seconds at the end so the min/max
* plots correctly
*/
int get_maxtime(struct plot_info *pi)
{
int seconds = pi->maxtime;
if (zoomed_plot) {
/* Rounded up to one minute, with at least 2.5 minutes to
* spare.
* For dive times shorter than 10 minutes, we use seconds/4 to
* calculate the space dynamically.
* This is seamless since 600/4 = 150.
*/
if (seconds < 600)
return ROUND_UP(seconds+seconds/4, 60);
else
return ROUND_UP(seconds+150, 60);
} else {
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
}
}
/* get the maximum depth to which we want to plot
* take into account the additional vertical space needed to plot
* partial pressure graphs */
int get_maxdepth(struct plot_info *pi)
{
unsigned mm = pi->maxdepth;
int md;
if (zoomed_plot) {
/* Rounded up to 10m, with at least 3m to spare */
md = ROUND_UP(mm+3000, 10000);
} else {
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
md = MAX((unsigned)30000, ROUND_UP(mm+3000, 10000));
}
md += pi->maxpp * 9000;
return md;
}
/* collect all event names and whether we display them */
struct ev_select *ev_namelist;
int evn_allocated;
int evn_used;
#if WE_DONT_USE_THIS /* we need to implement event filters in Qt */
int evn_foreach(void (*callback)(const char *, bool *, void *), void *data)
{
int i;
for (i = 0; i < evn_used; i++) {
/* here we display an event name on screen - so translate */
callback(translate("gettextFromC",ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
}
return i;
}
#endif /* WE_DONT_USE_THIS */
void clear_events(void)
{
evn_used = 0;
}
void remember_event(const char *eventname)
{
int i = 0, len;
if (!eventname || (len = strlen(eventname)) == 0)
return;
while (i < evn_used) {
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
return;
i++;
}
if (evn_used == evn_allocated) {
evn_allocated += 10;
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
if (! ev_namelist)
/* we are screwed, but let's just bail out */
return;
}
ev_namelist[evn_used].ev_name = strdup(eventname);
ev_namelist[evn_used].plot_ev = true;
evn_used++;
}
int setup_temperature_limits(struct graphics_context *gc)
{
int maxtime, mintemp, maxtemp, delta;
struct plot_info *pi = &gc->pi;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
mintemp = pi->mintemp;
maxtemp = pi->maxtemp;
gc->leftx = 0; gc->rightx = maxtime;
/* Show temperatures in roughly the lower third, but make sure the scale
is at least somewhat reasonable */
delta = maxtemp - mintemp;
if (delta < 3000) /* less than 3K in fluctuation */
delta = 3000;
gc->topy = maxtemp + delta*2;
if (PP_GRAPHS_ENABLED)
gc->bottomy = mintemp - delta * 2;
else
gc->bottomy = mintemp - delta / 3;
pi->endtempcoord = SCALEY(gc, pi->mintemp);
return maxtemp && maxtemp >= mintemp;
}
void setup_pp_limits(struct graphics_context *gc)
{
int maxdepth;
gc->leftx = 0;
gc->rightx = get_maxtime(&gc->pi);
/* the maxdepth already includes extra vertical space - and if
* we use 1.5 times the corresponding pressure as maximum partial
* pressure the graph seems to look fine*/
maxdepth = get_maxdepth(&gc->pi);
gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * SURFACE_PRESSURE / 1000;
gc->bottomy = -gc->topy / 20;
}
int get_cylinder_pressure_range(struct graphics_context *gc)
{
gc->leftx = 0;
gc->rightx = get_maxtime(&gc->pi);
if (PP_GRAPHS_ENABLED)
gc->bottomy = -gc->pi.maxpressure * 0.75;
else
gc->bottomy = 0;
gc->topy = gc->pi.maxpressure * 1.5;
if (!gc->pi.maxpressure)
return false;
while (gc->pi.endtempcoord <= SCALEY(gc, gc->pi.minpressure - (gc->topy) * 0.1))
gc->bottomy -= gc->topy * 0.1 * gc->maxy/abs(gc->maxy);
return true;
}
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
{
int index = entry1->cylinderindex;
cylinder_t *cyl;
int duration = entry2->sec - entry1->sec;
int depth, airuse;
pressure_t a, b;
double atm;
if (entry2->cylinderindex != index)
return 0;
if (duration <= 0)
return 0;
a.mbar = GET_PRESSURE(entry1);
b.mbar = GET_PRESSURE(entry2);
if (!a.mbar || !b.mbar)
return 0;
/* Mean pressure in ATM */
depth = (entry1->depth + entry2->depth) / 2;
atm = depth_to_atm(depth, dive);
cyl = dive->cylinder + index;
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
/* milliliters per minute */
return airuse / atm * 60 / duration;
}
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
{
struct plot_data *p = entry;
int time = entry->sec;
int seconds = 90*(index+1);
struct plot_data *min, *max;
int avg, nr;
/* Go back 'seconds' in time */
while (p > first) {
if (p[-1].sec < time - seconds)
break;
p--;
}
/* Then go forward until we hit an entry past the time */
min = max = p;
avg = p->depth;
nr = 1;
while (++p < last) {
int depth = p->depth;
if (p->sec > time + seconds)
break;
avg += depth;
nr ++;
if (depth < min->depth)
min = p;
if (depth > max->depth)
max = p;
}
entry->min[index] = min;
entry->max[index] = max;
entry->avg[index] = (avg + nr/2) / nr;
}
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
{
analyze_plot_info_minmax_minute(entry, first, last, 0);
analyze_plot_info_minmax_minute(entry, first, last, 1);
analyze_plot_info_minmax_minute(entry, first, last, 2);
}
static velocity_t velocity(int speed)
{
velocity_t v;
if (speed < -304) /* ascent faster than -60ft/min */
