summaryrefslogtreecommitdiffstats
path: root/desktop-widgets/command_base.h
diff options
context:
space:
mode:
authorGravatar Berthold Stoeger <bstoeger@mail.tuwien.ac.at>2018-07-23 23:41:23 +0200
committerGravatar Dirk Hohndel <dirk@hohndel.org>2018-10-11 16:22:27 -0700
commit43c3885249fb867e7c33c8b3b5846d44e908774f (patch)
tree3675041ca82295a94c3bc48e9812e26543faacae /desktop-widgets/command_base.h
parentf427226b3b605523bc8285dbdaaa7f6993af6e6a (diff)
downloadsubsurface-43c3885249fb867e7c33c8b3b5846d44e908774f.tar.gz
Undo: isolate undo-commands
This refactors the undo-commands (which are now only "commands"). - Move everything in namespace Command. This allows shortening of names without polluting the global namespace. Moreover, the prefix Command:: will immediately signal that the undo-machinery is invoked. This is more terse than UndoCommands::instance()->... - Remove the Undo in front of the class-names. Creating an "UndoX" object to do "X" is paradoxical. - Create a base class for all commands that defines the Qt-translation functions. Thus all translations end up in the "Command" context. - Add a workToBeDone() function, which signals whether this should be added to the UndoStack. Thus the caller doesn't have to check itself whether this any work will be done. Note: Qt5.9 introduces "setObsolete" which does the same. - Split into public and internal header files. In the public header file only export the function calls, thus hiding all implementation details from the caller. - Split in different translation units: One for the stubs, one for the base classes and one for groups of commands. Currently, there is only one class of commands: divelist-commands. - Move the undoStack from the MainWindow class into commands_base.cpp. If we want to implement MDI, this can easily be moved into an appropriate Document class. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
Diffstat (limited to 'desktop-widgets/command_base.h')
-rw-r--r--desktop-widgets/command_base.h173
1 files changed, 173 insertions, 0 deletions
diff --git a/desktop-widgets/command_base.h b/desktop-widgets/command_base.h
new file mode 100644
index 000000000..f965b8689
--- /dev/null
+++ b/desktop-widgets/command_base.h
@@ -0,0 +1,173 @@
+// SPDX-License-Identifier: GPL-2.0
+// Note: this header file is used by the undo-machinery and should not be included elsewhere.
+
+#ifndef COMMAND_BASE_H
+#define COMMAND_BASE_H
+
+#include "core/dive.h"
+
+#include <QUndoCommand>
+#include <QCoreApplication> // For Q_DECLARE_TR_FUNCTIONS
+#include <memory>
+
+// The classes derived from Command::Base represent units-of-work, which can be exectuted / undone
+// repeatedly. The command objects are collected in a linear list implemented in the QUndoStack class.
+// They contain the information that is necessary to either perform or undo the unit-of-work.
+// The usage is:
+// constructor: generate information that is needed for executing the unit-of-work
+// redo(): performs the unit-of-work and generates the information that is needed for undo()
+// undo(): undos the unit-of-work and regenerates the initial information needed in redo()
+// The needed information is mostly kept in pointers to dives and/or trips, which have to be added
+// or removed.
+// For this to work it is crucial that
+// 1) Pointers to dives and trips remain valid as long as referencing command-objects exist.
+// 2) The dive-table is not resorted, because dives are inserted at given indices.
+//
+// Thus, if a command deletes a dive or a trip, the actual object must not be deleted. Instead,
+// the command object removes pointers to the dive/trip object from the backend and takes ownership.
+// To reverse such a deletion, the object is re-injected into the backend and ownership is given up.
+// Once ownership of a dive is taken, any reference to it was removed from the backend. Thus,
+// subsequent redo()/undo() actions cannot access this object and integrity of the data is ensured.
+//
+// As an example, consider the following course of events: Dive 1 is renumbered and deleted, dive 2
+// is added and renumbered. The undo list looks like this (---> non-owning, ***> owning pointers,
+// ===> next item in list)
+//
+// Undo-List
+// +-----------------+ +---------------+ +------------+ +-----------------+
+// | Renumber dive 1 |====>| Delete dive 1 |====>| Add dive 2 |====>| Renumber dive 2 |
+// +------------------ +---------------+ +------------+ +-----------------+
+// | * | |
+// | +--------+ * | +--------+ |
+// +----->| Dive 1 |<****** +--->| Dive 2 |<------+
+// +--------+ +--------+
+// ^
+// +---------+ *
+// | Backend |****************
+// +---------+
+// Two points of note:
+// 1) Every dive is owned by either the backend or exactly one command object.
+// 2) All references to dive 1 are *before* the owner "delete dive 2", thus the pointer is always valid.
+// 3) References by the backend are *always* owning.
+//
+// The user undos the last two commands. The situation now looks like this:
+//
+//
+// Undo-List Redo-List
+// +-----------------+ +---------------+ +------------+ +-----------------+
+// | Renumber dive 1 |====>| Delete dive 1 | | Add dive 2 |<====| Renumber dive 2 |
+// +------------------ +---------------+ +------------+ +-----------------+
+// | * * |
+// | +--------+ * * +--------+ |
+// +----->| Dive 1 |<****** ****>| Dive 2 |<------+
+// +--------+ +--------+
+//
+// +---------+
+// | Backend |
+// +---------+
+// Again:
+// 1) Every dive is owned by either the backend (here none) or exactly one command object.
