summaryrefslogtreecommitdiffstats
path: root/subsurface-core/device.c
diff options
context:
space:
mode:
authorGravatar Tomaz Canabrava <tomaz.canabrava@intel.com>2015-09-02 20:52:34 -0300
committerGravatar Dirk Hohndel <dirk@hohndel.org>2015-10-30 10:36:48 -0700
commit4c0156e3d51b389db8eccc3fa3da4b8f248f9b13 (patch)
tree966868d29150fdba13a5a56fb4305bc432ec7a72 /subsurface-core/device.c
parenta0798214231c652ac6142228f5ddfc4b65c921f8 (diff)
downloadsubsurface-4c0156e3d51b389db8eccc3fa3da4b8f248f9b13.tar.gz
Move all core-functionality to subsurface-core
And adapt a new CMakeLists.txt file for it. On the way I've also found out that we where double-compilling a few files. I've also set the subsurface-core as a include_path but that was just to reduce the noise on this commit, since I plan to remove it from the include path to make it obligatory to specify something like include "subsurface-core/dive.h" for the header files. Since the app is growing quite a bit we ended up having a few different files with almost same name that did similar things, I want to kill that (for instance Dive.h, dive.h, PrintDive.h and such). Signed-off-by: Tomaz Canabrava <tomaz.canabrava@intel.com> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Diffstat (limited to 'subsurface-core/device.c')
-rw-r--r--subsurface-core/device.c180
1 files changed, 180 insertions, 0 deletions
diff --git a/subsurface-core/device.c b/subsurface-core/device.c
new file mode 100644
index 000000000..c952c84be
--- /dev/null
+++ b/subsurface-core/device.c
@@ -0,0 +1,180 @@
+#include <string.h>
+#include "dive.h"
+#include "device.h"
+
+/*
+ * Good fake dive profiles are hard.
+ *
+ * "depthtime" is the integral of the dive depth over
+ * time ("area" of the dive profile). We want that
+ * area to match the average depth (avg_d*max_t).
+ *
+ * To do that, we generate a 6-point profile:
+ *
+ * (0, 0)
+ * (t1, max_d)
+ * (t2, max_d)
+ * (t3, d)
+ * (t4, d)
+ * (max_t, 0)
+ *
+ * with the same ascent/descent rates between the
+ * different depths.
+ *
+ * NOTE: avg_d, max_d and max_t are given constants.
+ * The rest we can/should play around with to get a
+ * good-looking profile.
+ *
+ * That six-point profile gives a total area of:
+ *
+ * (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
+ *
+ * And the "same ascent/descent rates" requirement
+ * gives us (time per depth must be same):
+ *
+ * t1 / max_d = (t3-t2) / (max_d-d)
+ * t1 / max_d = (max_t-t4) / d
+ *
+ * We also obviously require:
+ *
+ * 0 <= t1 <= t2 <= t3 <= t4 <= max_t
+ *
+ * Let us call 'd_frac = d / max_d', and we get:
+ *
+ * Total area must match average depth-time:
+ *
+ * (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
+ * max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
+ * max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
+ * t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
+ *
+ * and descent slope must match ascent slopes:
+ *
+ * t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
+ * t1 = (t3-t2)/(1-d_frac)
+ *
+ * and
+ *
+ * t1 / max_d = (max_t-t4) / (max_d*d_frac)
+ * t1 = (max_t-t4)/d_frac
+ *
+ * In general, we have more free variables than we have constraints,
+ * but we can aim for certain basics, like a good ascent slope.
+ */
+static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
+{
+ double t_frac = max_t * (1 - avg_d / (double)max_d);
+ int t1 = max_d / slope;
+ int t4 = max_t - t1 * d_frac;
+ int t3 = t4 - (t_frac - t1) / (1 - d_frac);
+ int t2 = t3 - t1 * (1 - d_frac);
+
+ if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
+ return 0;
+
+ s[1].time.seconds = t1;
+ s[1].depth.mm = max_d;
+ s[2].time.seconds = t2;
+ s[2].depth.mm = max_d;
+ s[3].time.seconds = t3;
+ s[3].depth.mm = max_d * d_frac;
+ s[4].time.seconds = t4;
+ s[4].depth.mm = max_d * d_frac;
+
+ return 1;
+}
+
+/* we have no average depth; instead of making up a random average depth
+ * we should assume either a PADI recrangular profile (for short and/or
+ * shallow dives) or more reasonably a six point profile with a 3 minute
+ * safety stop at 5m */
+static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
+{
+ // shallow or short dives are just trapecoids based on the given slope
+ if (max_d < 10000 || max_t < 600) {
+ s[1].time.seconds = max_d / slope;
+ s[1].depth.mm = max_d;
+ s[2].time.seconds = max_t - max_d / slope;
+ s[2].depth.mm = max_d;
+ } else {
+ s[1].time.seconds = max_d / slope;
+ s[1].depth.mm = max_d;
+ s[2].time.seconds = max_t - max_d / slope - 180;
+ s[2].depth.mm = max_d;
+ s[3].time.seconds = max_t - 5000 / slope - 180;
+ s[3].depth.mm = 5000;
+ s[4].time.seconds = max_t - 5000 / slope;
+ s[4].depth.mm = 5000;
+ }
+}
+
+struct divecomputer *fake_dc(struct divecomputer *dc)
+{
+ static struct sample fake[6];
+ static struct divecomputer fakedc;
+
+ fakedc = (*dc);
+ fakedc.sample = fake;
+ fakedc.samples = 6;
+
+ /* The dive has no samples, so create a few fake ones */
+ int max_t = dc->duration.seconds;
+ int max_d = dc->maxdepth.mm;
+ int avg_d = dc->meandepth.mm;
+
+ memset(fake, 0, sizeof(fake));
+ fake[5].time.seconds = max_t;
+ if (!max_t || !max_d)
+ return &fakedc;
+
+ /*
+ * We want to fake the profile so that the average
+ * depth ends up correct. However, in the absense of
+ * a reasonable average, let's just make something
+ * up. Note that 'avg_d == max_d' is _not_ a reasonable
+ * average.
+ * We explicitly treat avg_d == 0 differently */
+ if (avg_d == 0) {
+ /* we try for a sane slope, but bow to the insanity of
+ * the user supplied data */
+ fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, 5000.0 / 60));
+ if (fake[3].time.seconds == 0) { // just a 4 point profile
+ fakedc.samples = 4;
+ fake[3].time.seconds = max_t;
+ }
+ return &fakedc;
+ }
+ if (avg_d < max_d / 10 || avg_d >= max_d) {
+ avg_d = (max_d + 10000) / 3;
+ if (avg_d > max_d)
+ avg_d = max_d * 2 / 3;
+ }
+ if (!avg_d)
+ avg_d = 1;
+
+ /*
+ * Ok, first we try a basic profile with a specific ascent
+ * rate (5 meters per minute) and d_frac (1/3).
+ */
+ if (fill_samples(fake, max_d, avg_d, max_t, 5000.0 / 60, 0.33))
+ return &fakedc;
+
+ /*
+ * Ok, assume that didn't work because we cannot make the
+ * average come out right because it was a quick deep dive
+ * followed by a much shallower region
+ */
+ if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
+ return &fakedc;
+
+ /*
+ * Uhhuh. That didn't work. We'd need to find a good combination that
+ * satisfies our constraints. Currently, we don't, we just give insane
+ * slopes.
+ */
+ if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
+ return &fakedc;
+
+ /* Even that didn't work? Give up, there's something wrong */
+ return &fakedc;
+}