summaryrefslogtreecommitdiffstats
path: root/subsurface-core/profile.c
diff options
context:
space:
mode:
authorGravatar Dirk Hohndel <dirk@hohndel.org>2015-11-02 19:54:34 -0800
committerGravatar Dirk Hohndel <dirk@hohndel.org>2015-11-02 19:54:34 -0800
commit8ea7f404574c2ee571d2dde6bb6be3791e962150 (patch)
tree6a050178bfc71bf10558968f2a3bc0a12d8c525f /subsurface-core/profile.c
parentb273c1b0ca7bfe933e7c83742f1610f6bbe3f4d3 (diff)
parentdf7818a9b8495285b4d9812e5d6d50d6f9c08813 (diff)
downloadsubsurface-8ea7f404574c2ee571d2dde6bb6be3791e962150.tar.gz
Merge branch 'cmakeAndPreferences'
Diffstat (limited to 'subsurface-core/profile.c')
-rw-r--r--subsurface-core/profile.c1532
1 files changed, 1532 insertions, 0 deletions
diff --git a/subsurface-core/profile.c b/subsurface-core/profile.c
new file mode 100644
index 000000000..edba51ebd
--- /dev/null
+++ b/subsurface-core/profile.c
@@ -0,0 +1,1532 @@
+/* profile.c */
+/* creates all the necessary data for drawing the dive profile
+ */
+#include "gettext.h"
+#include <limits.h>
+#include <string.h>
+#include <assert.h>
+
+#include "dive.h"
+#include "display.h"
+#include "divelist.h"
+
+#include "profile.h"
+#include "gaspressures.h"
+#include "deco.h"
+#include "libdivecomputer/parser.h"
+#include "libdivecomputer/version.h"
+#include "membuffer.h"
+
+//#define DEBUG_GAS 1
+
+#define MAX_PROFILE_DECO 7200
+
+
+int selected_dive = -1; /* careful: 0 is a valid value */
+unsigned int dc_number = 0;
+
+static struct plot_data *last_pi_entry_new = NULL;
+void populate_pressure_information(struct dive *, struct divecomputer *, struct plot_info *, int);
+
+extern bool in_planner();
+extern pressure_t first_ceiling_pressure;
+
+#ifdef DEBUG_PI
+/* debugging tool - not normally used */
+static void dump_pi(struct plot_info *pi)
+{
+ int i;
+
+ printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
+ " maxpressure:%d mintemp:%d maxtemp:%d\n",
+ pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
+ pi->maxpressure, pi->mintemp, pi->maxtemp);
+ for (i = 0; i < pi->nr; i++) {
+ struct plot_data *entry = &pi->entry[i];
+ printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
+ " time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
+ i, entry->cylinderindex, entry->sec,
+ entry->pressure[0], entry->pressure[1],
+ entry->sec / 60, entry->sec % 60,
+ entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
+ entry->pressures.o2, entry->pressures.he, entry->pressures.n2,
+ entry->pressures.o2 + entry->pressures.he + entry->pressures.n2);
+ }
+ printf(" }\n");
+}
+#endif
+
+#define ROUND_UP(x, y) ((((x) + (y) - 1) / (y)) * (y))
+#define DIV_UP(x, y) (((x) + (y) - 1) / (y))
+
+/*
+ * When showing dive profiles, we scale things to the
+ * current dive. However, we don't scale past less than
+ * 30 minutes or 90 ft, just so that small dives show
+ * up as such unless zoom is enabled.
+ * We also need to add 180 seconds at the end so the min/max
+ * plots correctly
+ */
+int get_maxtime(struct plot_info *pi)
+{
+ int seconds = pi->maxtime;
+
+ int DURATION_THR = (pi->dive_type == FREEDIVING ? 60 : 600);
+ int CEILING = (pi->dive_type == FREEDIVING ? 30 : 60);
+
+ if (prefs.zoomed_plot) {
+ /* Rounded up to one minute, with at least 2.5 minutes to
+ * spare.
+ * For dive times shorter than 10 minutes, we use seconds/4 to
+ * calculate the space dynamically.
+ * This is seamless since 600/4 = 150.
+ */
+ if (seconds < DURATION_THR)
+ return ROUND_UP(seconds + seconds / 4, CEILING);
+ else
+ return ROUND_UP(seconds + DURATION_THR/4, CEILING);
+ } else {
+ /* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
+ return MAX(30 * 60, ROUND_UP(seconds + DURATION_THR/4, CEILING * 5));
+ }
+}
+
+/* get the maximum depth to which we want to plot
+ * take into account the additional vertical space needed to plot
+ * partial pressure graphs */
+int get_maxdepth(struct plot_info *pi)
+{
+ unsigned mm = pi->maxdepth;
+ int md;
+
+ if (prefs.zoomed_plot) {
+ /* Rounded up to 10m, with at least 3m to spare */
+ md = ROUND_UP(mm + 3000, 10000);
+ } else {
+ /* Minimum 30m, rounded up to 10m, with at least 3m to spare */
+ md = MAX((unsigned)30000, ROUND_UP(mm + 3000, 10000));
+ }
+ md += pi->maxpp * 9000;
+ return md;
+}
+
+/* collect all event names and whether we display them */
+struct ev_select *ev_namelist;
+int evn_allocated;
+int evn_used;
+
+#if WE_DONT_USE_THIS /* we need to implement event filters in Qt */
+int evn_foreach (void (*callback)(const char *, bool *, void *), void *data) {
+ int i;
+
+ for (i = 0; i < evn_used; i++) {
+ /* here we display an event name on screen - so translate */
+ callback(translate("gettextFromC", ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
+ }
+ return i;
+}
+#endif /* WE_DONT_USE_THIS */
+
+void clear_events(void)
+{
+ for (int i = 0; i < evn_used; i++)
+ free(ev_namelist[i].ev_name);
+ evn_used = 0;
+}
+
+void remember_event(const char *eventname)
+{
+ int i = 0, len;
+
+ if (!eventname || (len = strlen(eventname)) == 0)
+ return;
+ while (i < evn_used) {
+ if (!strncmp(eventname, ev_namelist[i].ev_name, len))
+ return;
+ i++;
+ }
+ if (evn_used == evn_allocated) {
+ evn_allocated += 10;
+ ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
+ if (!ev_namelist)
+ /* we are screwed, but let's just bail out */
+ return;
+ }
+ ev_namelist[evn_used].ev_name = strdup(eventname);
+ ev_namelist[evn_used].plot_ev = true;
+ evn_used++;
+}
+
+/* Get local sac-rate (in ml/min) between entry1 and entry2 */
+static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
+{
+ int index = entry1->cylinderindex;
+ cylinder_t *cyl;
+ int duration = entry2->sec - entry1->sec;
+ int depth, airuse;
+ pressure_t a, b;
+ double atm;
+
+ if (entry2->cylinderindex != index)
+ return 0;
+ if (duration <= 0)
+ return 0;
+ a.mbar = GET_PRESSURE(entry1);
+ b.mbar = GET_PRESSURE(entry2);
+ if (!b.mbar || a.mbar <= b.mbar)
