summaryrefslogtreecommitdiffstats
path: root/core/deco.c
diff options
context:
space:
mode:
Diffstat (limited to 'core/deco.c')
-rw-r--r--core/deco.c601
1 files changed, 601 insertions, 0 deletions
diff --git a/core/deco.c b/core/deco.c
new file mode 100644
index 000000000..af3e06126
--- /dev/null
+++ b/core/deco.c
@@ -0,0 +1,601 @@
+/* calculate deco values
+ * based on Bühlmann ZHL-16b
+ * based on an implemention by heinrichs weikamp for the DR5
+ * the original file was given to Subsurface under the GPLv2
+ * by Matthias Heinrichs
+ *
+ * The implementation below is a fairly complete rewrite since then
+ * (C) Robert C. Helling 2013 and released under the GPLv2
+ *
+ * add_segment() - add <seconds> at the given pressure, breathing gasmix
+ * deco_allowed_depth() - ceiling based on lead tissue, surface pressure, 3m increments or smooth
+ * set_gf() - set Buehlmann gradient factors
+ * clear_deco()
+ * cache_deco_state()
+ * restore_deco_state()
+ * dump_tissues()
+ */
+#include <math.h>
+#include <string.h>
+#include "dive.h"
+#include <assert.h>
+#include "core/planner.h"
+
+#define cube(x) (x * x * x)
+
+// Subsurface appears to produce marginally less conservative plans than our benchmarks
+// Introduce 1.2% additional conservatism
+#define subsurface_conservatism_factor 1.012
+
+
+extern bool in_planner();
+
+extern pressure_t first_ceiling_pressure;
+
+//! Option structure for Buehlmann decompression.
+struct buehlmann_config {
+ double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100).
+ double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100).
+ int last_deco_stop_in_mtr; //! depth of last_deco_stop.
+ double gf_high; //! gradient factor high (at surface).
+ double gf_low; //! gradient factor low (at bottom/start of deco calculation).
+ double gf_low_position_min; //! gf_low_position below surface_min_shallow.
+ bool gf_low_at_maxdepth; //! if true, gf_low applies at max depth instead of at deepest ceiling.
+};
+
+struct buehlmann_config buehlmann_config = {
+ .satmult = 1.0,
+ .desatmult = 1.01,
+ .last_deco_stop_in_mtr = 0,
+ .gf_high = 0.75,
+ .gf_low = 0.35,
+ .gf_low_position_min = 1.0,
+ .gf_low_at_maxdepth = false
+};
+
+//! Option structure for VPM-B decompression.
+struct vpmb_config {
+ double crit_radius_N2; //! Critical radius of N2 nucleon (microns).
+ double crit_radius_He; //! Critical radius of He nucleon (microns).
+ double crit_volume_lambda; //! Constant corresponding to critical gas volume (bar * min).
+ double gradient_of_imperm; //! Gradient after which bubbles become impermeable (bar).
+ double surface_tension_gamma; //! Nucleons surface tension constant (N / bar = m2).
+ double skin_compression_gammaC; //! Skin compression gammaC (N / bar = m2).
+ double regeneration_time; //! Time needed for the bubble to regenerate to the start radius (min).
+ double other_gases_pressure; //! Always present pressure of other gasses in tissues (bar).
