summaryrefslogtreecommitdiffstats
path: root/subsurface-core/gas-model.c
diff options
context:
space:
mode:
Diffstat (limited to 'subsurface-core/gas-model.c')
-rw-r--r--subsurface-core/gas-model.c115
1 files changed, 84 insertions, 31 deletions
diff --git a/subsurface-core/gas-model.c b/subsurface-core/gas-model.c
index c9a6a3239..b90467bbd 100644
--- a/subsurface-core/gas-model.c
+++ b/subsurface-core/gas-model.c
@@ -48,7 +48,27 @@ static double redlich_kwong_compressibility_factor(struct gasmix *gas, double ba
}
/*
- * This is a quintic formula by Lubomir I. Ivanov that has
+ * Generic quintic polynomial
+ */
+static double quintic(double bar, const double coefficient[])
+{
+ double x0 = 1.0,
+ x1 = bar,
+ x2 = x1*x1,
+ x3 = x2*x1,
+ x4 = x2*x2,
+ x5 = x2*x3;
+
+ return x0 * coefficient[0] +
+ x1 * coefficient[1] +
+ x2 * coefficient[2] +
+ x3 * coefficient[3] +
+ x4 * coefficient[4] +
+ x5 * coefficient[5];
+}
+
+/*
+ * These are the quintic coefficients by Lubomir I. Ivanov that have
* been optimized for the least-square error to the air
* compressibility factor table (at 300K) taken from Wikipedia:
*
@@ -69,43 +89,76 @@ static double redlich_kwong_compressibility_factor(struct gasmix *gas, double ba
* 400: 1.2073
* 500: 1.3163
*/
-static double air_compressibility_factor(double bar)
-{
- double x0 = 1.0,
- x1 = bar,
- x2 = x1*x1,
- x3 = x2*x1,
- x4 = x2*x2,
- x5 = x2*x3;
+static const double air_coefficients[6] = {
+ +1.0002556612420115,
+ -0.0003115084635183305,
+ +0.00000227808965401253,
+ +1.91596422989e-9,
+ -8.78421542e-12,
+ +6.77746e-15
+};
- return + x0 * 1.0002556612420115
- - x1 * 0.0003115084635183305
- + x2 * 0.00000227808965401253
- + x3 * 1.91596422989e-9
- - x4 * 8.78421542e-12
- + x5 * 6.77746e-15;
-}
+/*
+ * Quintic least-square coefficients for O2/N2/He based on tables at
+ *
+ * http://ww.baue.org/library/zfactor_table.php
+ *
+ * converted to bar and also done by Lubomir.
+ */
+static const double o2_coefficients[6] = {
+ +1.0002231211532653,
+ -0.0007471497056767194,
+ +0.00000200444854807816,
+ +2.91501995188e-9,
+ -4.48294663e-12,
+ -6.11529e-15
+};
+
+static const double n2_coefficients[6] = {
+ +1.0001898816185364,
+ -0.00030793319362077315,
+ +0.00000327557417347714,
+ -1.93872574476e-9,
+ -2.7732353e-12,
+ -2.8921e-16
+};
+
+static const double he_coefficients[6] = {
+ +0.9998700261301693,
+ +0.0005452130351730479,
+ -2.7853712233619e-7,
+ +5.5935404211e-10,
+ -1.35114572e-12,
+ +2.00476e-15
+};
+
+static double air_compressibility_factor(double bar) { return quintic(bar, air_coefficients); }
+static double o2_compressibility_factor(double bar) { return quintic(bar, o2_coefficients); }
+static double n2_compressibility_factor(double bar) { return quintic(bar, n2_coefficients); }
+static double he_compressibility_factor(double bar) { return quintic(bar, he_coefficients); }
/*
* We end up using specialized functions for known gases, because
* we have special tables for them.
*
- * For now, let's do just air.
- *
- * We have other tables for other gases, see for example:
- *
- * http://ww.baue.org/library/zfactor_table.php
- *
- * and then we have the Redlich-Kwong function, but that seems
- * to be almost too generic, and not specific enough to the very
- * particular pressure and temperature ranges we care about..
+ * For air we use our known-good table. For other mixes we use a
+ * linear interpolation of the Z factors of the individual gases.
*/
double gas_compressibility_factor(struct gasmix *gas, double bar)
{
-#if 1
- return air_compressibility_factor(bar);
-#else
- /* Fall back on generic function */
- return redlich_kwong_compressibility_factor(gas, bar);
-#endif
+ double o2, n2, he; // Z factors
+ double of, nf, hf; // gas fractions ("partial pressures")
+
+ if (gasmix_is_air(gas))
+ return air_compressibility_factor(bar);
+
+ o2 = o2_compressibility_factor(bar);
+ n2 = n2_compressibility_factor(bar);
+ he = he_compressibility_factor(bar);
+
+ of = gas->o2.permille / 1000.0;
+ hf = gas->he.permille / 1000.0;
+ nf = 1.0 - of - nf;
+
+ return o2*of + n2*nf + he*hf;
}