v = CRAZY;
else if (speed < -152) /* above -30ft/min */
v = FAST;
else if (speed < -76) /* -15ft/min */
v = MODERATE;
else if (speed < -25) /* -5ft/min */
v = SLOW;
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
for descent are usually about 2x ascent rate; still, we want
stable to mean stable */
v = STABLE;
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
v = SLOW;
else if (speed < 304) /* up to 60ft/min is moderate */
v = MODERATE;
else if (speed < 507) /* up to 100ft/min is fast */
v = FAST;
else /* more than that is just crazy - you'll blow your ears out */
v = CRAZY;
return v;
}
struct plot_info *analyze_plot_info(struct plot_info *pi)
{
int i;
int nr = pi->nr;
/* Smoothing function: 5-point triangular smooth */
for (i = 2; i < nr; i++) {
struct plot_data *entry = pi->entry+i;
int depth;
if (i < nr-2) {
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
entry->smoothed = (depth+4) / 9;
}
/* vertical velocity in mm/sec */
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
if (entry[0].sec - entry[-1].sec) {
entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
entry->velocity = velocity(entry->speed);
/* if our samples are short and we aren't too FAST*/
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
int past = -2;
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
past--;
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
(entry[0].sec - entry[past].sec));
}
} else {
entry->velocity = STABLE;
entry->speed = 0;
}
}
/* One-, two- and three-minute minmax data */
for (i = 0; i < nr; i++) {
struct plot_data *entry = pi->entry +i;
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
}
return pi;
}
/*
* simple structure to track the beginning and end tank pressure as
* well as the integral of depth over time spent while we have no
* pressure reading from the tank */
typedef struct pr_track_struct pr_track_t;
struct pr_track_struct {
int start;
int end;
int t_start;
int t_end;
int pressure_time;
pr_track_t *next;
};
static pr_track_t *pr_track_alloc(int start, int t_start) {
pr_track_t *pt = malloc(sizeof(pr_track_t));
pt->start = start;
pt->end = 0;
pt->t_start = pt->t_end = t_start;
pt->pressure_time = 0;
pt->next = NULL;
return pt;
}
/* poor man's linked list */
static pr_track_t *list_last(pr_track_t *list)
{
pr_track_t *tail = list;
if (!tail)
return NULL;
while (tail->next) {
tail = tail->next;
}
return tail;
}
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
{
pr_track_t *tail = list_last(list);
if (!tail)
return element;
tail->next = element;
return list;
}
static void list_free(pr_track_t *list)
{
if (!list)
return;
list_free(list->next);
free(list);
}
#ifdef DEBUG_PR_TRACK
static void dump_pr_track(pr_track_t **track_pr)
{
int cyl;
pr_track_t *list;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
list = track_pr[cyl];
while (list) {
printf("cyl%d: start %d end %d t_start %d t_end %d pt %d\n", cyl,
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
list = list->next;
}
}
}
#endif
typedef struct pr_interpolate_struct pr_interpolate_t;
struct pr_interpolate_struct {
int start;
int end;
int pressure_time;
int acc_pressure_time;
};
#ifdef DEBUG_PR_INTERPOLATE
static void dump_pr_interpolate(int i, pr_interpolate_t interpolate_pr)
{
printf("Interpolate for entry %d: start %d - end %d - pt %d - acc_pt %d\n", i,
interpolate_pr.start, interpolate_pr.end, interpolate_pr.pressure_time, interpolate_pr.acc_pressure_time);
}
#endif
/*
* This looks at the pressures for one cylinder, and
* calculates any missing beginning/end pressures for
* each segment by taking the over-all SAC-rate into
* account for that cylinder.
*
* NOTE! Many segments have full pressure information
* (both beginning and ending pressure). But if we have
* switched away from a cylinder, we will have the
* beginning pressure for the first segment with a
* missing end pressure. We may then have one or more
* segments without beginning or end pressures, until
* we finally have a segment with an end pressure.
*
* We want to spread out the pressure over these missing
* segments according to how big of a time_pressure area
* they have.
*/
static void fill_missing_segment_pressures(pr_track_t *list)
{
while (list) {
int start = list->start, end;
pr_track_t *tmp = list;
int pt_sum = 0, pt = 0;
for (;;) {
pt_sum += tmp->pressure_time;
end = tmp->end;
if (end)
break;
end = start;
if (!tmp->next)
break;
tmp = tmp->next;
}
if (!start)
start = end;
/*
* Now 'start' and 'end' contain the pressure values
* for the set of segments described by 'list'..'tmp'.
* pt_sum is the sum of all the pressure-times of the
* segments.
*
* Now dole out the pressures relative to pressure-time.
*/
list->start = start;
tmp->end = end;
for (;;) {
int pressure;
pt += list->pressure_time;
pressure = start;
if (pt_sum)
pressure -= (start-end)*(double)pt/pt_sum;
list->end = pressure;
if (list == tmp)
break;
list = list->next;
list->start = pressure;
}
/* Ok, we've done that set of segments */
list = list->next;
}
}
/*
* What's the pressure-time between two plot data entries?
* We're calculating the integral of pressure over time by
* adding these up.