+ return 0;
+
+ /* Mean pressure in ATM */
+ depth = (entry1->depth + entry2->depth) / 2;
+ atm = depth_to_atm(depth, dive);
+
+ cyl = dive->cylinder + index;
+
+ airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
+
+ /* milliliters per minute */
+ return airuse / atm * 60 / duration;
+}
+
+static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
+{
+ struct plot_data *p = entry;
+ int time = entry->sec;
+ int seconds = 90 * (index + 1);
+ struct plot_data *min, *max;
+ int avg, nr;
+
+ /* Go back 'seconds' in time */
+ while (p > first) {
+ if (p[-1].sec < time - seconds)
+ break;
+ p--;
+ }
+
+ /* Then go forward until we hit an entry past the time */
+ min = max = p;
+ avg = p->depth;
+ nr = 1;
+ while (++p < last) {
+ int depth = p->depth;
+ if (p->sec > time + seconds)
+ break;
+ avg += depth;
+ nr++;
+ if (depth < min->depth)
+ min = p;
+ if (depth > max->depth)
+ max = p;
+ }
+ entry->min[index] = min;
+ entry->max[index] = max;
+ entry->avg[index] = (avg + nr / 2) / nr;
+}
+
+static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
+{
+ analyze_plot_info_minmax_minute(entry, first, last, 0);
+ analyze_plot_info_minmax_minute(entry, first, last, 1);
+ analyze_plot_info_minmax_minute(entry, first, last, 2);
+}
+
+static velocity_t velocity(int speed)
+{
+ velocity_t v;
+
+ if (speed < -304) /* ascent faster than -60ft/min */
+ v = CRAZY;
+ else if (speed < -152) /* above -30ft/min */
+ v = FAST;
+ else if (speed < -76) /* -15ft/min */
+ v = MODERATE;
+ else if (speed < -25) /* -5ft/min */
+ v = SLOW;
+ else if (speed < 25) /* very hard to find data, but it appears that the recommendations
+ for descent are usually about 2x ascent rate; still, we want
+ stable to mean stable */
+ v = STABLE;
+ else if (speed < 152) /* between 5 and 30ft/min is considered slow */
+ v = SLOW;
+ else if (speed < 304) /* up to 60ft/min is moderate */
+ v = MODERATE;
+ else if (speed < 507) /* up to 100ft/min is fast */
+ v = FAST;
+ else /* more than that is just crazy - you'll blow your ears out */
+ v = CRAZY;
+
+ return v;
+}
+
+struct plot_info *analyze_plot_info(struct plot_info *pi)
+{
+ int i;
+ int nr = pi->nr;
+
+ /* Smoothing function: 5-point triangular smooth */
+ for (i = 2; i < nr; i++) {
+ struct plot_data *entry = pi->entry + i;
+ int depth;
+
+ if (i < nr - 2) {
+ depth = entry[-2].depth + 2 * entry[-1].depth + 3 * entry[0].depth + 2 * entry[1].depth + entry[2].depth;
+ entry->smoothed = (depth + 4) / 9;
+ }
+ /* vertical velocity in mm/sec */
+ /* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
+ if (entry[0].sec - entry[-1].sec) {
+ entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
+ entry->velocity = velocity(entry->speed);
+ /* if our samples are short and we aren't too FAST*/
+ if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
+ int past = -2;
+ while (i + past > 0 && entry[0].sec - entry[past].sec < 15)
+ past--;
+ entry->velocity = velocity((entry[0].depth - entry[past].depth) /
+ (entry[0].sec - entry[past].sec));
+ }
+ } else {
+ entry->velocity = STABLE;
+ entry->speed = 0;
+ }
+ }
+
+ /* One-, two- and three-minute minmax data */
+ for (i = 0; i < nr; i++) {
+ struct plot_data *entry = pi->entry + i;
+ analyze_plot_info_minmax(entry, pi->entry, pi->entry + nr);
+ }
+
+ return pi;
+}
+
+/*
+ * If the event has an explicit cylinder index,
+ * we return that. If it doesn't, we return the best
+ * match based on the gasmix.
+ *
+ * Some dive computers give cylinder indexes, some
+ * give just the gas mix.
+ */
+int get_cylinder_index(struct dive *dive, struct event *ev)
+{
+ int i;
+ int best = 0, score = INT_MAX;
+ int target_o2, target_he;
+ struct gasmix *g;
+
+ if (ev->gas.index >= 0)
+ return ev->gas.index;
+
+ g = get_gasmix_from_event(ev);
+ target_o2 = get_o2(g);
+ target_he = get_he(g);
+
+ /*
+ * Try to find a cylinder that best matches the target gas
+ * mix.
+ */
+ for (i = 0; i < MAX_CYLINDERS; i++) {
+ cylinder_t *cyl = dive->cylinder + i;
+ int delta_o2, delta_he, distance;
+
+ if (cylinder_nodata(cyl))
+ continue;
+
+ delta_o2 = get_o2(&cyl->gasmix) - target_o2;
+ delta_he = get_he(&cyl->gasmix) - target_he;
+ distance = delta_o2 * delta_o2;
+ distance += delta_he * delta_he;
+
+ if (distance >= score)
+ continue;
+ score = distance;
+ best = i;
+ }
+ return best;
+}
+
+struct event *get_next_event(struct event *event, const char *name)
+{
+ if (!name || !*name)
+ return NULL;
+ while (event) {
+ if (!strcmp(event->name, name))
+ return event;
+ event = event->next;
+ }
+ return event;
+}
+
+static int count_events(struct divecomputer *dc)
+{
+ int result = 0;
+ struct event *ev = dc->events;
+ while (ev != NULL) {
+ result++;
+ ev = ev->next;
+ }
+ return result;
+}
+
+static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
+{
+ while (i < pi->nr) {
+ struct plot_data *entry = pi->entry + i;
+ if (entry->sec > end)
+ break;
+ if (entry->cylinderindex != cylinderindex) {
+ entry->cylinderindex = cylinderindex;
+ entry->pressure[0] = 0;
+ }
+ i++;
+ }
+ return i;
+}
+
+static int set_setpoint(struct plot_info *pi, int i, int setpoint, unsigned int end)
+{
+ while (i < pi->nr) {
+ struct plot_data *entry = pi->entry + i;
+ if (entry->sec > end)
+ break;
+ entry->o2pressure.mbar = setpoint;
+ i++;
+ }
+ return i;
+}
+
+/* normally the first cylinder has index 0... if not, we need to fix this up here */
+static int set_first_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
+{
+ while (i < pi->nr) {
+ struct plot_data *entry = pi->entry + i;
+ if (entry->sec > end)
+ break;
+ entry->cylinderindex = cylinderindex;
+ i++;
+ }
+ return i;
+}
+
+static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
+{
+ int i = 0, cylinderindex = 0;
+ struct event *ev = get_next_event(dc->events, "gaschange");
+
+ // for dive computers that tell us their first gas as an event on the first sample