+// 2) All references to dive 1 are *before* the owner "delete dive 1", thus the pointer is always valid.
+// 3) All references to dive 2 are *after* the owner "add dive 2", thus the pointer is always valid.
+//
+// The user undos one more command:
+//
+// Undo-List Redo-List
+// +-----------------+ +---------------+ +------------+ +-----------------+
+// | Renumber dive 1 | | Delete dive 1 |<====| Add dive 2 |<====| Renumber dive 2 |
+// +------------------ +---------------+ +------------+ +-----------------+
+// | | * |
+// | +--------+ | * +--------+ |
+// +----->| Dive 1 |<-----+ ****>| Dive 2 |<------+
+// +--------+ +--------+
+// ^
+// * +---------+
+// ***************| Backend |
+// +---------+
+// Same points as above.
+// The user now adds a dive 3. The redo list will be deleted:
+//
+// Undo-List
+// +-----------------+ +------------+
+// | Renumber dive 1 |=============================================>| Add dive 3 |
+// +------------------ +------------+
+// | |
+// | +--------+ +--------+ |
+// +----->| Dive 1 | | Dive 3 |<---+
+// +--------+ +--------+
+// ^ ^
+// * +---------+ *
+// ***************| Backend |****************
+// +---------+
+// Note:
+// 1) Dive 2 was deleted with the "add dive 2" command, because that was the owner.
+// 2) Dive 1 was not deleted, because it is owned by the backend.
+//
+// To take ownership of dives/trips, the OnwingDivePtr and OwningTripPtr types are used. These
+// are simply derived from std::unique_ptr and therefore use well-established semantics.
+// Expressed in C-terms: std::unique_ptr<T> is exactly the same as T* with the following
+// twists:
+// 1) default-initialized to NULL.
+// 2) if it goes out of scope (local scope or containing object destroyed), it does:
+// if (ptr) free_function(ptr);
+// whereby free_function can be configured (defaults to delete ptr).
+// 3) assignment between two std::unique_ptr<T> compiles only if the source is reset (to NULL).
+// (hence the name - there's a *unique* owner).
+// While this sounds trivial, experience shows that this distinctly simplifies memory-management
+// (it's not necessary to manually delete all vector items in the destructur, etc).
+// Note that Qt's own implementation (QScoperPointer) is not up to the job, because it doesn't implement
+// move-semantics and Qt's containers are incompatible, owing to COW semantics.
+//
+// Usage:
+// OwningDivePtr dPtr; // Initialize to null-state: not owning any dive.
+// OwningDivePtr dPtr(dive); // Take ownership of dive (which is of type struct dive *).
+// // If dPtr goes out of scope, the dive will be freed with free_dive().
+// struct dive *d = dPtr.release(); // Give up ownership of dive. dPtr is reset to null.
+// struct dive *d = d.get(); // Get pointer dive, but don't release ownership.
+// dPtr.reset(dive2); // Delete currently owned dive with free_dive() and get ownership of dive2.
+// dPtr.reset(); // Delete currently owned dive and reset to null.
+// dPtr2 = dPtr1; // Fails to compile.
+// dPtr2 = std::move(dPtr1); // dPtr2 takes ownership, dPtr1 is reset to null.
+// OwningDivePtr fun();
+// dPtr1 = fun(); // Compiles. Simply put: the compiler knows that the result of fun() will
+// // be trashed and therefore can be moved-from.
+// std::vector<OwningDivePtr> v: // Define an empty vector of owning pointers.
+// v.emplace_back(dive); // Take ownership of dive and add at end of vector
+// // If the vector goes out of scope, all dives will be freed with free_dive().
+// v.clear(v); // Reset the vector to zero length. If the elements weren't release()d,
+// // the pointed-to dives are freed with free_dive()
+
+// We put everything in a namespace, so that we can shorten names without polluting the global namespace
+namespace Command {
+
+// Classes used to automatically call free_dive()/free_trip for owning pointers that go out of scope.
+struct DiveDeleter {
+ void operator()(dive *d) { free_dive(d); }
+};
+struct TripDeleter {
+ void operator()(dive_trip *t) { free_trip(t); }
+};
+
+// Owning pointers to dive and dive_trip objects.
+typedef std::unique_ptr<dive, DiveDeleter> OwningDivePtr;
+typedef std::unique_ptr<dive_trip, TripDeleter> OwningTripPtr;
+
+// This is the base class of all commands.
+// It defines the Qt-translation functions
+class Base : public QUndoCommand {
+ Q_DECLARE_TR_FUNCTIONS(Command)
+public:
+ // Check whether work is to be done.
+ // TODO: replace by setObsolete (>Qt5.9)
+ virtual bool workToBeDone() = 0;
+};
+
+// Put a command on the undoStack, but test whether there is something to be done
+// beforehand by calling the workToBeDone() function. If nothing is to be done,
+// the command will be deleted.
+void execute(Base *cmd);
+
+} // namespace Command
+
+#endif // COMMAND_BASE_H
+