*
* The units won't matter as long as everybody agrees about
* them, since they'll cancel out - we use this to calculate
* a constant SAC-rate-equivalent, but we only use it to
* scale pressures, so it ends up being a unitless scaling
* factor.
*/
static inline int pressure_time(struct dive *dive, struct divecomputer *dc, struct plot_data *a, struct plot_data *b)
{
int time = b->sec - a->sec;
int depth = (a->depth + b->depth)/2;
if (depth <= SURFACE_THRESHOLD)
return 0;
return depth_to_mbar(depth, dive) * time;
}
static struct pr_interpolate_struct get_pr_interpolate_data(pr_track_t *segment, struct plot_info *pi, int cur)
{
struct pr_interpolate_struct interpolate;
int i;
struct plot_data *entry;
interpolate.start = segment->start;
interpolate.end = segment->end;
interpolate.acc_pressure_time = 0;
interpolate.pressure_time = 0;
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
if (entry->sec < segment->t_start)
continue;
if (entry->sec >= segment->t_end) {
interpolate.pressure_time += entry->pressure_time;
break;
}
if (entry->sec == segment->t_start) {
interpolate.acc_pressure_time = 0;
interpolate.pressure_time = 0;
if (SENSOR_PRESSURE(entry))
interpolate.start = SENSOR_PRESSURE(entry);
continue;
}
if (i < cur) {
if (SENSOR_PRESSURE(entry)) {
interpolate.start = SENSOR_PRESSURE(entry);
interpolate.acc_pressure_time = 0;
interpolate.pressure_time = 0;
} else {
interpolate.acc_pressure_time += entry->pressure_time;
interpolate.pressure_time += entry->pressure_time;
}
continue;
}
if (i == cur) {
interpolate.acc_pressure_time += entry->pressure_time;
interpolate.pressure_time += entry->pressure_time;
continue;
}
interpolate.pressure_time += entry->pressure_time;
if (SENSOR_PRESSURE(entry)) {
interpolate.end = SENSOR_PRESSURE(entry);
break;
}
}
return interpolate;
}
static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t **track_pr)
{
int cyl, i;
struct plot_data *entry;
int cur_pr[MAX_CYLINDERS];
#ifdef DEBUG_PR_TRACK
/* another great debugging tool */
dump_pr_track(track_pr);
#endif
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
if (!track_pr[cyl])
continue;
fill_missing_segment_pressures(track_pr[cyl]);
cur_pr[cyl] = track_pr[cyl]->start;
}
/* The first two are "fillers", but in case we don't have a sample
* at time 0 we need to process the second of them here */
for (i = 1; i < pi->nr; i++) {
double magic;
pr_track_t *segment;
pr_interpolate_t interpolate;
entry = pi->entry + i;
cyl = entry->cylinderindex;
if (SENSOR_PRESSURE(entry)) {
cur_pr[cyl] = SENSOR_PRESSURE(entry);
continue;
}
/* Find the right pressure segment for this entry.. */
segment = track_pr[cyl];
while (segment && segment->t_end < entry->sec)
segment = segment->next;
/* No (or empty) segment? Just use our current pressure */
if (!segment || !segment->pressure_time) {
SENSOR_PRESSURE(entry) = cur_pr[cyl];
continue;
}
interpolate = get_pr_interpolate_data(segment, pi, i);
#ifdef DEBUG_PR_INTERPOLATE
dump_pr_interpolate(i, interpolate);
#endif
/* if this segment has pressure time, calculate a new interpolated pressure */
if (interpolate.pressure_time) {
/* Overall pressure change over total pressure-time for this segment*/
magic = (interpolate.end - interpolate.start) / (double) interpolate.pressure_time;
/* Use that overall pressure change to update the current pressure */
cur_pr[cyl] = rint(interpolate.start + magic * interpolate.acc_pressure_time);
}
INTERPOLATED_PRESSURE(entry) = cur_pr[cyl];
}
}
int get_cylinder_index(struct dive *dive, struct event *ev)
{
int i;
int best = 0, score = INT_MAX;
int target_o2, target_he;
/*
* Crazy gas change events give us odd encoded o2/he in percent.
* Decode into our internal permille format.
*/
target_o2 = (ev->value & 0xFFFF) * 10;
target_he = (ev->value >> 16) * 10;
/*
* Try to find a cylinder that best matches the target gas
* mix.
*/
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder+i;
int delta_o2, delta_he, distance;
if (cylinder_nodata(cyl))
continue;
delta_o2 = get_o2(&cyl->gasmix) - target_o2;
delta_he = get_he(&cyl->gasmix) - target_he;
distance = delta_o2 * delta_o2;
/* Check the event type to figure out if we should care about the he part.