+ // we need to make sure things are setup correctly
+ cylinderindex = explicit_first_cylinder(dive, dc);
+ set_first_cylinder_index(pi, 0, cylinderindex, ~0u);
+
+ if (!ev)
+ return;
+
+ do {
+ i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
+ cylinderindex = get_cylinder_index(dive, ev);
+ ev = get_next_event(ev->next, "gaschange");
+ } while (ev);
+ set_cylinder_index(pi, i, cylinderindex, ~0u);
+}
+
+static void check_setpoint_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
+{
+ int i = 0;
+ pressure_t setpoint;
+
+ setpoint.mbar = 0;
+ struct event *ev = get_next_event(dc->events, "SP change");
+
+ if (!ev)
+ return;
+
+ do {
+ i = set_setpoint(pi, i, setpoint.mbar, ev->time.seconds);
+ setpoint.mbar = ev->value;
+ if (setpoint.mbar)
+ dc->divemode = CCR;
+ ev = get_next_event(ev->next, "SP change");
+ } while (ev);
+ set_setpoint(pi, i, setpoint.mbar, ~0u);
+}
+
+
+struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *given_dc)
+{
+ struct divecomputer *dc = &(dive->dc);
+ bool seen = false;
+ static struct plot_info pi;
+ int maxdepth = dive->maxdepth.mm;
+ int maxtime = 0;
+ int maxpressure = 0, minpressure = INT_MAX;
+ int maxhr = 0, minhr = INT_MAX;
+ int mintemp = dive->mintemp.mkelvin;
+ int maxtemp = dive->maxtemp.mkelvin;
+ int cyl;
+
+ /* Get the per-cylinder maximum pressure if they are manual */
+ for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
+ int mbar = dive->cylinder[cyl].start.mbar;
+ if (mbar > maxpressure)
+ maxpressure = mbar;
+ if (mbar < minpressure)
+ minpressure = mbar;
+ }
+
+ /* Then do all the samples from all the dive computers */
+ do {
+ if (dc == given_dc)
+ seen = true;
+ int i = dc->samples;
+ int lastdepth = 0;
+ struct sample *s = dc->sample;
+
+ while (--i >= 0) {
+ int depth = s->depth.mm;
+ int pressure = s->cylinderpressure.mbar;
+ int temperature = s->temperature.mkelvin;
+ int heartbeat = s->heartbeat;
+
+ if (!mintemp && temperature < mintemp)
+ mintemp = temperature;
+ if (temperature > maxtemp)
+ maxtemp = temperature;
+
+ if (pressure && pressure < minpressure)
+ minpressure = pressure;
+ if (pressure > maxpressure)
+ maxpressure = pressure;
+ if (heartbeat > maxhr)
+ maxhr = heartbeat;
+ if (heartbeat < minhr)
+ minhr = heartbeat;
+
+ if (depth > maxdepth)
+ maxdepth = s->depth.mm;
+ if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
+ s->time.seconds > maxtime)
+ maxtime = s->time.seconds;
+ lastdepth = depth;
+ s++;
+ }
+ dc = dc->next;
+ if (dc == NULL && !seen) {
+ dc = given_dc;
+ seen = true;
+ }
+ } while (dc != NULL);
+
+ if (minpressure > maxpressure)
+ minpressure = 0;
+ if (minhr > maxhr)
+ minhr = 0;
+
+ memset(&pi, 0, sizeof(pi));
+ pi.maxdepth = maxdepth;
+ pi.maxtime = maxtime;
+ pi.maxpressure = maxpressure;
+ pi.minpressure = minpressure;
+ pi.minhr = minhr;
+ pi.maxhr = maxhr;
+ pi.mintemp = mintemp;
+ pi.maxtemp = maxtemp;
+ return pi;
+}
+
+/* copy the previous entry (we know this exists), update time and depth
+ * and zero out the sensor pressure (since this is a synthetic entry)
+ * increment the entry pointer and the count of synthetic entries. */
+#define INSERT_ENTRY(_time, _depth, _sac) \
+ *entry = entry[-1]; \
+ entry->sec = _time; \
+ entry->depth = _depth; \
+ entry->running_sum = (entry - 1)->running_sum + (_time - (entry - 1)->sec) * (_depth + (entry - 1)->depth) / 2; \
+ SENSOR_PRESSURE(entry) = 0; \
+ entry->sac = _sac; \
+ entry++; \
+ idx++
+
+struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
+{
+ int idx, maxtime, nr, i;
+ int lastdepth, lasttime, lasttemp = 0;
+ struct plot_data *plot_data;
+ struct event *ev = dc->events;
+
+ maxtime = pi->maxtime;
+
+ /*
+ * We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
+ * but samples could be more dense than that (so add in dc->samples). We also
+ * need to have one for every event (so count events and add that) and
+ * additionally we want two surface events around the whole thing (thus the
+ * additional 4). There is also one extra space for a final entry
+ * that has time > maxtime (because there can be surface samples
+ * past "maxtime" in the original sample data)
+ */
+ nr = dc->samples + 6 + maxtime / 10 + count_events(dc);
+ plot_data = calloc(nr, sizeof(struct plot_data));
+ pi->entry = plot_data;
+ if (!plot_data)
+ return NULL;
+ pi->nr = nr;
+ idx = 2; /* the two extra events at the start */
+
+ lastdepth = 0;
+ lasttime = 0;
+ /* skip events at time = 0 */
+ while (ev && ev->time.seconds == 0)
+ ev = ev->next;
+ for (i = 0; i < dc->samples; i++) {
+ struct plot_data *entry = plot_data + idx;
+ struct sample *sample = dc->sample + i;
+ int time = sample->time.seconds;
+ int offset, delta;
+ int depth = sample->depth.mm;
+ int sac = sample->sac.mliter;
+
+ /* Add intermediate plot entries if required */
+ delta = time - lasttime;
+ if (delta <= 0) {
+ time = lasttime;
+ delta = 1; // avoid divide by 0
+ }
+ for (offset = 10; offset < delta; offset += 10) {
+ if (lasttime + offset > maxtime)
+ break;
+
+ /* Add events if they are between plot entries */
+ while (ev && ev->time.seconds < lasttime + offset) {
+ INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
+ ev = ev->next;
+ }
+
+ /* now insert the time interpolated entry */
+ INSERT_ENTRY(lasttime + offset, interpolate(lastdepth, depth, offset, delta), sac);
+
+ /* skip events that happened at this time */
+ while (ev && ev->time.seconds == lasttime + offset)
+ ev = ev->next;
+ }
+
+ /* Add events if they are between plot entries */
+ while (ev && ev->time.seconds < time) {
+ INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
+ ev = ev->next;
+ }
+
+
+ entry->sec = time;
+ entry->depth = depth;
+
+ entry->running_sum = (entry - 1)->running_sum + (time - (entry - 1)->sec) * (depth + (entry - 1)->depth) / 2;
+ entry->stopdepth = sample->stopdepth.mm;
+ entry->stoptime = sample->stoptime.seconds;
