summaryrefslogtreecommitdiffstats
path: root/subsurface-core
diff options
context:
space:
mode:
authorGravatar Robert C. Helling <helling@atdotde.de>2016-02-29 08:43:57 +0100
committerGravatar Dirk Hohndel <dirk@hohndel.org>2016-02-29 08:58:16 -0800
commit84769dc2f6faba46c9d2b0c2442792da0ddd653e (patch)
tree7fa2d30dc13a43a97d754576c72b9d52f57106cb /subsurface-core
parentf2fa087b3b9078a6768123449e6e19ccc7f0d872 (diff)
downloadsubsurface-84769dc2f6faba46c9d2b0c2442792da0ddd653e.tar.gz
This computes the compressibility of the gas depending on the mixture.
As it turns out, the van der Waals equation gives results that are numerically not really useful, so we use the Redlich Kwong equation which is, according to Wikipedia, much more accurate, which can be confirmed given the empirical values for air. As opposed to the previous approach with a look-up table, this takes into account the actual gasmix. This always assumes the gas to be at 20 degrees Centigrade. Signed-off-by: Robert C. Helling <helling@atdotde.de> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Diffstat (limited to 'subsurface-core')
-rw-r--r--subsurface-core/dive.c71
1 files changed, 30 insertions, 41 deletions
diff --git a/subsurface-core/dive.c b/subsurface-core/dive.c
index e06a25fa4..4108c0942 100644
--- a/subsurface-core/dive.c
+++ b/subsurface-core/dive.c
@@ -847,57 +847,46 @@ static void update_min_max_temperatures(struct dive *dive, temperature_t tempera
}
/*
+ * This gives an interative solution of hte Redlich-Kwong equation for the compressibility factor
+ * according to https://en.wikipedia.org/wiki/Redlich–Kwong_equation_of_state
+ * in terms of the reduced temperature T/T_crit and pressure p/p_crit.
+ *
+ * Iterate this three times for good results in our pressur range.
+ *
+ */
+
+double redlich_kwong_equation(double t_red, double p_red, double z_init)
+{
+ return (1.0/(1.0 - 0.08664*p_red/(t_red * z_init)) -
+ 0.42748/(sqrt(t_red * t_red * t_red) * ((t_red*z_init/p_red + 0.08664))));
+}
+
+/*
* At high pressures air becomes less compressible, and
* does not follow the ideal gas law any more.
- *
- * NOTE! The compressibility doesn't just depend on the
- * gas, but on temperature too. However, this currently
- * just follows the 300K curve for air, and ignores the
- * gasmix. And the temperature we don't really even have
- * a way to try to take into account.
*/
-#define ARRAY_SIZE(array) (sizeof(array)/sizeof(array[0]))
+#define STANDARD_TEMPERATURE 293.0
+
double gas_compressibility_factor(struct gasmix *gas, double bar)
{
- static const struct z_factor {
- double bar, z_factor;
- } air_table[] = {
- { 1, 0.9999 },
- { 5, 0.9987 },
- { 10, 0.9974 },
- { 20, 0.9950 },
- { 40, 0.9917 },
- { 60, 0.9901 },
- { 80, 0.9903 },
- { 100, 0.9930 },
- { 150, 1.0074 },
- { 200, 1.0326 },
- { 250, 1.0669 },
- { 300, 1.1089 },
- { 400, 1.2073 },
- { 500, 1.3163 }
- };
- const struct z_factor *n;
- int i;
+ /* Critical points according to https://en.wikipedia.org/wiki/Critical_point_(thermodynamics) */
- for (i = 0; i < ARRAY_SIZE(air_table); i++) {
- const struct z_factor *n = air_table+i;
- double frac;
+ double tcn2 = 126.2;
+ double tco2 = 154.6;
+ double tche = 5.19;
- if (n->bar < bar)
- continue;
- if (!i)
- return n->z_factor;
+ double pcn2 = 33.9;
+ double pco2 = 50.5;
+ double pche = 2.27;
- /* How far from this one? */
- frac = (n->bar - bar) / (n->bar - n[-1].bar);
+ double tc, pc;
- /* Silly linear interpolation */
- return frac*n[-1].z_factor + (1.0-frac)*n->z_factor;
- }
+ tc = (tco2 * get_o2(gas) + tche * get_he(gas) + tcn2 * (1000 - get_o2(gas) - get_he(gas))) / 1000.0;
+ pc = (pco2 * get_o2(gas) + pche * get_he(gas) + pcn2 * (1000 - get_o2(gas) - get_he(gas))) / 1000.0;
- /* Over 500 bar? We make shit up */
- return air_table[ARRAY_SIZE(air_table)-1].z_factor;
+ return (redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,
+ redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,
+ redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,1.0))));
}
int gas_volume(cylinder_t *cyl, pressure_t p)