* 11 is SAMPLE_EVENT_GASCHANGE, aka without he
* 25 is SAMPLE_EVENT_GASCHANGE2, aka with he
*/
if (ev->type == 25)
distance += delta_he * delta_he;
if (distance >= score)
continue;
score = distance;
best = i;
}
return best;
}
struct event *get_next_event(struct event *event, char *name)
{
if (!name || !*name)
return NULL;
while (event) {
if (!strcmp(event->name, name))
return event;
event = event->next;
}
return event;
}
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
{
while (i < pi->nr) {
struct plot_data *entry = pi->entry+i;
if (entry->sec > end)
break;
if (entry->cylinderindex != cylinderindex) {
entry->cylinderindex = cylinderindex;
entry->pressure[0] = 0;
}
i++;
}
return i;
}
static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i = 0, cylinderindex = 0;
struct event *ev = get_next_event(dc->events, "gaschange");
if (!ev)
return;
do {
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
cylinderindex = get_cylinder_index(dive, ev);
ev = get_next_event(ev->next, "gaschange");
} while (ev);
set_cylinder_index(pi, i, cylinderindex, ~0u);
}
struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *dc)
{
struct plot_info pi;
int maxdepth = dive->maxdepth.mm;
int maxtime = 0;
int maxpressure = 0, minpressure = INT_MAX;
int mintemp = dive->mintemp.mkelvin;
int maxtemp = dive->maxtemp.mkelvin;
int cyl;
/* Get the per-cylinder maximum pressure if they are manual */
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
unsigned int mbar = dive->cylinder[cyl].start.mbar;
if (mbar > maxpressure)
maxpressure = mbar;
}
/* Then do all the samples from all the dive computers */
do {
int i = dc->samples;
int lastdepth = 0;
struct sample *s = dc->sample;
while (--i >= 0) {
int depth = s->depth.mm;
int pressure = s->cylinderpressure.mbar;
int temperature = s->temperature.mkelvin;
if (!mintemp && temperature < mintemp)
mintemp = temperature;
if (temperature > maxtemp)
maxtemp = temperature;
if (pressure && pressure < minpressure)
minpressure = pressure;
if (pressure > maxpressure)
maxpressure = pressure;
if (depth > maxdepth)
maxdepth = s->depth.mm;
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
s->time.seconds > maxtime)
maxtime = s->time.seconds;
lastdepth = depth;
s++;
}
} while ((dc = dc->next) != NULL);
if (minpressure > maxpressure)
minpressure = 0;
memset(&pi, 0, sizeof(pi));
pi.maxdepth = maxdepth;
pi.maxtime = maxtime;
pi.maxpressure = maxpressure;
pi.minpressure = minpressure;
pi.mintemp = mintemp;
pi.maxtemp = maxtemp;
return pi;
}
void calculate_max_limits(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc)
{
struct plot_info *pi;
int maxdepth;
int maxtime = 0;
int maxpressure = 0, minpressure = INT_MAX;
int mintemp, maxtemp;
int cyl;
/* The plot-info is embedded in the graphics context */
pi = &gc->pi;
memset(pi, 0, sizeof(*pi));
maxdepth = dive->maxdepth.mm;
mintemp = dive->mintemp.mkelvin;
maxtemp = dive->maxtemp.mkelvin;
/* Get the per-cylinder maximum pressure if they are manual */
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
unsigned int mbar = dive->cylinder[cyl].start.mbar;
if (mbar > maxpressure)
maxpressure = mbar;
}
/* Then do all the samples from all the dive computers */
do {
int i = dc->samples;
int lastdepth = 0;
struct sample *s = dc->sample;
while (--i >= 0) {
int depth = s->depth.mm;
int pressure = s->cylinderpressure.mbar;
int temperature = s->temperature.mkelvin;
if (!mintemp && temperature < mintemp)
mintemp = temperature;
if (temperature > maxtemp)
maxtemp = temperature;
if (pressure && pressure < minpressure)
minpressure = pressure;
if (pressure > maxpressure)
maxpressure = pressure;
if (depth > maxdepth)
maxdepth = s->depth.mm;
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
s->time.seconds > maxtime)
maxtime = s->time.seconds;
lastdepth = depth;
s++;
}
} while ((dc = dc->next) != NULL);
if (minpressure > maxpressure)
minpressure = 0;
pi->maxdepth = maxdepth;
pi->maxtime = maxtime;
pi->maxpressure = maxpressure;
pi->minpressure = minpressure;
pi->mintemp = mintemp;
pi->maxtemp = maxtemp;
}
struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int idx, maxtime, nr, i;
int lastdepth, lasttime, lasttemp = 0;
struct plot_data *plot_data;
maxtime = pi->maxtime;
/*
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
* but samples could be more dense than that (so add in dc->samples), and
* additionally we want two surface events around the whole thing (thus the
* additional 4).