+};
+
+struct vpmb_config vpmb_config = {
+ .crit_radius_N2 = 0.55,
+ .crit_radius_He = 0.45,
+ .crit_volume_lambda = 199.58,
+ .gradient_of_imperm = 8.30865, // = 8.2 atm
+ .surface_tension_gamma = 0.18137175, // = 0.0179 N/msw
+ .skin_compression_gammaC = 2.6040525, // = 0.257 N/msw
+ .regeneration_time = 20160.0,
+ .other_gases_pressure = 0.1359888
+};
+
+const double buehlmann_N2_a[] = { 1.1696, 1.0, 0.8618, 0.7562,
+ 0.62, 0.5043, 0.441, 0.4,
+ 0.375, 0.35, 0.3295, 0.3065,
+ 0.2835, 0.261, 0.248, 0.2327 };
+
+const double buehlmann_N2_b[] = { 0.5578, 0.6514, 0.7222, 0.7825,
+ 0.8126, 0.8434, 0.8693, 0.8910,
+ 0.9092, 0.9222, 0.9319, 0.9403,
+ 0.9477, 0.9544, 0.9602, 0.9653 };
+
+const double buehlmann_N2_t_halflife[] = { 5.0, 8.0, 12.5, 18.5,
+ 27.0, 38.3, 54.3, 77.0,
+ 109.0, 146.0, 187.0, 239.0,
+ 305.0, 390.0, 498.0, 635.0 };
+
+const double buehlmann_N2_factor_expositon_one_second[] = {
+ 2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004,
+ 4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004,
+ 1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005,
+ 3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005
+};
+
+const double buehlmann_He_a[] = { 1.6189, 1.383, 1.1919, 1.0458,
+ 0.922, 0.8205, 0.7305, 0.6502,
+ 0.595, 0.5545, 0.5333, 0.5189,
+ 0.5181, 0.5176, 0.5172, 0.5119 };
+
+const double buehlmann_He_b[] = { 0.4770, 0.5747, 0.6527, 0.7223,
+ 0.7582, 0.7957, 0.8279, 0.8553,
+ 0.8757, 0.8903, 0.8997, 0.9073,
+ 0.9122, 0.9171, 0.9217, 0.9267 };
+
+const double buehlmann_He_t_halflife[] = { 1.88, 3.02, 4.72, 6.99,
+ 10.21, 14.48, 20.53, 29.11,
+ 41.20, 55.19, 70.69, 90.34,
+ 115.29, 147.42, 188.24, 240.03 };
+
+const double buehlmann_He_factor_expositon_one_second[] = {
+ 6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003,
+ 1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004,
+ 2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004,
+ 1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005
+};
+
+const double conservatism_lvls[] = { 1.0, 1.05, 1.12, 1.22, 1.35 };
+
+/* Inspired gas loading equations depend on the partial pressure of inert gas in the alveolar.
+ * P_alv = (P_amb - P_H2O + (1 - Rq) / Rq * P_CO2) * f
+ * where:
+ * P_alv alveolar partial pressure of inert gas
+ * P_amb ambient pressure
+ * P_H2O water vapour partial pressure = ~0.0627 bar
+ * P_CO2 carbon dioxide partial pressure = ~0.0534 bar
+ * Rq respiratory quotient (O2 consumption / CO2 production)
+ * f fraction of inert gas
+ *
+ * In our calculations, we simplify this to use an effective water vapour pressure
+ * WV = P_H20 - (1 - Rq) / Rq * P_CO2
+ *
+ * Buhlmann ignored the contribution of CO2 (i.e. Rq = 1.0), whereas Schreiner adopted Rq = 0.8.
+ * WV_Buhlmann = PP_H2O = 0.0627 bar
+ * WV_Schreiner = 0.0627 - (1 - 0.8) / Rq * 0.0534 = 0.0493 bar
+
+ * Buhlmann calculations use the Buhlmann value, VPM-B calculations use the Schreiner value.
+*/
+#define WV_PRESSURE 0.0627 // water vapor pressure in bar, based on respiratory quotient Rq = 1.0 (Buhlmann value)
+#define WV_PRESSURE_SCHREINER 0.0493 // water vapor pressure in bar, based on respiratory quotient Rq = 0.8 (Schreiner value)
+
+#define DECO_STOPS_MULTIPLIER_MM 3000.0
+#define NITROGEN_FRACTION 0.79
+
+double tissue_n2_sat[16];
+double tissue_he_sat[16];
+int ci_pointing_to_guiding_tissue;
+double gf_low_pressure_this_dive;
+#define TISSUE_ARRAY_SZ sizeof(tissue_n2_sat)
+
+double tolerated_by_tissue[16];
+double tissue_inertgas_saturation[16];
+double buehlmann_inertgas_a[16], buehlmann_inertgas_b[16];
+
+double max_n2_crushing_pressure[16];
+double max_he_crushing_pressure[16];
+
+double crushing_onset_tension[16]; // total inert gas tension in the t* moment
+double n2_regen_radius[16]; // rs
+double he_regen_radius[16];
+double max_ambient_pressure; // last moment we were descending
+
+double bottom_n2_gradient[16];
+double bottom_he_gradient[16];
+
+double initial_n2_gradient[16];
+double initial_he_gradient[16];
+
+double get_crit_radius_He()
+{
+ if (prefs.conservatism_level <= 4)
+ return vpmb_config.crit_radius_He * conservatism_lvls[prefs.conservatism_level] * subsurface_conservatism_factor;
+ return vpmb_config.crit_radius_He;
+}
+
+double get_crit_radius_N2()
+{
+ if (prefs.conservatism_level <= 4)
+ return vpmb_config.crit_radius_N2 * conservatism_lvls[prefs.conservatism_level] * subsurface_conservatism_factor;
+ return vpmb_config.crit_radius_N2;
+}
+
+// Solve another cubic equation, this time
+// x^3 - B x - C == 0
+// Use trigonometric formula for negative discriminants (see Wikipedia for details)
+
+double solve_cubic2(double B, double C)
+{
+ double discriminant = 27 * C * C - 4 * cube(B);
+ if (discriminant < 0.0) {
+ return 2.0 * sqrt(B / 3.0) * cos(acos(3.0 * C * sqrt(3.0 / B) / (2.0 * B)) / 3.0);
+ }
+
+ double denominator = pow(9 * C + sqrt(3 * discriminant), 1 / 3.0);
+
+ return pow(2.0 / 3.0, 1.0 / 3.0) * B / denominator + denominator / pow(18.0, 1.0 / 3.0);
+}
+
+// This is a simplified formula avoiding radii. It uses the fact that Boyle's law says
+// pV = (G + P_amb) / G^3 is constant to solve for the new gradient G.
