summaryrefslogtreecommitdiffstats
path: root/subsurface-core
diff options
context:
space:
mode:
authorGravatar Linus Torvalds <torvalds@linux-foundation.org>2016-03-02 14:11:53 -0800
committerGravatar Dirk Hohndel <dirk@hohndel.org>2016-03-02 18:08:28 -0800
commit3260dd9c152b3c93518e5bff80fb75e961b01507 (patch)
tree5bd6ece4ee5a1117d923df92594ecfcd5dfc4fbe /subsurface-core
parent3f30832471023a60bec54a9eb371342aaba0e94e (diff)
downloadsubsurface-3260dd9c152b3c93518e5bff80fb75e961b01507.tar.gz
gas model: replace Redlich-Kwong with least-square quintic
This goes back to just doing air compressibility, but using the least-squares quintic polynomial equation that Lubomir generated based on the Wikipedia table for air at 300K in the 1-500 bar range. We might be able to do similar things for mixed gases.. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Diffstat (limited to 'subsurface-core')
-rw-r--r--subsurface-core/gas-model.c67
1 files changed, 65 insertions, 2 deletions
diff --git a/subsurface-core/gas-model.c b/subsurface-core/gas-model.c
index 9cffd5e47..c9a6a3239 100644
--- a/subsurface-core/gas-model.c
+++ b/subsurface-core/gas-model.c
@@ -13,7 +13,7 @@
*
*/
-double redlich_kwong_equation(double t_red, double p_red, double z_init)
+static double redlich_kwong_equation(double t_red, double p_red, double z_init)
{
return (1.0/(1.0 - 0.08664*p_red/(t_red * z_init)) -
0.42748/(sqrt(t_red * t_red * t_red) * ((t_red*z_init/p_red + 0.08664))));
@@ -25,7 +25,7 @@ double redlich_kwong_equation(double t_red, double p_red, double z_init)
*/
#define STANDARD_TEMPERATURE 293.0
-double gas_compressibility_factor(struct gasmix *gas, double bar)
+static double redlich_kwong_compressibility_factor(struct gasmix *gas, double bar)
{
/* Critical points according to https://en.wikipedia.org/wiki/Critical_point_(thermodynamics) */
@@ -46,3 +46,66 @@ double gas_compressibility_factor(struct gasmix *gas, double bar)
redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,
redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,1.0))));
}
+
+/*
+ * This is a quintic formula by Lubomir I. Ivanov that has
+ * been optimized for the least-square error to the air
+ * compressibility factor table (at 300K) taken from Wikipedia:
+ *
+ * bar z_factor
+ * --- ------
+ * 1: 0.9999
+ * 5: 0.9987
+ * 10: 0.9974
+ * 20: 0.9950
+ * 40: 0.9917
+ * 60: 0.9901
+ * 80: 0.9903
+ * 100: 0.9930
+ * 150: 1.0074
+ * 200: 1.0326
+ * 250: 1.0669
+ * 300: 1.1089
+ * 400: 1.2073
+ * 500: 1.3163
+ */
+static double air_compressibility_factor(double bar)
+{
+ double x0 = 1.0,
+ x1 = bar,
+ x2 = x1*x1,
+ x3 = x2*x1,
+ x4 = x2*x2,
+ x5 = x2*x3;
+
+ return + x0 * 1.0002556612420115
+ - x1 * 0.0003115084635183305
+ + x2 * 0.00000227808965401253
+ + x3 * 1.91596422989e-9
+ - x4 * 8.78421542e-12
+ + x5 * 6.77746e-15;
+}
+
+/*
+ * We end up using specialized functions for known gases, because
+ * we have special tables for them.
+ *
+ * For now, let's do just air.
+ *
+ * We have other tables for other gases, see for example:
+ *
+ * http://ww.baue.org/library/zfactor_table.php
+ *
+ * and then we have the Redlich-Kwong function, but that seems
+ * to be almost too generic, and not specific enough to the very
+ * particular pressure and temperature ranges we care about..
+ */
+double gas_compressibility_factor(struct gasmix *gas, double bar)
+{
+#if 1
+ return air_compressibility_factor(bar);
+#else
+ /* Fall back on generic function */
+ return redlich_kwong_compressibility_factor(gas, bar);
+#endif
+}