diff options
author | Robert C. Helling <helling@atdotde.de> | 2015-07-01 12:27:42 +0200 |
---|---|---|
committer | Jan Darowski <jan.darowski@gmail.com> | 2015-07-03 22:36:59 +0200 |
commit | 0180d2eb1e8101eb362efb00edaae9eb9bcb24aa (patch) | |
tree | 804480a3a693d383caf648448e7607e34b6b1fcc /subsurface-icon.svg | |
parent | ecd0e3e170e5a8ec96be8d19d095e7c75c63c825 (diff) | |
download | subsurface-0180d2eb1e8101eb362efb00edaae9eb9bcb24aa.tar.gz |
VPM-B: use an analytic solution for nucleon inner pressure instead of binary root search
According to mathematica
In[4]:= f[x_] := x^3 - b x^2 - c
In[18]:= Solve[f[x] == 0, x]
Out[18]= {{x ->
1/3 (b + (
2^(1/3) b^2)/(2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(
1/3) + (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3)/
2^(1/3))}, {x ->
b/3 - ((1 + I Sqrt[3]) b^2)/(
3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(
1/3)) - ((1 - I Sqrt[3]) (2 b^3 + 27 c +
3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}, {x ->
b/3 - ((1 - I Sqrt[3]) b^2)/(
3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(
1/3)) - ((1 + I Sqrt[3]) (2 b^3 + 27 c +
3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}}
For the values of b and c encounterd in the algorithm, the first solution is in fact the
only real one that we are after. So we can use this solution instead of doing a binary
search for the root of the cubic.
Signed-off-by: Robert C. Helling <helling@atdotde.de>
Signed-off-by: Jan Darowski <jan.darowski@gmail.com>
Diffstat (limited to 'subsurface-icon.svg')
0 files changed, 0 insertions, 0 deletions