+ entry->ndl = sample->ndl.seconds;
+ entry->tts = sample->tts.seconds;
+ pi->has_ndl |= sample->ndl.seconds;
+ entry->in_deco = sample->in_deco;
+ entry->cns = sample->cns;
+ if (dc->divemode == CCR) {
+ entry->o2pressure.mbar = entry->o2setpoint.mbar = sample->setpoint.mbar; // for rebreathers
+ entry->o2sensor[0].mbar = sample->o2sensor[0].mbar; // for up to three rebreather O2 sensors
+ entry->o2sensor[1].mbar = sample->o2sensor[1].mbar;
+ entry->o2sensor[2].mbar = sample->o2sensor[2].mbar;
+ } else {
+ entry->pressures.o2 = sample->setpoint.mbar / 1000.0;
+ }
+ /* FIXME! sensor index -> cylinder index translation! */
+ // entry->cylinderindex = sample->sensor;
+ SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
+ O2CYLINDER_PRESSURE(entry) = sample->o2cylinderpressure.mbar;
+ if (sample->temperature.mkelvin)
+ entry->temperature = lasttemp = sample->temperature.mkelvin;
+ else
+ entry->temperature = lasttemp;
+ entry->heartbeat = sample->heartbeat;
+ entry->bearing = sample->bearing.degrees;
+ entry->sac = sample->sac.mliter;
+ if (sample->rbt.seconds)
+ entry->rbt = sample->rbt.seconds;
+ /* skip events that happened at this time */
+ while (ev && ev->time.seconds == time)
+ ev = ev->next;
+ lasttime = time;
+ lastdepth = depth;
+ idx++;
+
+ if (time > maxtime)
+ break;
+ }
+
+ /* Add two final surface events */
+ plot_data[idx++].sec = lasttime + 1;
+ plot_data[idx++].sec = lasttime + 2;
+ pi->nr = idx;
+
+ return plot_data;
+}
+
+#undef INSERT_ENTRY
+
+static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi, bool o2flag)
+{
+ int i;
+
+ /* First: check that none of the entries has sensor pressure for this cylinder index */
+ for (i = 0; i < pi->nr; i++) {
+ struct plot_data *entry = pi->entry + i;
+ if (entry->cylinderindex != idx && !o2flag)
+ continue;
+ if (CYLINDER_PRESSURE(o2flag, entry))
+ return;
+ }
+
+ /* Then: populate the first entry with the beginning cylinder pressure */
+ for (i = 0; i < pi->nr; i++) {
+ struct plot_data *entry = pi->entry + i;
+ if (entry->cylinderindex != idx && !o2flag)
+ continue;
+ if (o2flag)
+ O2CYLINDER_PRESSURE(entry) = start;
+ else
+ SENSOR_PRESSURE(entry) = start;
+ break;
+ }
+
+ /* .. and the last entry with the ending cylinder pressure */
+ for (i = pi->nr; --i >= 0; /* nothing */) {
+ struct plot_data *entry = pi->entry + i;
+ if (entry->cylinderindex != idx && !o2flag)
+ continue;
+ if (o2flag)
+ O2CYLINDER_PRESSURE(entry) = end;
+ else
+ SENSOR_PRESSURE(entry) = end;
+ break;
+ }
+}
+
+/*
+ * Calculate the sac rate between the two plot entries 'first' and 'last'.
+ *
+ * Everything in between has a cylinder pressure, and it's all the same
+ * cylinder.
+ */
+static int sac_between(struct dive *dive, struct plot_data *first, struct plot_data *last)
+{
+ int airuse;
+ double pressuretime;
+ pressure_t a, b;
+ cylinder_t *cyl;
+ int duration;
+
+ if (first == last)
+ return 0;
+
+ /* Calculate air use - trivial */
+ a.mbar = GET_PRESSURE(first);
+ b.mbar = GET_PRESSURE(last);
+ cyl = dive->cylinder + first->cylinderindex;
+ airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
+ if (airuse <= 0)
+ return 0;
+
+ /* Calculate depthpressure integrated over time */
+ pressuretime = 0.0;
+ do {
+ int depth = (first[0].depth + first[1].depth) / 2;
+ int time = first[1].sec - first[0].sec;
+ double atm = depth_to_atm(depth, dive);
+
+ pressuretime += atm * time;
+ } while (++first < last);
+
+ /* Turn "atmseconds" into "atmminutes" */
+ pressuretime /= 60;
+
+ /* SAC = mliter per minute */
+ return rint(airuse / pressuretime);
+}
+
+/*
+ * Try to do the momentary sac rate for this entry, averaging over one
+ * minute.
+ */
+static void fill_sac(struct dive *dive, struct plot_info *pi, int idx)
+{
+ struct plot_data *entry = pi->entry + idx;
+ struct plot_data *first, *last;
+ int time;
+
+ if (entry->sac)
+ return;
+
+ if (!GET_PRESSURE(entry))
+ return;
+
+ /*
+ * Try to go back 30 seconds to get 'first'.
+ * Stop if the sensor changed, or if we went back too far.
+ */
+ first = entry;
+ time = entry->sec - 30;
+ while (idx > 0) {
+ struct plot_data *prev = first-1;
+ if (prev->cylinderindex != first->cylinderindex)
+ break;
+ if (prev->depth < SURFACE_THRESHOLD && first->depth < SURFACE_THRESHOLD)
+ break;
+ if (prev->sec < time)
+ break;
+ if (!GET_PRESSURE(prev))
+ break;
+ idx--;
+ first = prev;
+ }
+
+ /* Now find an entry a minute after the first one */
+ last = first;
+ time = first->sec + 60;
+ while (++idx < pi->nr) {
+ struct plot_data *next = last+1;
+ if (next->cylinderindex != last->cylinderindex)
+ break;
+ if (next->depth < SURFACE_THRESHOLD && last->depth < SURFACE_THRESHOLD)
+ break;
+ if (next->sec > time)
+ break;
+ if (!GET_PRESSURE(next))
+ break;
+ last = next;
+ }
+
+ /* Ok, now calculate the SAC between 'first' and 'last' */
+ entry->sac = sac_between(dive, first, last);
+}
+
+static void calculate_sac(struct dive *dive, struct plot_info *pi)
+{
+ int i = 0, last = 0;
+ struct plot_data *last_entry = NULL;
+
+ for (i = 0; i < pi->nr; i++)
+ fill_sac(dive, pi, i);
+}
+
+static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi)
+{
+ /* We should try to see if it has interesting pressure data here */
+}
+
+static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
+{
+ int i;
+ struct divecomputer *secondary;
+
+ /* First, populate the pressures with the manual cylinder data.. */
+ for (i = 0; i < MAX_CYLINDERS; i++) {
+ cylinder_t *cyl = dive->cylinder + i;
+ int start = cyl->start.mbar ?: cyl->sample_start.mbar;
+ int end = cyl->end.mbar ?: cyl->sample_end.mbar;
+
+ if (!start || !end)
+ continue;
+
+ populate_cylinder_pressure_data(i, start, end, pi, dive->cylinder[i].cylinder_use == OXYGEN);
+ }
+
+ /*
+ * Here, we should try to walk through all the dive computers,
+ * and try to see if they have sensor data different from the
+ * primary dive computer (dc).