*/
nr = dc->samples + 5 + maxtime / 10;
plot_data = calloc(nr, sizeof(struct plot_data));
pi->entry = plot_data;
if (!plot_data)
return NULL;
pi->nr = nr;
idx = 2; /* the two extra events at the start */
lastdepth = 0;
lasttime = 0;
for (i = 0; i < dc->samples; i++) {
struct plot_data *entry = plot_data + idx;
struct sample *sample = dc->sample+i;
int time = sample->time.seconds;
int depth = sample->depth.mm;
int offset, delta;
/* Add intermediate plot entries if required */
delta = time - lasttime;
if (delta < 0) {
time = lasttime;
delta = 0;
}
for (offset = 10; offset < delta; offset += 10) {
if (lasttime + offset > maxtime)
break;
/* Use the data from the previous plot entry */
*entry = entry[-1];
/* .. but update depth and time, obviously */
entry->sec = lasttime + offset;
entry->depth = interpolate(lastdepth, depth, offset, delta);
/* And clear out the sensor pressure, since we'll interpolate */
SENSOR_PRESSURE(entry) = 0;
idx++; entry++;
}
if (time > maxtime)
break;
entry->sec = time;
entry->depth = depth;
entry->stopdepth = sample->stopdepth.mm;
entry->stoptime = sample->stoptime.seconds;
entry->ndl = sample->ndl.seconds;
pi->has_ndl |= sample->ndl.seconds;
entry->in_deco = sample->in_deco;
entry->cns = sample->cns;
entry->po2 = sample->po2 / 1000.0;
/* FIXME! sensor index -> cylinder index translation! */
entry->cylinderindex = sample->sensor;
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
if (sample->temperature.mkelvin)
entry->temperature = lasttemp = sample->temperature.mkelvin;
else
entry->temperature = lasttemp;
entry->heartbeat = sample->heartbeat;
entry->bearing = sample->bearing;
lasttime = time;
lastdepth = depth;
idx++;
}
/* Add two final surface events */
plot_data[idx++].sec = lasttime+1;
plot_data[idx++].sec = lasttime+2;
pi->nr = idx;
return plot_data;
}
static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi)
{
int i;
/* First: check that none of the entries has sensor pressure for this cylinder index */
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
if (entry->cylinderindex != idx)
continue;
if (SENSOR_PRESSURE(entry))
return;
}
/* Then: populate the first entry with the beginning cylinder pressure */
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
if (entry->cylinderindex != idx)
continue;
SENSOR_PRESSURE(entry) = start;
break;
}
/* .. and the last entry with the ending cylinder pressure */
for (i = pi->nr; --i >= 0; /* nothing */) {
struct plot_data *entry = pi->entry+i;
if (entry->cylinderindex != idx)
continue;
SENSOR_PRESSURE(entry) = end;
break;
}
}
static void calculate_sac(struct dive *dive, struct plot_info *pi)
{
int i = 0, last = 0;
struct plot_data *last_entry = NULL;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
if (!last_entry || last_entry->cylinderindex != entry->cylinderindex) {
last = i;
last_entry = entry;
entry->sac = get_local_sac(entry, pi->entry + i + 1, dive);
} else {
int j;
entry->sac = 0;
for (j = last; j < i; j++)
entry->sac += get_local_sac(pi->entry + j, pi->entry + j + 1, dive);
entry->sac /= (i - last);
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
last++;
last_entry = pi->entry + last;
}
}
}
}
static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi)
{
/* We should try to see if it has interesting pressure data here */
}
static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i;
struct divecomputer *secondary;
/* First, populate the pressures with the manual cylinder data.. */
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder+i;
int start = cyl->start.mbar ? : cyl->sample_start.mbar;
int end = cyl->end.mbar ? : cyl->sample_end.mbar;
if (!start || !end)
continue;
populate_cylinder_pressure_data(i, start, end, pi);
}
/*
* Here, we should try to walk through all the dive computers,
* and try to see if they have sensor data different from the
* primary dive computer (dc).
*/
secondary = &dive->dc;
do {
if (secondary == dc)
continue;
populate_secondary_sensor_data(dc, pi);
} while ((secondary = secondary->next) != NULL);
}
static void populate_pressure_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i, cylinderindex;
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
pr_track_t *current;
bool missing_pr = false;
cylinderindex = -1;
current = NULL;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
unsigned pressure = SENSOR_PRESSURE(entry);
/* discrete integration of pressure over time to get the SAC rate equivalent */
if (current) {
entry->pressure_time = pressure_time(dive, dc, entry-1, entry);
current->pressure_time += entry->pressure_time;
current->t_end = entry->sec;
}
/* track the segments per cylinder and their pressure/time integral */
if (entry->cylinderindex != cylinderindex) {
cylinderindex = entry->cylinderindex;
current = pr_track_alloc(pressure, entry->sec);
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
continue;
}
if (!pressure) {
missing_pr = 1;
continue;
}
current->end = pressure;
/* Was it continuous? */
if (SENSOR_PRESSURE(entry-1))
continue;
/* transmitter changed its working status */
current = pr_track_alloc(pressure, entry->sec);
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
}
if (missing_pr) {
fill_missing_tank_pressures(dive, pi, track_pr);
}
for (i = 0; i < MAX_CYLINDERS; i++)
list_free(track_pr[i]);
}
/* calculate DECO STOP / TTS / NDL */
static void calculate_ndl_tts(double tissue_tolerance, struct plot_data *entry, struct dive *dive, double surface_pressure) {
/* FIXME: This should be configurable */
/* ascent speed up to first deco stop */
const int ascent_s_per_step = 1;
const int ascent_mm_per_step = 200; /* 12 m/min */
/* ascent speed between deco stops */
const int ascent_s_per_deco_step = 1;
const int ascent_mm_per_deco_step = 16; /* 1 m/min */
/* how long time steps in deco calculations? */
const int time_stepsize = 10;
const int deco_stepsize = 3000;
/* at what depth is the current deco-step? */
int next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
int ascent_depth = entry->depth;
/* at what time should we give up and say that we got enuff NDL? */
const int max_ndl = 7200;
int cylinderindex = entry->cylinderindex;
/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
* a ndl for lower values than 3m it would take forever */
if (next_stop == 0) {
if (entry->depth < 3000) {
entry->ndl = max_ndl;
return;
}
/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
while (entry->ndl_calc < max_ndl && deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= 0) {
entry->ndl_calc += time_stepsize;
tissue_tolerance = add_segment(depth_to_mbar(entry->depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive);
}
/* we don't need to calculate anything else */
return;
}
/* We are in deco */
entry->in_deco_calc = true;
/* Add segments for movement to stopdepth */
for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_step, entry->tts_calc += ascent_s_per_step) {
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_step, entry->po2 * 1000, dive);
next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
}
ascent_depth = next_stop;
/* And how long is the current deco-step? */
entry->stoptime_calc = 0;
entry->stopdepth_calc = next_stop;
next_stop -= deco_stepsize;
/* And how long is the total TTS */
while(next_stop >= 0) {
/* save the time for the first stop to show in the graph */
if (ascent_depth == entry->stopdepth_calc)
entry->stoptime_calc += time_stepsize;
entry->tts_calc += time_stepsize;
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive);
if (deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= next_stop) {
/* move to the next stop and add the travel between stops */
for (; ascent_depth > next_stop ; ascent_depth -= ascent_mm_per_deco_step, entry->tts_calc += ascent_s_per_deco_step)
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_deco_step, entry->po2 * 1000, dive);
ascent_depth = next_stop;
next_stop -= deco_stepsize;
}
}
}
/* Let's try to do some deco calculations.