+
+double update_gradient(double next_stop_pressure, double first_gradient)
+{
+ double B = cube(first_gradient) / (first_ceiling_pressure.mbar / 1000.0 + first_gradient);
+ double C = next_stop_pressure * B;
+
+ double new_gradient = solve_cubic2(B, C);
+
+ if (new_gradient < 0.0)
+ report_error("Negative gradient encountered!");
+ return new_gradient;
+}
+
+double vpmb_tolerated_ambient_pressure(double reference_pressure, int ci)
+{
+ double n2_gradient, he_gradient, total_gradient;
+
+ if (reference_pressure >= first_ceiling_pressure.mbar / 1000.0 || !first_ceiling_pressure.mbar) {
+ n2_gradient = bottom_n2_gradient[ci];
+ he_gradient = bottom_he_gradient[ci];
+ } else {
+ n2_gradient = update_gradient(reference_pressure, bottom_n2_gradient[ci]);
+ he_gradient = update_gradient(reference_pressure, bottom_he_gradient[ci]);
+ }
+
+ total_gradient = ((n2_gradient * tissue_n2_sat[ci]) + (he_gradient * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]);
+
+ return tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure - total_gradient;
+}
+
+
+double tissue_tolerance_calc(const struct dive *dive, double pressure)
+{
+ int ci = -1;
+ double ret_tolerance_limit_ambient_pressure = 0.0;
+ double gf_high = buehlmann_config.gf_high;
+ double gf_low = buehlmann_config.gf_low;
+ double surface = get_surface_pressure_in_mbar(dive, true) / 1000.0;
+ double lowest_ceiling = 0.0;
+ double tissue_lowest_ceiling[16];
+
+ if (prefs.deco_mode != VPMB) {
+ for (ci = 0; ci < 16; ci++) {
+ tissue_inertgas_saturation[ci] = tissue_n2_sat[ci] + tissue_he_sat[ci];
+ buehlmann_inertgas_a[ci] = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
+ buehlmann_inertgas_b[ci] = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
+
+
+ /* tolerated = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; */
+
+ tissue_lowest_ceiling[ci] = (buehlmann_inertgas_b[ci] * tissue_inertgas_saturation[ci] - gf_low * buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci]) /
+ ((1.0 - buehlmann_inertgas_b[ci]) * gf_low + buehlmann_inertgas_b[ci]);
+ if (tissue_lowest_ceiling[ci] > lowest_ceiling)
+ lowest_ceiling = tissue_lowest_ceiling[ci];
+ if (!buehlmann_config.gf_low_at_maxdepth) {
+ if (lowest_ceiling > gf_low_pressure_this_dive)
+ gf_low_pressure_this_dive = lowest_ceiling;
+ }
+ }
+ for (ci = 0; ci < 16; ci++) {
+ double tolerated;
+
+ if ((surface / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - surface) * gf_high + surface <
+ (gf_low_pressure_this_dive / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - gf_low_pressure_this_dive) * gf_low + gf_low_pressure_this_dive)
+ tolerated = (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high * gf_low_pressure_this_dive - gf_low * surface) -
+ (1.0 - buehlmann_inertgas_b[ci]) * (gf_high - gf_low) * gf_low_pressure_this_dive * surface +
+ buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface) * tissue_inertgas_saturation[ci]) /
+ (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high - gf_low) +
+ (1.0 - buehlmann_inertgas_b[ci]) * (gf_low * gf_low_pressure_this_dive - gf_high * surface) +
+ buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface));
+ else
+ tolerated = ret_tolerance_limit_ambient_pressure;
+
+
+ tolerated_by_tissue[ci] = tolerated;
+
+ if (tolerated >= ret_tolerance_limit_ambient_pressure) {
+ ci_pointing_to_guiding_tissue = ci;
+ ret_tolerance_limit_ambient_pressure = tolerated;
+ }
+ }
+ } else {
+ // VPM-B ceiling
+ double reference_pressure;
+
+ ret_tolerance_limit_ambient_pressure = pressure;
+ // The Boyle compensated gradient depends on ambient pressure. For the ceiling, this should set the ambient pressure.