+ */
+ secondary = &dive->dc;
+ do {
+ if (secondary == dc)
+ continue;
+ populate_secondary_sensor_data(dc, pi);
+ } while ((secondary = secondary->next) != NULL);
+}
+
+/* calculate DECO STOP / TTS / NDL */
+static void calculate_ndl_tts(struct plot_data *entry, struct dive *dive, double surface_pressure)
+{
+ /* FIXME: This should be configurable */
+ /* ascent speed up to first deco stop */
+ const int ascent_s_per_step = 1;
+ const int ascent_mm_per_step = 200; /* 12 m/min */
+ /* ascent speed between deco stops */
+ const int ascent_s_per_deco_step = 1;
+ const int ascent_mm_per_deco_step = 16; /* 1 m/min */
+ /* how long time steps in deco calculations? */
+ const int time_stepsize = 60;
+ const int deco_stepsize = 3000;
+ /* at what depth is the current deco-step? */
+ int next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance_calc(dive, depth_to_bar(entry->depth, dive)),
+ surface_pressure, dive, 1), deco_stepsize);
+ int ascent_depth = entry->depth;
+ /* at what time should we give up and say that we got enuff NDL? */
+ int cylinderindex = entry->cylinderindex;
+ /* If iterating through a dive, entry->tts_calc needs to be reset */
+ entry->tts_calc = 0;
+
+ /* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
+ * a ndl for lower values than 3m it would take forever */
+ if (next_stop == 0) {
+ if (entry->depth < 3000) {
+ entry->ndl = MAX_PROFILE_DECO;
+ return;
+ }
+ /* stop if the ndl is above max_ndl seconds, and call it plenty of time */
+ while (entry->ndl_calc < MAX_PROFILE_DECO && deco_allowed_depth(tissue_tolerance_calc(dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, 1) <= 0) {
+ entry->ndl_calc += time_stepsize;
+ add_segment(depth_to_bar(entry->depth, dive),
+ &dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->o2pressure.mbar, dive, prefs.bottomsac);
+ }
+ /* we don't need to calculate anything else */
+ return;
+ }
+
+ /* We are in deco */
+ entry->in_deco_calc = true;
+
+ /* Add segments for movement to stopdepth */
+ for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_step, entry->tts_calc += ascent_s_per_step) {
+ add_segment(depth_to_bar(ascent_depth, dive),
+ &dive->cylinder[cylinderindex].gasmix, ascent_s_per_step, entry->o2pressure.mbar, dive, prefs.decosac);
+ next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance_calc(dive, depth_to_bar(ascent_depth, dive)), surface_pressure, dive, 1), deco_stepsize);
+ }
+ ascent_depth = next_stop;
+
+ /* And how long is the current deco-step? */
+ entry->stoptime_calc = 0;
+ entry->stopdepth_calc = next_stop;
+ next_stop -= deco_stepsize;
+
+ /* And how long is the total TTS */
+ while (next_stop >= 0) {
+ /* save the time for the first stop to show in the graph */
+ if (ascent_depth == entry->stopdepth_calc)
+ entry->stoptime_calc += time_stepsize;
+
+ entry->tts_calc += time_stepsize;
+ if (entry->tts_calc > MAX_PROFILE_DECO)
+ break;
+ add_segment(depth_to_bar(ascent_depth, dive),
+ &dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->o2pressure.mbar, dive, prefs.decosac);
+
+ if (deco_allowed_depth(tissue_tolerance_calc(dive, depth_to_bar(ascent_depth,dive)), surface_pressure, dive, 1) <= next_stop) {
+ /* move to the next stop and add the travel between stops */
+ for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_deco_step, entry->tts_calc += ascent_s_per_deco_step)
+ add_segment(depth_to_bar(ascent_depth, dive),
+ &dive->cylinder[cylinderindex].gasmix, ascent_s_per_deco_step, entry->o2pressure.mbar, dive, prefs.decosac);
+ ascent_depth = next_stop;
+ next_stop -= deco_stepsize;
+ }
+ }
+}
+
+/* Let's try to do some deco calculations.
+ */
+void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool print_mode)
+{
+ int i, count_iteration = 0;
+ double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
+ int last_ndl_tts_calc_time = 0;
+ int first_ceiling = 0;
+ bool first_iteration = true;
+ int final_tts = 0 , time_clear_ceiling = 0, time_deep_ceiling = 0, deco_time = 0, prev_deco_time = 10000000;
+ char *cache_data_initial = NULL;
+ /* For VPM-B outside the planner, cache the initial deco state for CVA iterations */
+ if (prefs.deco_mode == VPMB && !in_planner())
+ cache_deco_state(&cache_data_initial);
+ /* For VPM-B outside the planner, iterate until deco time converges (usually one or two iterations after the initial)
+ * Set maximum number of iterations to 10 just in case */
+ while ((abs(prev_deco_time - deco_time) >= 30) && (count_iteration < 10)) {
+ for (i = 1; i < pi->nr; i++) {
+ struct plot_data *entry = pi->entry + i;
+ int j, t0 = (entry - 1)->sec, t1 = entry->sec;
+ int time_stepsize = 20;
+
+ entry->ambpressure = depth_to_bar(entry->depth, dive);
+ entry->gfline = MAX((double)prefs.gflow, (entry->ambpressure - surface_pressure) / (gf_low_pressure_this_dive - surface_pressure) *
+ (prefs.gflow - prefs.gfhigh) +
+ prefs.gfhigh) *
+ (100.0 - AMB_PERCENTAGE) / 100.0 + AMB_PERCENTAGE;
+ if (t0 > t1) {
+ fprintf(stderr, "non-monotonous dive stamps %d %d\n", t0, t1);
+ int xchg = t1;
+ t1 = t0;
+ t0 = xchg;
+ }
+ if (t0 != t1 && t1 - t0 < time_stepsize)
+ time_stepsize = t1 - t0;
+ for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) {
+ int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
+ add_segment(depth_to_bar(depth, dive),
+ &dive->cylinder[entry->cylinderindex].gasmix, time_stepsize, entry->o2pressure.mbar, dive, entry->sac);
+ if ((t1 - j < time_stepsize) && (j < t1))
+ time_stepsize = t1 - j;
+ }
+ if (t0 == t1) {
+ entry->ceiling = (entry - 1)->ceiling;
+ } else {
+ /* Keep updating the VPM-B gradients until the start of the ascent phase of the dive. */
+ if (prefs.deco_mode == VPMB && !in_planner() && (entry - 1)->ceiling >= first_ceiling && first_iteration == true) {
+ nuclear_regeneration(t1);
+ vpmb_start_gradient();
+ /* For CVA calculations, start by guessing deco time = dive time remaining */
+ deco_time = pi->maxtime - t1;
+ vpmb_next_gradient(deco_time, surface_pressure / 1000.0);
+ }
+ entry->ceiling = deco_allowed_depth(tissue_tolerance_calc(dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, !prefs.calcceiling3m);
+ /* If using VPM-B outside the planner, take first_ceiling_pressure as the deepest ceiling */
+ if (prefs.deco_mode == VPMB && !in_planner()) {
+ if (entry->ceiling >= first_ceiling) {
+ time_deep_ceiling = t1;
+ first_ceiling = entry->ceiling;
+ first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
+ if (first_iteration) {
+ nuclear_regeneration(t1);
+ vpmb_start_gradient();
+ /* For CVA calculations, start by guessing deco time = dive time remaining */
+ deco_time = pi->maxtime - t1;
+ vpmb_next_gradient(deco_time, surface_pressure / 1000.0);
+ }
+ }
+ // Use the point where the ceiling clears as the end of deco phase for CVA calculations
+ if (entry->ceiling > 0)
+ time_clear_ceiling = 0;
+ else if (time_clear_ceiling == 0)
+ time_clear_ceiling = t1;
+ }
+ }
+ for (j = 0; j < 16; j++) {
+ double m_value = buehlmann_inertgas_a[j] + entry->ambpressure / buehlmann_inertgas_b[j];
+ entry->ceilings[j] = deco_allowed_depth(tolerated_by_tissue[j], surface_pressure, dive, 1);
+ entry->percentages[j] = tissue_inertgas_saturation[j] < entry->ambpressure ?
+ tissue_inertgas_saturation[j] / entry->ambpressure * AMB_PERCENTAGE :
+ AMB_PERCENTAGE + (tissue_inertgas_saturation[j] - entry->ambpressure) / (m_value - entry->ambpressure) * (100.0 - AMB_PERCENTAGE);
+ }
+
+ /* should we do more calculations?