* Needs to be run before calculate_gas_information so we know that if we have a po2, where in ccr-mode.
*/
void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool print_mode)
{
int i;
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
double tissue_tolerance = 0;
for (i = 1; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
int j, t0 = (entry - 1)->sec, t1 = entry->sec;
for (j = t0+1; j <= t1; j++) {
int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
double min_pressure = add_segment(depth_to_mbar(depth, dive) / 1000.0,
&dive->cylinder[entry->cylinderindex].gasmix, 1, entry->po2 * 1000, dive);
tissue_tolerance = min_pressure;
}
if (t0 == t1)
entry->ceiling = (entry - 1)->ceiling;
else
entry->ceiling = deco_allowed_depth(tissue_tolerance, surface_pressure, dive, !prefs.calc_ceiling_3m_incr);
for (j=0; j<16; j++)
entry->ceilings[j] = deco_allowed_depth(tolerated_by_tissue[j], surface_pressure, dive, 1);
/* should we do more calculations?
* We don't for print-mode because this info doesn't show up there */
if (prefs.calc_ndl_tts && !print_mode) {
/* We are going to mess up deco state, so store it for later restore */
char *cache_data = NULL;
cache_deco_state(tissue_tolerance, &cache_data);
calculate_ndl_tts(tissue_tolerance, entry, dive, surface_pressure);
/* Restore "real" deco state for next real time step */
tissue_tolerance = restore_deco_state(cache_data);
free(cache_data);
}
}
#if DECO_CALC_DEBUG & 1
dump_tissues();
#endif
}
static void calculate_gas_information(struct dive *dive, struct plot_info *pi)
{
int i;
double amb_pressure;
for (i = 1; i < pi->nr; i++) {
int fo2, fhe;
struct plot_data *entry = pi->entry + i;
int cylinderindex = entry->cylinderindex;
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
double ratio = (double)fhe / (1000.0 - fo2);
if (entry->po2) {
/* we have an O2 partial pressure in the sample - so this
* is likely a CC dive... use that instead of the value
* from the cylinder info */
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
entry->po2 = po2;
entry->phe = (amb_pressure - po2) * ratio;
entry->pn2 = amb_pressure - po2 - entry->phe;
} else {
entry->po2 = fo2 / 1000.0 * amb_pressure;
entry->phe = fhe / 1000.0 * amb_pressure;
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
}
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
* so there is no difference in calculating between OC and CC
* EAD takes O2 + N2 (air) into account
* END just uses N2 */
entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000;
entry->ead = (entry->depth + 10000) *
(entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000;
entry->end = (entry->depth + 10000) *
(amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000;
entry->eadd = (entry->depth + 10000) *
(entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure *
N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) /
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000;
if (entry->mod < 0)
entry->mod = 0;
if (entry->ead < 0)
entry->ead = 0;
if (entry->end < 0)
entry->end = 0;
if (entry->eadd < 0)
entry->eadd = 0;
if (entry->po2 > pi->maxpp && prefs.pp_graphs.po2)
pi->maxpp = entry->po2;
if (entry->phe > pi->maxpp && prefs.pp_graphs.phe)
pi->maxpp = entry->phe;
if (entry->pn2 > pi->maxpp && prefs.pp_graphs.pn2)
pi->maxpp = entry->pn2;
}
}
static void calculate_gas_information_new(struct dive *dive, struct plot_info *pi)
{
int i;
double amb_pressure;
for (i = 1; i < pi->nr; i++) {
int fo2, fhe;
struct plot_data *entry = pi->entry + i;
int cylinderindex = entry->cylinderindex;
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
double ratio = (double)fhe / (1000.0 - fo2);
if (entry->po2) {
/* we have an O2 partial pressure in the sample - so this
* is likely a CC dive... use that instead of the value
* from the cylinder info */
double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2;
entry->po2 = po2;
entry->phe = (amb_pressure - po2) * ratio;
entry->pn2 = amb_pressure - po2 - entry->phe;
} else {
entry->po2 = fo2 / 1000.0 * amb_pressure;
entry->phe = fhe / 1000.0 * amb_pressure;
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
}
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
* so there is no difference in calculating between OC and CC
* EAD takes O2 + N2 (air) into account
* END just uses N2 */
entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000;
entry->ead = (entry->depth + 10000) *
(entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000;
entry->end = (entry->depth + 10000) *
(amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000;
entry->eadd = (entry->depth + 10000) *
(entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure *
N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) /
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000;
if (entry->mod < 0)
entry->mod = 0;
if (entry->ead < 0)
entry->ead = 0;
if (entry->end < 0)
entry->end = 0;
if (entry->eadd < 0)
entry->eadd = 0;
}
}
/*
* Create a plot-info with smoothing and ranged min/max
*
* This also makes sure that we have extra empty events on both
* sides, so that you can do end-points without having to worry
* about it.
