summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--subsurface-core/gas-model.c149
1 files changed, 30 insertions, 119 deletions
diff --git a/subsurface-core/gas-model.c b/subsurface-core/gas-model.c
index b90467bbd..420233612 100644
--- a/subsurface-core/gas-model.c
+++ b/subsurface-core/gas-model.c
@@ -5,159 +5,70 @@
#include "dive.h"
/*
- * This gives an interative solution of hte Redlich-Kwong equation for the compressibility factor
- * according to https://en.wikipedia.org/wiki/Redlich–Kwong_equation_of_state
- * in terms of the reduced temperature T/T_crit and pressure p/p_crit.
- *
- * Iterate this three times for good results in our pressur range.
- *
+ * Generic cubic polynomial
*/
-
-static double redlich_kwong_equation(double t_red, double p_red, double z_init)
-{
- return (1.0/(1.0 - 0.08664*p_red/(t_red * z_init)) -
- 0.42748/(sqrt(t_red * t_red * t_red) * ((t_red*z_init/p_red + 0.08664))));
-}
-
-/*
- * At high pressures air becomes less compressible, and
- * does not follow the ideal gas law any more.
- */
-#define STANDARD_TEMPERATURE 293.0
-
-static double redlich_kwong_compressibility_factor(struct gasmix *gas, double bar)
-{
- /* Critical points according to https://en.wikipedia.org/wiki/Critical_point_(thermodynamics) */
-
- double tcn2 = 126.2;
- double tco2 = 154.6;
- double tche = 5.19;
-
- double pcn2 = 33.9;
- double pco2 = 50.5;
- double pche = 2.27;
-
- double tc, pc;
-
- tc = (tco2 * get_o2(gas) + tche * get_he(gas) + tcn2 * (1000 - get_o2(gas) - get_he(gas))) / 1000.0;
- pc = (pco2 * get_o2(gas) + pche * get_he(gas) + pcn2 * (1000 - get_o2(gas) - get_he(gas))) / 1000.0;
-
- return (redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,
- redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,
- redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,1.0))));
-}
-
-/*
- * Generic quintic polynomial
- */
-static double quintic(double bar, const double coefficient[])
+static double cubic(double bar, const double coefficient[])
{
double x0 = 1.0,
x1 = bar,
x2 = x1*x1,
- x3 = x2*x1,
- x4 = x2*x2,
- x5 = x2*x3;
+ x3 = x2*x1;
return x0 * coefficient[0] +
x1 * coefficient[1] +
x2 * coefficient[2] +
- x3 * coefficient[3] +
- x4 * coefficient[4] +
- x5 * coefficient[5];
+ x3 * coefficient[3];
}
/*
- * These are the quintic coefficients by Lubomir I. Ivanov that have
- * been optimized for the least-square error to the air
- * compressibility factor table (at 300K) taken from Wikipedia:
+ * Cubic least-square coefficients for O2/N2/He based on data from
*
- * bar z_factor
- * --- ------
- * 1: 0.9999
- * 5: 0.9987
- * 10: 0.9974
- * 20: 0.9950
- * 40: 0.9917
- * 60: 0.9901
- * 80: 0.9903
- * 100: 0.9930
- * 150: 1.0074
- * 200: 1.0326
- * 250: 1.0669
- * 300: 1.1089
- * 400: 1.2073
- * 500: 1.3163
- */
-static const double air_coefficients[6] = {
- +1.0002556612420115,
- -0.0003115084635183305,
- +0.00000227808965401253,
- +1.91596422989e-9,
- -8.78421542e-12,
- +6.77746e-15
-};
-
-/*
- * Quintic least-square coefficients for O2/N2/He based on tables at
+ * PERRY’S CHEMICAL ENGINEERS’ HANDBOOK SEVENTH EDITION
*
- * http://ww.baue.org/library/zfactor_table.php
+ * with the lookup and curve fitting by Lubomir.
*
- * converted to bar and also done by Lubomir.
+ * NOTE! Helium coefficients are a linear mix operation between the
+ * 323K and one for 273K isotherms, to make everything be at 300K.
*/
-static const double o2_coefficients[6] = {
- +1.0002231211532653,
- -0.0007471497056767194,
- +0.00000200444854807816,
- +2.91501995188e-9,
- -4.48294663e-12,
- -6.11529e-15
+static const double o2_coefficients[4] = {
+ +1.00117935180448264158,
+ -0.00074149079841471884,
+ +0.00000291901111247509,
+ -0.00000000162092217461
};
-static const double n2_coefficients[6] = {
- +1.0001898816185364,
- -0.00030793319362077315,
- +0.00000327557417347714,
- -1.93872574476e-9,
- -2.7732353e-12,
- -2.8921e-16
+static const double n2_coefficients[4] = {
+ +1.00030344355797817778,
+ -0.00022528077251905598,
+ +0.00000295430303276288,
+ -0.00000000210649996337
};
-static const double he_coefficients[6] = {
- +0.9998700261301693,
- +0.0005452130351730479,
- -2.7853712233619e-7,
- +5.5935404211e-10,
- -1.35114572e-12,
- +2.00476e-15
+static const double he_coefficients[4] = {
+ +1.00000137322788319261,
+ +0.000488393024887620665,
+ -0.000000054210166760015,
+ +0.000000000010908069275
};
-static double air_compressibility_factor(double bar) { return quintic(bar, air_coefficients); }
-static double o2_compressibility_factor(double bar) { return quintic(bar, o2_coefficients); }
-static double n2_compressibility_factor(double bar) { return quintic(bar, n2_coefficients); }
-static double he_compressibility_factor(double bar) { return quintic(bar, he_coefficients); }
+static double o2_compressibility_factor(double bar) { return cubic(bar, o2_coefficients); }
+static double n2_compressibility_factor(double bar) { return cubic(bar, n2_coefficients); }
+static double he_compressibility_factor(double bar) { return cubic(bar, he_coefficients); }
/*
- * We end up using specialized functions for known gases, because
- * we have special tables for them.
- *
- * For air we use our known-good table. For other mixes we use a
- * linear interpolation of the Z factors of the individual gases.
+ * We end up using a simple linear mix of the gas-specific functions.
*/
double gas_compressibility_factor(struct gasmix *gas, double bar)
{
double o2, n2, he; // Z factors
double of, nf, hf; // gas fractions ("partial pressures")
- if (gasmix_is_air(gas))
- return air_compressibility_factor(bar);
-
o2 = o2_compressibility_factor(bar);
n2 = n2_compressibility_factor(bar);
he = he_compressibility_factor(bar);
- of = gas->o2.permille / 1000.0;
- hf = gas->he.permille / 1000.0;
+ of = get_o2(gas) / 1000.0;
+ hf = get_he(gas) / 1000.0;
nf = 1.0 - of - nf;
return o2*of + n2*nf + he*hf;