+ * We don't for print-mode because this info doesn't show up there
+ * If the ceiling hasn't cleared by the last data point, we need tts for VPM-B CVA calculation
+ * It is not necessary to do these calculation on the first VPMB iteration, except for the last data point */
+ if ((prefs.calcndltts && !print_mode && (prefs.deco_mode != VPMB || in_planner() || !first_iteration)) ||
+ (prefs.deco_mode == VPMB && !in_planner() && i == pi->nr - 1)) {
+ /* only calculate ndl/tts on every 30 seconds */
+ if ((entry->sec - last_ndl_tts_calc_time) < 30 && i != pi->nr - 1) {
+ struct plot_data *prev_entry = (entry - 1);
+ entry->stoptime_calc = prev_entry->stoptime_calc;
+ entry->stopdepth_calc = prev_entry->stopdepth_calc;
+ entry->tts_calc = prev_entry->tts_calc;
+ entry->ndl_calc = prev_entry->ndl_calc;
+ continue;
+ }
+ last_ndl_tts_calc_time = entry->sec;
+
+ /* We are going to mess up deco state, so store it for later restore */
+ char *cache_data = NULL;
+ cache_deco_state(&cache_data);
+ calculate_ndl_tts(entry, dive, surface_pressure);
+ if (prefs.deco_mode == VPMB && !in_planner() && i == pi->nr - 1)
+ final_tts = entry->tts_calc;
+ /* Restore "real" deco state for next real time step */
+ restore_deco_state(cache_data);
+ free(cache_data);
+ }
+ }
+ if (prefs.deco_mode == VPMB && !in_planner()) {
+ prev_deco_time = deco_time;
+ // Do we need to update deco_time?
+ if (final_tts > 0)
+ deco_time = pi->maxtime + final_tts - time_deep_ceiling;
+ else if (time_clear_ceiling > 0)
+ deco_time = time_clear_ceiling - time_deep_ceiling;
+ vpmb_next_gradient(deco_time, surface_pressure / 1000.0);
+ final_tts = 0;
+ last_ndl_tts_calc_time = 0;
+ first_ceiling = 0;
+ first_iteration = false;
+ count_iteration ++;
+ restore_deco_state(cache_data_initial);
+ } else {
+ // With Buhlmann, or not in planner, iterating isn't needed. This makes the while condition false.
+ prev_deco_time = deco_time = 0;
+ }
+ }
+ free(cache_data_initial);
+#if DECO_CALC_DEBUG & 1
+ dump_tissues();
+#endif
+}
+
+
+/* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on
+ * the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure,
+ * calculates the po2 value from the sensor data. Several rules are applied, depending on how many o2 sensors
+ * there are and the differences among the readings from these sensors.
+ */
+static int calculate_ccr_po2(struct plot_data *entry, struct divecomputer *dc)
+{
+ int sump = 0, minp = 999999, maxp = -999999;
+ int diff_limit = 100; // The limit beyond which O2 sensor differences are considered significant (default = 100 mbar)
+ int i, np = 0;
+
+ for (i = 0; i < dc->no_o2sensors; i++)
+ if (entry->o2sensor[i].mbar) { // Valid reading
+ ++np;
+ sump += entry->o2sensor[i].mbar;
+ minp = MIN(minp, entry->o2sensor[i].mbar);
+ maxp = MAX(maxp, entry->o2sensor[i].mbar);
+ }
+ switch (np) {
+ case 0: // Uhoh
+ return entry->o2pressure.mbar;
+ case 1: // Return what we have
+ return sump;
+ case 2: // Take the average
+ return sump / 2;
+ case 3: // Voting logic
+ if (2 * maxp - sump + minp < diff_limit) { // Upper difference acceptable...
+ if (2 * minp - sump + maxp) // ...and lower difference acceptable
+ return sump / 3;
+ else
+ return (sump - minp) / 2;
+ } else {
+ if (2 * minp - sump + maxp) // ...but lower difference acceptable
+ return (sump - maxp) / 2;
+ else
+ return sump / 3;
+ }
+ default: // This should not happen
+ assert(np <= 3);
+ return 0;
+ }
+}
+
+static void calculate_gas_information_new(struct dive *dive, struct plot_info *pi)
+{
+ int i;
+ double amb_pressure;
+
+ for (i = 1; i < pi->nr; i++) {
+ int fn2, fhe;
+ struct plot_data *entry = pi->entry + i;
+ int cylinderindex = entry->cylinderindex;
+
+ amb_pressure = depth_to_bar(entry->depth, dive);
+
+ fill_pressures(&entry->pressures, amb_pressure, &dive->cylinder[cylinderindex].gasmix, entry->o2pressure.mbar / 1000.0, dive->dc.divemode);
+ fn2 = (int)(1000.0 * entry->pressures.n2 / amb_pressure);
+ fhe = (int)(1000.0 * entry->pressures.he / amb_pressure);
+
+ /* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
+ * so there is no difference in calculating between OC and CC
+ * END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives)
+ * EAD just uses N₂ ("Air" for nitrox dives) */
+ pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) };
+ entry->mod = (double)gas_mod(&dive->cylinder[cylinderindex].gasmix, modpO2, dive, 1).mm;
+ entry->end = (entry->depth + 10000) * (1000 - fhe) / 1000.0 - 10000;
+ entry->ead = (entry->depth + 10000) * fn2 / (double)N2_IN_AIR - 10000;
+ entry->eadd = (entry->depth + 10000) *
+ (entry->pressures.o2 / amb_pressure * O2_DENSITY +
+ entry->pressures.n2 / amb_pressure * N2_DENSITY +
+ entry->pressures.he / amb_pressure * HE_DENSITY) /
+ (O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 - 10000;
+ if (entry->mod < 0)
+ entry->mod = 0;
+ if (entry->ead < 0)
+ entry->ead = 0;
+ if (entry->end < 0)
+ entry->end = 0;
+ if (entry->eadd < 0)
+ entry->eadd = 0;
+ }
+}
+
+void fill_o2_values(struct divecomputer *dc, struct plot_info *pi, struct dive *dive)
+/* In the samples from each dive computer, there may be uninitialised oxygen
+ * sensor or setpoint values, e.g. when events were inserted into the dive log
+ * or if the dive computer does not report o2 values with every sample. But
+ * for drawing the profile a complete series of valid o2 pressure values is
+ * required. This function takes the oxygen sensor data and setpoint values
+ * from the structures of plotinfo and replaces the zero values with their
+ * last known values so that the oxygen sensor data are complete and ready
+ * for plotting. This function called by: create_plot_info_new() */
+{
+ int i, j;
+ pressure_t last_sensor[3], o2pressure;
+ pressure_t amb_pressure;
+
+ for (i = 0; i < pi->nr; i++) {
+ struct plot_data *entry = pi->entry + i;
+
+ if (dc->divemode == CCR) {
+ if (i == 0) { // For 1st iteration, initialise the last_sensor values
+ for (j = 0; j < dc->no_o2sensors; j++)
+ last_sensor[j].mbar = pi->entry->o2sensor[j].mbar;
+ } else { // Now re-insert the missing oxygen pressure values
+ for (j = 0; j < dc->no_o2sensors; j++)
+ if (entry->o2sensor[j].mbar)
+ last_sensor[j].mbar = entry->o2sensor[j].mbar;
+ else
+ entry->o2sensor[j].mbar = last_sensor[j].mbar;
+ } // having initialised the empty o2 sensor values for this point on the profile,
+ amb_pressure.mbar = depth_to_mbar(entry->depth, dive);
+ o2pressure.mbar = calculate_ccr_po2(entry, dc); // ...calculate the po2 based on the sensor data
+ entry->o2pressure.mbar = MIN(o2pressure.mbar, amb_pressure.mbar);
+ } else {
+ entry->o2pressure.mbar = 0; // initialise po2 to zero for dctype = OC
+ }
+ }
+}
+
+#ifdef DEBUG_GAS
+/* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat:
+ * Called in create_plot_info_new()
+ */
+static void debug_print_profiledata(struct plot_info *pi)
+{
+ FILE *f1;
+ struct plot_data *entry;
+ int i;
+ if (!(f1 = fopen("debug_print_profiledata.dat", "w"))) {
+ printf("File open error for: debug_print_profiledata.dat\n");
+ } else {
+ fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n");
+ for (i = 0; i < pi->nr; i++) {
+ entry = pi->entry + i;
+ fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %d %d %d %d PO2= %f\n", i, SENSOR_PRESSURE(entry),
+ INTERPOLATED_PRESSURE(entry), O2CYLINDER_PRESSURE(entry), INTERPOLATED_O2CYLINDER_PRESSURE(entry),
+ entry->o2pressure.mbar, entry->o2sensor[0].mbar, entry->o2sensor[1].mbar, entry->o2sensor[2].mbar, entry->pressures.o2);
+ }
+ fclose(f1);
+ }
+}
+#endif
+
+/*
+ * Create a plot-info with smoothing and ranged min/max
+ *
+ * This also makes sure that we have extra empty events on both
+ * sides, so that you can do end-points without having to worry
+ * about it.