*/
struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc, bool print_mode)
{
struct plot_info *pi;
/* The plot-info is embedded in the graphics context */
pi = &gc->pi;
/* reset deco information to start the calculation */
if (prefs.profile_calc_ceiling)
init_decompression(dive);
/* Create the new plot data */
if (last_pi_entry)
free((void *)last_pi_entry);
last_pi_entry = populate_plot_entries(dive, dc, pi);
/* Populate the gas index from the gas change events */
check_gas_change_events(dive, dc, pi);
/* Try to populate our gas pressure knowledge */
setup_gas_sensor_pressure(dive, dc, pi);
/* .. calculate missing pressure entries */
populate_pressure_information(dive, dc, pi);
/* Calculate sac */
calculate_sac(dive, pi);
/* Then, calculate deco information */
if (prefs.profile_calc_ceiling)
calculate_deco_information(dive, dc, pi, print_mode);
/* And finaly calculate gas partial pressures */
calculate_gas_information(dive, pi);
pi->meandepth = dive->dc.meandepth.mm;
#ifdef DEBUG_PI
/* awesome for debugging - not useful otherwise */
dump_pi(pi);
#endif
return analyze_plot_info(pi);
}
void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
init_decompression(dive);
if (last_pi_entry) /* Create the new plot data */
free((void *)last_pi_entry);
last_pi_entry = populate_plot_entries(dive, dc, pi);
check_gas_change_events(dive, dc, pi); /* Populate the gas index from the gas change events */
setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
populate_pressure_information(dive, dc, pi);/* .. calculate missing pressure entries */
calculate_sac(dive, pi); /* Calculate sac */
calculate_deco_information(dive, dc, pi, false);
calculate_gas_information_new(dive, pi); /* And finaly calculate gas partial pressures */
pi->meandepth = dive->dc.meandepth.mm;
analyze_plot_info(pi);
}
/* make sure you pass this the FIRST dc - it just walks the list */
static int nr_dcs(struct divecomputer *main)
{
int i = 1;
struct divecomputer *dc = main;
while ((dc = dc->next) != NULL)
i++;
return i;
}
struct divecomputer *select_dc(struct divecomputer *main)
{
int i = dc_number;
struct divecomputer *dc = main;
while (i < 0)
i += nr_dcs(main);
do {
if (--i < 0)
return dc;
} while ((dc = dc->next) != NULL);
/* If we switched dives to one with fewer DC's, reset the dive computer counter */
dc_number = 0;
return main;
}
static void plot_string(struct plot_data *entry, struct membuffer *b, bool has_ndl)
{
int pressurevalue, mod, ead, end, eadd;
const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
double depthvalue, tempvalue, speedvalue;
depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
put_format(b, translate("gettextFromC","@:%d:%02d\nD:%.1f %s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
if (GET_PRESSURE(entry)) {
pressurevalue = get_pressure_units(GET_PRESSURE(entry), &pressure_unit);
put_format(b, translate("gettextFromC","P:%d %s\n"), pressurevalue, pressure_unit);
}
if (entry->temperature) {
tempvalue = get_temp_units(entry->temperature, &temp_unit);
put_format(b, translate("gettextFromC","T:%.1f %s\n"), tempvalue, temp_unit);
}
speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
/* Ascending speeds are positive, descending are negative */
if (entry->speed > 0)
speedvalue *= -1;
put_format(b, translate("gettextFromC","V:%.2f %s\n"), speedvalue, vertical_speed_unit);
if (entry->sac && prefs.show_sac)
put_format(b, translate("gettextFromC","SAC:%2.1fl/min\n"), entry->sac / 1000.0);
if (entry->cns)
put_format(b, translate("gettextFromC","CNS:%u%%\n"), entry->cns);
if (prefs.pp_graphs.po2)
put_format(b, translate("gettextFromC","pO%s:%.2fbar\n"), UTF8_SUBSCRIPT_2, entry->po2);
if (prefs.pp_graphs.pn2)
put_format(b, translate("gettextFromC","pN%s:%.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pn2);
if (prefs.pp_graphs.phe)
put_format(b, translate("gettextFromC","pHe:%.2fbar\n"), entry->phe);
if (prefs.mod) {
mod = (int)get_depth_units(entry->mod, NULL, &depth_unit);
put_format(b, translate("gettextFromC","MOD:%d%s\n"), mod, depth_unit);
}
if (prefs.ead) {
ead = (int)get_depth_units(entry->ead, NULL, &depth_unit);
end = (int)get_depth_units(entry->end, NULL, &depth_unit);
eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit);
put_format(b, translate("gettextFromC","EAD:%d%s\nEND:%d%s\nEADD:%d%s\n"), ead, depth_unit, end, depth_unit, eadd, depth_unit);
}
if (entry->stopdepth) {
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
if (entry->ndl) {
/* this is a safety stop as we still have ndl */
if (entry->stoptime)
put_format(b, translate("gettextFromC","Safetystop:%umin @ %.0f %s\n"), DIV_UP(entry->stoptime, 60),
depthvalue, depth_unit);
else
put_format(b, translate("gettextFromC","Safetystop:unkn time @ %.0f %s\n"),
depthvalue, depth_unit);
} else {
/* actual deco stop */
if (entry->stoptime)
put_format(b, translate("gettextFromC","Deco:%umin @ %.0f %s\n"), DIV_UP(entry->stoptime, 60),
