#ifndef UNITS_H
#define UNITS_H
#include <math.h>
#ifdef __cplusplus
extern "C" {
#endif
#define O2_IN_AIR 209 // permille
#define N2_IN_AIR 781
#define O2_DENSITY 1429 // mg/Liter
#define N2_DENSITY 1251
#define HE_DENSITY 179
#define SURFACE_PRESSURE 1013 // mbar
#define SURFACE_PRESSURE_STRING "1013"
#define ZERO_C_IN_MKELVIN 273150 // mKelvin
#ifdef __cplusplus
#define M_OR_FT(_m, _f) ((prefs.units.length == units::METERS) ? ((_m) * 1000) : (feet_to_mm(_f)))
#else
#define M_OR_FT(_m, _f) ((prefs.units.length == METERS) ? ((_m) * 1000) : (feet_to_mm(_f)))
#endif
/* Salinity is expressed in weight in grams per 10l */
#define SEAWATER_SALINITY 10300
#define FRESHWATER_SALINITY 10000
#include <stdint.h>
/*
* Some silly typedefs to make our units very explicit.
*
* Also, the units are chosen so that values can be expressible as
* integers, so that we never have FP rounding issues. And they
* are small enough that converting to/from imperial units doesn't
* really matter.
*
* We also strive to make '0' a meaningless number saying "not
* initialized", since many values are things that may not have
* been reported (eg cylinder pressure or temperature from dive
* computers that don't support them). But sometimes -1 is an even
* more explicit way of saying "not there".
*
* Thus "millibar" for pressure, for example, or "millikelvin" for
* temperatures. Doing temperatures in celsius or fahrenheit would
* make for loss of precision when converting from one to the other,
* and using millikelvin is SI-like but also means that a temperature
* of '0' is clearly just a missing temperature or cylinder pressure.
*
* Also strive to use units that can not possibly be mistaken for a
* valid value in a "normal" system without conversion. If the max
* depth of a dive is '20000', you probably didn't convert from mm on
* output, or if the max depth gets reported as "0.2ft" it was either
* a really boring dive, or there was some missing input conversion,
* and a 60-ft dive got recorded as 60mm.
*
* Doing these as "structs containing value" means that we always
* have to explicitly write out those units in order to get at the
* actual value. So there is hopefully little fear of using a value
* in millikelvin as Fahrenheit by mistake.
*
* We don't actually use these all yet, so maybe they'll change, but
* I made a number of types as guidelines.
*/
typedef int64_t timestamp_t;
typedef struct
{
uint32_t seconds; // durations up to 68 yrs
} duration_t;
typedef struct
{
int32_t seconds; // offsets up to +/- 34 yrs
} offset_t;
typedef struct
{
int32_t mm;
} depth_t; // depth to 2000 km
typedef struct
{
int32_t mbar; // pressure up to 2000 bar
} pressure_t;
typedef struct
{
uint16_t mbar;
} o2pressure_t; // pressure up to 65 bar
typedef struct
{
int16_t degrees;
} bearing_t; // compass bearing
typedef struct
{
int32_t mkelvin; // up to 1750 degrees K
} temperature_t;
typedef struct
{
int mliter;
} volume_t;
typedef struct
{
int permille;
} fraction_t;
typedef struct
{
int grams;
} weight_t;
typedef struct
{
int udeg;
} degrees_t;
static inline double udeg_to_radians(int udeg)
{
return (udeg * M_PI) / (1000000.0 * 180.0);
}
static inline double grams_to_lbs(int grams)
{
return grams / 453.6;
}
static inline int lbs_to_grams(double lbs)
{
return rint(lbs * 453.6);
}
static inline double ml_to_cuft(int ml)
{
return ml / 28316.8466;
}
static inline double cuft_to_l(double cuft)
{
return cuft * 28.3168466;
}
static inline double mm_to_feet(int mm)
{
return mm * 0.00328084;
}
static inline unsigned long feet_to_mm(double feet)
{
return rint(feet * 304.8);
}
static inline int to_feet(depth_t depth)
{
return rint(mm_to_feet(depth.mm));
}
static inline double mkelvin_to_C(int mkelvin)
{
return (mkelvin - ZERO_C_IN_MKELVIN) / 1000.0;
}
static inline double mkelvin_to_F(int mkelvin)
{
return mkelvin * 9 / 5000.0 - 459.670;
}
static inline unsigned long F_to_mkelvin(double f)
{
return rint((f - 32) * 1000 / 1.8 + ZERO_C_IN_MKELVIN);
}
static inline unsigned long C_to_mkelvin(double c)
{
return rint(c * 1000 + ZERO_C_IN_MKELVIN);
}
static inline double psi_to_bar(double psi)
{
return psi / 14.5037738;
}
static inline long psi_to_mbar(double psi)
{
return rint(psi_to_bar(psi) * 1000);
}
static inline int to_PSI(pressure_t pressure)
{
return rint(pressure.mbar * 0.0145037738);
}
static inline double bar_to_atm(double bar)
{
return bar / SURFACE_PRESSURE * 1000;
}
static inline double mbar_to_atm(int mbar)
{
return (double)mbar / SURFACE_PRESSURE;
}
static inline int mbar_to_PSI(int mbar)
{
pressure_t p = { mbar };
return to_PSI(p);
}
/*
* We keep our internal data in well-specified units, but
* the input and output may come in some random format. This
* keeps track of those units.
*/
/* turns out in Win32 PASCAL is defined as a calling convention */
#ifdef WIN32
#undef PASCAL
#endif
struct units {
enum {
METERS,
FEET
} length;
enum {
LITER,
CUFT
} volume;
enum {
BAR,
PSI,
PASCAL
} pressure;
enum {
CELSIUS,
FAHRENHEIT,
KELVIN
} temperature;
enum {
KG,
LBS
} weight;
enum {
SECONDS,
MINUTES
} vertical_speed_time;
};
/*
* We're going to default to SI units for input. Yes,
* technically the SI unit for pressure is Pascal, but
* we default to bar (10^5 pascal), which people
* actually use. Similarly, C instead of Kelvin.
* And kg instead of g.
*/
#define SI_UNITS \
{ \
.length = METERS, .volume = LITER, .pressure = BAR, .temperature = CELSIUS, .weight = KG, .vertical_speed_time = MINUTES \
}
#define IMPERIAL_UNITS \
{ \
.length = FEET, .volume = CUFT, .pressure = PSI, .temperature = FAHRENHEIT, .weight = LBS, .vertical_speed_time = MINUTES \
}
#ifdef __cplusplus
}
#endif
#endif