+ */
+void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool fast)
+{
+ int o2, he, o2max;
+ init_decompression(dive);
+ /* Create the new plot data */
+ free((void *)last_pi_entry_new);
+
+ get_dive_gas(dive, &o2, &he, &o2max);
+ if (dc->divemode == FREEDIVE){
+ pi->dive_type = FREEDIVE;
+ } else if (he > 0) {
+ pi->dive_type = TRIMIX;
+ } else {
+ if (o2)
+ pi->dive_type = NITROX;
+ else
+ pi->dive_type = AIR;
+ }
+
+ last_pi_entry_new = populate_plot_entries(dive, dc, pi);
+
+ check_gas_change_events(dive, dc, pi); /* Populate the gas index from the gas change events */
+ check_setpoint_events(dive, dc, pi); /* Populate setpoints */
+ setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
+ if (!fast) {
+ populate_pressure_information(dive, dc, pi, false); /* .. calculate missing pressure entries for all gasses except o2 */
+ if (dc->divemode == CCR) /* For CCR dives.. */
+ populate_pressure_information(dive, dc, pi, true); /* .. calculate missing o2 gas pressure entries */
+ }
+ fill_o2_values(dc, pi, dive); /* .. and insert the O2 sensor data having 0 values. */
+ calculate_sac(dive, pi); /* Calculate sac */
+ calculate_deco_information(dive, dc, pi, false); /* and ceiling information, using gradient factor values in Preferences) */
+ calculate_gas_information_new(dive, pi); /* Calculate gas partial pressures */
+
+#ifdef DEBUG_GAS
+ debug_print_profiledata(pi);
+#endif
+
+ pi->meandepth = dive->dc.meandepth.mm;
+ analyze_plot_info(pi);
+}
+
+struct divecomputer *select_dc(struct dive *dive)
+{
+ unsigned int max = number_of_computers(dive);
+ unsigned int i = dc_number;
+
+ /* Reset 'dc_number' if we've switched dives and it is now out of range */
+ if (i >= max)
+ dc_number = i = 0;
+
+ return get_dive_dc(dive, i);
+}
+
+static void plot_string(struct plot_info *pi, struct plot_data *entry, struct membuffer *b, bool has_ndl)
+{
+ int pressurevalue, mod, ead, end, eadd;
+ const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
+ double depthvalue, tempvalue, speedvalue, sacvalue;
+ int decimals;
+ const char *unit;
+
+ depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "@: %d:%02d\nD: %.1f%s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
+ if (GET_PRESSURE(entry)) {
+ pressurevalue = get_pressure_units(GET_PRESSURE(entry), &pressure_unit);
+ put_format(b, translate("gettextFromC", "P: %d%s\n"), pressurevalue, pressure_unit);
+ }
+ if (entry->temperature) {
+ tempvalue = get_temp_units(entry->temperature, &temp_unit);
+ put_format(b, translate("gettextFromC", "T: %.1f%s\n"), tempvalue, temp_unit);
+ }
+ speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
+ /* Ascending speeds are positive, descending are negative */
+ if (entry->speed > 0)
+ speedvalue *= -1;
+ put_format(b, translate("gettextFromC", "V: %.1f%s\n"), speedvalue, vertical_speed_unit);
+ sacvalue = get_volume_units(entry->sac, &decimals, &unit);
+ if (entry->sac && prefs.show_sac)
+ put_format(b, translate("gettextFromC", "SAC: %.*f%s/min\n"), decimals, sacvalue, unit);
+ if (entry->cns)
+ put_format(b, translate("gettextFromC", "CNS: %u%%\n"), entry->cns);
+ if (prefs.pp_graphs.po2)
+ put_format(b, translate("gettextFromC", "pO%s: %.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pressures.o2);
+ if (prefs.pp_graphs.pn2)
+ put_format(b, translate("gettextFromC", "pN%s: %.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pressures.n2);
+ if (prefs.pp_graphs.phe)
+ put_format(b, translate("gettextFromC", "pHe: %.2fbar\n"), entry->pressures.he);
+ if (prefs.mod) {
+ mod = (int)get_depth_units(entry->mod, NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "MOD: %d%s\n"), mod, depth_unit);
+ }
+ eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit);
+ if (prefs.ead) {
+ switch (pi->dive_type) {
+ case NITROX:
+ ead = (int)get_depth_units(entry->ead, NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "EAD: %d%s\nEADD: %d%s\n"), ead, depth_unit, eadd, depth_unit);
+ break;
+ case TRIMIX:
+ end = (int)get_depth_units(entry->end, NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "END: %d%s\nEADD: %d%s\n"), end, depth_unit, eadd, depth_unit);
+ break;
+ case AIR:
+ case FREEDIVING:
+ /* nothing */
+ break;
+ }
+ }
+ if (entry->stopdepth) {
+ depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
+ if (entry->ndl) {
+ /* this is a safety stop as we still have ndl */
+ if (entry->stoptime)
+ put_format(b, translate("gettextFromC", "Safetystop: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
+ depthvalue, depth_unit);
+ else
+ put_format(b, translate("gettextFromC", "Safetystop: unkn time @ %.0f%s\n"),
+ depthvalue, depth_unit);
+ } else {
+ /* actual deco stop */
+ if (entry->stoptime)
+ put_format(b, translate("gettextFromC", "Deco: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
+ depthvalue, depth_unit);
+ else
+ put_format(b, translate("gettextFromC", "Deco: unkn time @ %.0f%s\n"),
+ depthvalue, depth_unit);
+ }
+ } else if (entry->in_deco) {
+ put_string(b, translate("gettextFromC", "In deco\n"));
+ } else if (has_ndl) {
+ put_format(b, translate("gettextFromC", "NDL: %umin\n"), DIV_UP(entry->ndl, 60));
+ }
+ if (entry->tts)
+ put_format(b, translate("gettextFromC", "TTS: %umin\n"), DIV_UP(entry->tts, 60));
+ if (entry->stopdepth_calc && entry->stoptime_calc) {
+ depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)\n"), DIV_UP(entry->stoptime_calc, 60),