depthvalue, depth_unit);
else
put_format(b, translate("gettextFromC","Deco:unkn time @ %.0f %s\n"),
depthvalue, depth_unit);
}
} else if (entry->in_deco) {
put_string(b, translate("gettextFromC","In deco\n"));
} else if (has_ndl) {
put_format(b, translate("gettextFromC","NDL:%umin\n"), DIV_UP(entry->ndl, 60));
}
if (entry->stopdepth_calc && entry->stoptime_calc) {
depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
put_format(b, translate("gettextFromC","Deco:%umin @ %.0f %s (calc)\n"), DIV_UP(entry->stoptime_calc, 60),
depthvalue, depth_unit);
} else if (entry->in_deco_calc) {
/* This means that we have no NDL left,
* and we have no deco stop,
* so if we just accend to the surface slowly
* (ascent_mm_per_step / ascent_s_per_step)
* everything will be ok. */
put_string(b, translate("gettextFromC","In deco (calc)\n"));
} else if (prefs.calc_ndl_tts && entry->ndl_calc != 0) {
put_format(b, translate("gettextFromC","NDL:%umin (calc)\n"), DIV_UP(entry->ndl_calc, 60));
}
if (entry->tts_calc)
put_format(b, translate("gettextFromC","TTS:%umin (calc)\n"), DIV_UP(entry->tts_calc, 60));
if (entry->ceiling) {
depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
put_format(b, translate("gettextFromC","Calculated ceiling %.0f %s\n"), depthvalue, depth_unit);
if (prefs.calc_all_tissues) {
int k;
for (k=0; k<16; k++) {
if (entry->ceilings[k]) {
depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
put_format(b, translate("gettextFromC","Tissue %.0fmin: %.0f %s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
}
}
}
}
if (entry->heartbeat)
put_format(b, translate("gettextFromC","heartbeat:%d\n"), entry->heartbeat);
if (entry->bearing)
put_format(b, translate("gettextFromC","bearing:%d\n"), entry->bearing);
strip_mb(b);
}
void get_plot_details(struct graphics_context *gc, int time, struct membuffer *mb)
{
struct plot_info *pi = &gc->pi;
struct plot_data *entry = NULL;
int i;
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
if (entry->sec >= time)
break;
}
if (entry)
plot_string(entry, mb, pi->has_ndl);
}
void get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb)
{
struct plot_data *entry = NULL;
int i;
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
if (entry->sec >= time)
break;
}
if (entry)
plot_string(entry, mb, pi->has_ndl);
}
/* Compare two plot_data entries and writes the results into a string */
void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum)
{
struct plot_data *start, *stop, *data;
const char *depth_unit, *pressure_unit, *vertical_speed_unit;
char *buf2 = malloc(bufsize);
int avg_speed, max_asc_speed, max_desc_speed;
int delta_depth, avg_depth, max_depth, min_depth;
int bar_used, last_pressure, pressurevalue;
int count, last_sec, delta_time;
double depthvalue, speedvalue;
if (bufsize > 0)
buf[0] = '\0';
if (e1 == NULL || e2 == NULL) {
free(buf2);
return;
}
if (e1->sec < e2->sec) {
start = e1;
stop = e2;
} else if (e1->sec > e2->sec) {
start = e2;
stop = e1;
} else {
free(buf2);
return;
}
count = 0;
avg_speed = 0;
max_asc_speed = 0;
max_desc_speed = 0;
delta_depth = abs(start->depth-stop->depth);
delta_time = abs(start->sec-stop->sec);
avg_depth = 0;
max_depth = 0;
min_depth = INT_MAX;
bar_used = 0;
last_sec = start->sec;
last_pressure = GET_PRESSURE(start);
data = start;
while (data != stop) {
data = start+count;
if (sum)
avg_speed += abs(data->speed)*(data->sec-last_sec);
else
avg_speed += data->speed*(data->sec-last_sec);
avg_depth += data->depth*(data->sec-last_sec);
if (data->speed > max_desc_speed)
max_desc_speed = data->speed;
if (data->speed < max_asc_speed)
max_asc_speed = data->speed;
if (data->depth < min_depth)
min_depth = data->depth;
if (data->depth > max_depth)
max_depth = data->depth;
/* Try to detect gas changes */
if (GET_PRESSURE(data) < last_pressure+2000)
bar_used += last_pressure-GET_PRESSURE(data);
count+=1;
last_sec = data->sec;
last_pressure = GET_PRESSURE(data);
}
avg_depth /= stop->sec-start->sec;
avg_speed /= stop->sec-start->sec;
snprintf(buf, bufsize, translate("gettextFromC","%sT: %d:%02d min"), UTF8_DELTA, delta_time/60, delta_time%60);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DELTA, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DOWNWARDS_ARROW, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_UPWARDS_ARROW, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s\n"), buf2, UTF8_AVERAGE, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s%sV:%.2f%s"), buf2, UTF8_DOWNWARDS_ARROW, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_UPWARDS_ARROW, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_AVERAGE, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
/* Only print if gas has been used */
if (bar_used) {
pressurevalue = get_pressure_units(bar_used, &pressure_unit);
memcpy(buf2, buf, bufsize);
snprintf(buf, bufsize, translate("gettextFromC","%s %sP:%d %s"), buf2, UTF8_DELTA, pressurevalue, pressure_unit);
}
free(buf2);
}