+ do {
+ reference_pressure = ret_tolerance_limit_ambient_pressure;
+ ret_tolerance_limit_ambient_pressure = 0.0;
+ for (ci = 0; ci < 16; ci++) {
+ double tolerated = vpmb_tolerated_ambient_pressure(reference_pressure, ci);
+ if (tolerated >= ret_tolerance_limit_ambient_pressure) {
+ ci_pointing_to_guiding_tissue = ci;
+ ret_tolerance_limit_ambient_pressure = tolerated;
+ }
+ tolerated_by_tissue[ci] = tolerated;
+ }
+ // We are doing ok if the gradient was computed within ten centimeters of the ceiling.
+ } while (fabs(ret_tolerance_limit_ambient_pressure - reference_pressure) > 0.01);
+ }
+ return ret_tolerance_limit_ambient_pressure;
+}
+
+/*
+ * Return buelman factor for a particular period and tissue index.
+ *
+ * We cache the last factor, since we commonly call this with the
+ * same values... We have a special "fixed cache" for the one second
+ * case, although I wonder if that's even worth it considering the
+ * more general-purpose cache.
+ */
+struct factor_cache {
+ int last_period;
+ double last_factor;
+};
+
+double n2_factor(int period_in_seconds, int ci)
+{
+ static struct factor_cache cache[16];
+
+ if (period_in_seconds == 1)
+ return buehlmann_N2_factor_expositon_one_second[ci];
+
+ if (period_in_seconds != cache[ci].last_period) {
+ cache[ci].last_period = period_in_seconds;
+ cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60));
+ }
+
+ return cache[ci].last_factor;
+}
+
+double he_factor(int period_in_seconds, int ci)
+{
+ static struct factor_cache cache[16];
+
+ if (period_in_seconds == 1)
+ return buehlmann_He_factor_expositon_one_second[ci];
+
+ if (period_in_seconds != cache[ci].last_period) {
+ cache[ci].last_period = period_in_seconds;
+ cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_He_t_halflife[ci] * 60));
+ }
+
+ return cache[ci].last_factor;
+}
+
+double calc_surface_phase(double surface_pressure, double he_pressure, double n2_pressure, double he_time_constant, double n2_time_constant)
+{
+ double inspired_n2 = (surface_pressure - ((in_planner() && (prefs.deco_mode == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * NITROGEN_FRACTION;
+
+ if (n2_pressure > inspired_n2)
+ return (he_pressure / he_time_constant + (n2_pressure - inspired_n2) / n2_time_constant) / (he_pressure + n2_pressure - inspired_n2);
+
+ if (he_pressure + n2_pressure >= inspired_n2){
+ double gradient_decay_time = 1.0 / (n2_time_constant - he_time_constant) * log ((inspired_n2 - n2_pressure) / he_pressure);
+ double gradients_integral = he_pressure / he_time_constant * (1.0 - exp(-he_time_constant * gradient_decay_time)) + (n2_pressure - inspired_n2) / n2_time_constant * (1.0 - exp(-n2_time_constant * gradient_decay_time));
+ return gradients_integral / (he_pressure + n2_pressure - inspired_n2);
+ }
+
+ return 0;
+}
+
+void vpmb_start_gradient()
+{
+ int ci;
+
+ for (ci = 0; ci < 16; ++ci) {
+ initial_n2_gradient[ci] = bottom_n2_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / n2_regen_radius[ci]);
+ initial_he_gradient[ci] = bottom_he_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / he_regen_radius[ci]);
+ }
+}
+
+void vpmb_next_gradient(double deco_time, double surface_pressure)
+{
+ int ci;
+ double n2_b, n2_c;
+ double he_b, he_c;
+ double desat_time;
+ deco_time /= 60.0;
+
+ for (ci = 0; ci < 16; ++ci) {
+ desat_time = deco_time + calc_surface_phase(surface_pressure, tissue_he_sat[ci], tissue_n2_sat[ci], log(2.0) / buehlmann_He_t_halflife[ci], log(2.0) / buehlmann_N2_t_halflife[ci]);
+
+ n2_b = initial_n2_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time);