+ depthvalue, depth_unit);
+ } else if (entry->in_deco_calc) {
+ /* This means that we have no NDL left,
+ * and we have no deco stop,
+ * so if we just accend to the surface slowly
+ * (ascent_mm_per_step / ascent_s_per_step)
+ * everything will be ok. */
+ put_string(b, translate("gettextFromC", "In deco (calc)\n"));
+ } else if (prefs.calcndltts && entry->ndl_calc != 0) {
+ if(entry->ndl_calc < MAX_PROFILE_DECO)
+ put_format(b, translate("gettextFromC", "NDL: %umin (calc)\n"), DIV_UP(entry->ndl_calc, 60));
+ else
+ put_format(b, "%s", translate("gettextFromC", "NDL: >2h (calc)\n"));
+ }
+ if (entry->tts_calc) {
+ if (entry->tts_calc < MAX_PROFILE_DECO)
+ put_format(b, translate("gettextFromC", "TTS: %umin (calc)\n"), DIV_UP(entry->tts_calc, 60));
+ else
+ put_format(b, "%s", translate("gettextFromC", "TTS: >2h (calc)\n"));
+ }
+ if (entry->rbt)
+ put_format(b, translate("gettextFromC", "RBT: %umin\n"), DIV_UP(entry->rbt, 60));
+ if (entry->ceiling) {
+ depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "Calculated ceiling %.0f%s\n"), depthvalue, depth_unit);
+ if (prefs.calcalltissues) {
+ int k;
+ for (k = 0; k < 16; k++) {
+ if (entry->ceilings[k]) {
+ depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "Tissue %.0fmin: %.1f%s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
+ }
+ }
+ }
+ }
+ if (entry->heartbeat && prefs.hrgraph)
+ put_format(b, translate("gettextFromC", "heartbeat: %d\n"), entry->heartbeat);
+ if (entry->bearing)
+ put_format(b, translate("gettextFromC", "bearing: %d\n"), entry->bearing);
+ if (entry->running_sum) {
+ depthvalue = get_depth_units(entry->running_sum / entry->sec, NULL, &depth_unit);
+ put_format(b, translate("gettextFromC", "mean depth to here %.1f%s\n"), depthvalue, depth_unit);
+ }
+
+ strip_mb(b);
+}
+
+struct plot_data *get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb)
+{
+ struct plot_data *entry = NULL;
+ int i;
+
+ for (i = 0; i < pi->nr; i++) {
+ entry = pi->entry + i;
+ if (entry->sec >= time)
+ break;
+ }
+ if (entry)
+ plot_string(pi, entry, mb, pi->has_ndl);
+ return (entry);
+}
+
+/* Compare two plot_data entries and writes the results into a string */
+void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum)
+{
+ struct plot_data *start, *stop, *data;
+ const char *depth_unit, *pressure_unit, *vertical_speed_unit;
+ char *buf2 = malloc(bufsize);
+ int avg_speed, max_asc_speed, max_desc_speed;
+ int delta_depth, avg_depth, max_depth, min_depth;
+ int bar_used, last_pressure, pressurevalue;
+ int count, last_sec, delta_time;
+
+ double depthvalue, speedvalue;
+
+ if (bufsize > 0)
+ buf[0] = '\0';
+ if (e1 == NULL || e2 == NULL) {
+ free(buf2);
+ return;
+ }
+
+ if (e1->sec < e2->sec) {
+ start = e1;
+ stop = e2;
+ } else if (e1->sec > e2->sec) {
+ start = e2;
+ stop = e1;
+ } else {
+ free(buf2);
+ return;
+ }
+ count = 0;
+ avg_speed = 0;
+ max_asc_speed = 0;
+ max_desc_speed = 0;
+
+ delta_depth = abs(start->depth - stop->depth);
+ delta_time = abs(start->sec - stop->sec);
+ avg_depth = 0;
+ max_depth = 0;
+ min_depth = INT_MAX;
+ bar_used = 0;
+
+ last_sec = start->sec;
+ last_pressure = GET_PRESSURE(start);
+
+ data = start;
+ while (data != stop) {
+ data = start + count;
+ if (sum)
+ avg_speed += abs(data->speed) * (data->sec - last_sec);
+ else
+ avg_speed += data->speed * (data->sec - last_sec);
+ avg_depth += data->depth * (data->sec - last_sec);
+
+ if (data->speed > max_desc_speed)
+ max_desc_speed = data->speed;
+ if (data->speed < max_asc_speed)
+ max_asc_speed = data->speed;
+
+ if (data->depth < min_depth)
+ min_depth = data->depth;
+ if (data->depth > max_depth)
+ max_depth = data->depth;
+ /* Try to detect gas changes */
+ if (GET_PRESSURE(data) < last_pressure + 2000)
+ bar_used += last_pressure - GET_PRESSURE(data);
+
+ count += 1;
+ last_sec = data->sec;
+ last_pressure = GET_PRESSURE(data);
+ }
+ avg_depth /= stop->sec - start->sec;
+ avg_speed /= stop->sec - start->sec;
+
+ snprintf(buf, bufsize, translate("gettextFromC", "%sT: %d:%02d min"), UTF8_DELTA, delta_time / 60, delta_time % 60);
+ memcpy(buf2, buf, bufsize);
+
+ depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_DELTA, depthvalue, depth_unit);
+ memcpy(buf2, buf, bufsize);
+
+ depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_DOWNWARDS_ARROW, depthvalue, depth_unit);
+ memcpy(buf2, buf, bufsize);
+
+ depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_UPWARDS_ARROW, depthvalue, depth_unit);
+ memcpy(buf2, buf, bufsize);
+
+ depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s\n"), buf2, UTF8_AVERAGE, depthvalue, depth_unit);
+ memcpy(buf2, buf, bufsize);
+
+ speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s%sV:%.2f%s"), buf2, UTF8_DOWNWARDS_ARROW, speedvalue, vertical_speed_unit);
+ memcpy(buf2, buf, bufsize);
+
+ speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s %sV:%.2f%s"), buf2, UTF8_UPWARDS_ARROW, speedvalue, vertical_speed_unit);
+ memcpy(buf2, buf, bufsize);
+
+ speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s %sV:%.2f%s"), buf2, UTF8_AVERAGE, speedvalue, vertical_speed_unit);
+ memcpy(buf2, buf, bufsize);
+
+ /* Only print if gas has been used */
+ if (bar_used) {
+ pressurevalue = get_pressure_units(bar_used, &pressure_unit);
+ memcpy(buf2, buf, bufsize);
+ snprintf(buf, bufsize, translate("gettextFromC", "%s %sP:%d %s"), buf2, UTF8_DELTA, pressurevalue, pressure_unit);
+ }
+
+ free(buf2);
+}