+ he_b = initial_he_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time);
+
+ n2_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_n2_crushing_pressure[ci];
+ n2_c = n2_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time);
+ he_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_he_crushing_pressure[ci];
+ he_c = he_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time);
+
+ bottom_n2_gradient[ci] = 0.5 * ( n2_b + sqrt(n2_b * n2_b - 4.0 * n2_c));
+ bottom_he_gradient[ci] = 0.5 * ( he_b + sqrt(he_b * he_b - 4.0 * he_c));
+ }
+}
+
+// A*r^3 - B*r^2 - C == 0
+// Solved with the help of mathematica
+
+double solve_cubic(double A, double B, double C)
+{
+ double BA = B/A;
+ double CA = C/A;
+
+ double discriminant = CA * (4 * cube(BA) + 27 * CA);
+
+ // Let's make sure we have a real solution:
+ if (discriminant < 0.0) {
+ // This should better not happen
+ report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C);
+ return 0.0;
+ }
+ double denominator = pow(cube(BA) + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0);
+ return (BA + BA * BA / denominator + denominator) / 3.0;
+
+}
+
+
+void nuclear_regeneration(double time)
+{
+ time /= 60.0;
+ int ci;
+ double crushing_radius_N2, crushing_radius_He;
+ for (ci = 0; ci < 16; ++ci) {
+ //rm
+ crushing_radius_N2 = 1.0 / (max_n2_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_N2());
+ crushing_radius_He = 1.0 / (max_he_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_He());
+ //rs
+ n2_regen_radius[ci] = crushing_radius_N2 + (get_crit_radius_N2() - crushing_radius_N2) * (1.0 - exp (-time / vpmb_config.regeneration_time));
+ he_regen_radius[ci] = crushing_radius_He + (get_crit_radius_He() - crushing_radius_He) * (1.0 - exp (-time / vpmb_config.regeneration_time));
+ }
+}
+
+
+// Calculates the nucleons inner pressure during the impermeable period
+double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure)
+{
+ double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
+
+
+ double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
+ double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
+ double C = onset_tension * pow(onset_radius, 3);
+
+ double current_radius = solve_cubic(A, B, C);
+
+ return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius);
+}
+
+// Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed
+void calc_crushing_pressure(double pressure)
+{
+ int ci;
+ double gradient;
+ double gas_tension;
+ double n2_crushing_pressure, he_crushing_pressure;
+ double n2_inner_pressure, he_inner_pressure;
+
+ for (ci = 0; ci < 16; ++ci) {
+ gas_tension = tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure;
+ gradient = pressure - gas_tension;
+
+ if (gradient <= vpmb_config.gradient_of_imperm) { // permeable situation
+ n2_crushing_pressure = he_crushing_pressure = gradient;
+ crushing_onset_tension[ci] = gas_tension;
+ }
+ else { // impermeable
+ if (max_ambient_pressure >= pressure)
+ return;
+
+ n2_inner_pressure = calc_inner_pressure(get_crit_radius_N2(), crushing_onset_tension[ci], pressure);
+ he_inner_pressure = calc_inner_pressure(get_crit_radius_He(), crushing_onset_tension[ci], pressure);
+
+ n2_crushing_pressure = pressure - n2_inner_pressure;
+ he_crushing_pressure = pressure - he_inner_pressure;
+ }
+ max_n2_crushing_pressure[ci] = MAX(max_n2_crushing_pressure[ci], n2_crushing_pressure);
+ max_he_crushing_pressure[ci] = MAX(max_he_crushing_pressure[ci], he_crushing_pressure);
+ }
+ max_ambient_pressure = MAX(pressure, max_ambient_pressure);
+}
+
+/* add period_in_seconds at the given pressure and gas to the deco calculation */
+void add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int ccpo2, const struct dive *dive, int sac)
+{
+ (void) sac;
+ int ci;
+ struct gas_pressures pressures;
+
+ fill_pressures(&pressures, pressure - ((in_planner() && (prefs.deco_mode == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE),
+ gasmix, (double) ccpo2 / 1000.0, dive->dc.divemode);
+
+ if (buehlmann_config.gf_low_at_maxdepth && pressure > gf_low_pressure_this_dive)
+ gf_low_pressure_this_dive = pressure;
+
+ for (ci = 0; ci < 16; ci++) {
+ double pn2_oversat = pressures.n2 - tissue_n2_sat[ci];
+ double phe_oversat = pressures.he - tissue_he_sat[ci];
+ double n2_f = n2_factor(period_in_seconds, ci);
+ double he_f = he_factor(period_in_seconds, ci);
+ double n2_satmult = pn2_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;
+ double he_satmult = phe_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;
+
+ tissue_n2_sat[ci] += n2_satmult * pn2_oversat * n2_f;
+ tissue_he_sat[ci] += he_satmult * phe_oversat * he_f;
+ }
+ if(prefs.deco_mode == VPMB)
+ calc_crushing_pressure(pressure);
+ return;
+}
+
+void dump_tissues()
+{
+ int ci;
+ printf("N2 tissues:");
+ for (ci = 0; ci < 16; ci++)
+ printf(" %6.3e", tissue_n2_sat[ci]);
+ printf("\nHe tissues:");
+ for (ci = 0; ci < 16; ci++)
+ printf(" %6.3e", tissue_he_sat[ci]);
+ printf("\n");
+}
+
+void clear_deco(double surface_pressure)
+{
+ int ci;
+ for (ci = 0; ci < 16; ci++) {
+ tissue_n2_sat[ci] = (surface_pressure - ((in_planner() && (prefs.deco_mode == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * N2_IN_AIR / 1000;
+ tissue_he_sat[ci] = 0.0;
+ max_n2_crushing_pressure[ci] = 0.0;
+ max_he_crushing_pressure[ci] = 0.0;
+ n2_regen_radius[ci] = get_crit_radius_N2();
+ he_regen_radius[ci] = get_crit_radius_He();
+ }
+ gf_low_pressure_this_dive = surface_pressure;
+ if (!buehlmann_config.gf_low_at_maxdepth)
+ gf_low_pressure_this_dive += buehlmann_config.gf_low_position_min;
+ max_ambient_pressure = 0.0;
+}
+
+void cache_deco_state(char **cached_datap)
+{
+ char *data = *cached_datap;
+
+ if (!data) {
+ data = malloc(2 * TISSUE_ARRAY_SZ + sizeof(double) + sizeof(int));
+ *cached_datap = data;
+ }
+ memcpy(data, tissue_n2_sat, TISSUE_ARRAY_SZ);
+ data += TISSUE_ARRAY_SZ;
+ memcpy(data, tissue_he_sat, TISSUE_ARRAY_SZ);
+ data += TISSUE_ARRAY_SZ;
+ memcpy(data, &gf_low_pressure_this_dive, sizeof(double));
+ data += sizeof(double);
+ memcpy(data, &ci_pointing_to_guiding_tissue, sizeof(int));
+}
+
+void restore_deco_state(char *data)
+{
+ memcpy(tissue_n2_sat, data, TISSUE_ARRAY_SZ);
+ data += TISSUE_ARRAY_SZ;
+ memcpy(tissue_he_sat, data, TISSUE_ARRAY_SZ);
+ data += TISSUE_ARRAY_SZ;
+ memcpy(&gf_low_pressure_this_dive, data, sizeof(double));
+ data += sizeof(double);
+ memcpy(&ci_pointing_to_guiding_tissue, data, sizeof(int));
+}
+
+int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, bool smooth)
+{
+ int depth;
+ double pressure_delta;
+
+ /* Avoid negative depths */
+ pressure_delta = tissues_tolerance > surface_pressure ? tissues_tolerance - surface_pressure : 0.0;
+
+ depth = rel_mbar_to_depth(pressure_delta * 1000, dive);
+
+ if (!smooth)
+ depth = ceil(depth / DECO_STOPS_MULTIPLIER_MM) * DECO_STOPS_MULTIPLIER_MM;
+
+ if (depth > 0 && depth < buehlmann_config.last_deco_stop_in_mtr * 1000)
+ depth = buehlmann_config.last_deco_stop_in_mtr * 1000;
+
+ return depth;
+}
+
+void set_gf(short gflow, short gfhigh, bool gf_low_at_maxdepth)
+{
+ if (gflow != -1)
+ buehlmann_config.gf_low = (double)gflow / 100.0;
+ if (gfhigh != -1)
+ buehlmann_config.gf_high = (double)gfhigh / 100.0;
+ buehlmann_config.gf_low_at_maxdepth = gf_low_at_maxdepth;
+}