// Subsurface 4.5 User Manual // ========================== // :author: Manual authors: Jacco van Koll, Dirk Hohndel, Reinout Hoornweg, // Linus Torvalds, Miika Turkia, Amit Chaudhuri, Jan Schubert, Willem // Ferguson, Salvador Cuñat, Pedro Neves // :revnumber: 4.5 // :revdate: September 2015 :icons: :toc: :toc-placement: manual :numbered: // :website: http://subsurface-divelog.org image::images/Subsurface4Banner.jpg["Banner",align="center"] [big]#USER MANUAL# *Manual authors*: Willem Ferguson, Jacco van Koll, Dirk Hohndel, Reinout Hoornweg, Linus Torvalds, Miika Turkia, Amit Chaudhuri, Jan Schubert, Salvador Cuñat, Pedro Neves [blue]#_Version 4.5, October 2015_# Welcome as a user of _Subsurface_, an advanced dive logging program with extensive infrastructure to describe, organise, interpret and print scuba and free dives. _Subsurface_ offers many advantages over other similar software solutions: - Do you need a flexible way of logging dives using recreational equipment, even not using a dive computer? - Do you use two different dive computer brands, each with its own proprietary software for downloading dive logs? Do you dive with rebreathers as well as open circuit or recreational equipment? Do you use a Reefnet Sensus time-depth recorder in conjunction with a dive computer? _Subsurface_ offers a standard interface for downloading dive logs from all these different pieces of equipment and to store and analyse the dive logs within a unified system. - Do you use more than one operating system? _Subsurface_ is fully compatible with Mac, Linux and Windows, allowing you to access your dive log on each of your operating systems using a single application. - Do you use Linux or Mac and your dive computer has only Windows-based software for downloading dive information (e.g. Mares)? _Subsurface_ provides a way of downloading and analysing your dive logs on other operating systems. - Do you need an intuitive graphical dive planner that integrates with and takes into account the dives that have already been logged? - Do you need a way of storing or backing up your dive log on the Internet, allowing you to view your dive log from anywhere, using an Internet browser? _Subsurface_ binaries are available for Windows PCs (Win XP or later), Intel based Macs (OS/X) and many Linux distributions. _Subsurface_ can be built for many more hardware platforms and software environments where Qt and libdivecomputer are available. The scope of this document is the use of the _Subsurface_ program. To install the software, consult the _Downloads_ page on the http://subsurface-divelog.org/[_Subsurface_ web site]. Please discuss issues with this program by sending an email to mailto:subsurface@subsurface-divelog.org[our mailing list] and report bugs at http://trac.hohndel.org[our bugtracker]. For instructions on how to build the software and (if needed) its dependencies please consult the INSTALL file included with the source code. *Audience*: Recreational Scuba Divers, Free Divers, Tec Divers, Professional Divers toc::[] [[S_UserSurvey]] Using this manual ----------------- When opened from within _Subsurface_, this manual does not have external controls. However, a _SEARCH_ function is important. This is activated by pressing control-F or command-F on the keyboard. A text box appears at the bottom of the window. Use this to search for any term in the manual. The user survey --------------- In order to develop _Subsurface_ in a way that serves its users in the best possible way, it is important to have some user information. Upon launching _Subsurface_ after using this software for a week or so, a one-box user survey pops up. It is entirely optional and the user controls what, if any, data are sent to the _Subsurface_ development team. Any data that the user chooses to send is extremely useful, and will only be used to steer future development and to customise the software to fit the needs of the _Subsurface_ users. If one completes the survey, or clicks the option not to be asked again, that should be the last communication of this nature one receives. However, if one's diving and/or subsurface habits change and one wishes to provide another survey, this can be done by launching _Subsurface_ with the _--survey_ option on the command line. [[S_StartUsing]] Start Using the Program ----------------------- The _Subsurface_ window is usually divided into four panels with a *Main Menu* (File Import Log View Help) at the top of the window (for Windows and Linux) or the top of the screen (for Mac and Ubuntu Unity). The four panels are: 1. The *Dive List* to the bottom left containing a list of all the dives in the user's dive log. A dive can be selected and highlighted on the dive list by clicking on it. In most situations the up/down keys can be used to switch between dives. The *Dive List* is an important tool for manipulating a dive log. 2. The *Dive Map* to the bottom right, showing the user's dive sites on a world map and centred on the site of the last dive selected in the *Dive List*. 3. The *Info* to the top left, giving more detailed information on the dive selected in the *Dive List*, including some statistics for the selected dive or for all highlighted dive(s). 4. The *Dive Profile* to the top right, showing a graphical dive profile of the selected dive in the *Dive List*. The dividers between panels can be dragged in order to change the size of any of the panels. _Subsurface_ remembers the position of the dividers, so the next time _Subsurface_ starts it uses the positions of the dividers from when the program was last used. If a single dive is selected in the *Dive List*, the dive location, detailed information and profile of the _selected dive_ are shown in the respective panels. On the other hand, if several dives are selected, the last highlighted dive is the _selected dive_, but summary data of all _highlighted dives_ are shown in the *Stats* tab of the *Info* panel (maximum, minimum and average depths, durations, water temperatures and SAC; total time and number of dives selected). [[S_ViewPanels]] image::images/main_window_f22.jpg["The Main Window",align="center"] The user can determine which of the four panels are displayed by selecting the *View* option on the main menu. This feature gives the user several choices of display: *All*: show all four of the panels as in the screenshot above. *Divelist*: Show only the Dive List. *Profile*: Show only the Dive Profile of the selected dive. *Info*: Show only the Notes about the last selected dive and statistics for all highlighted dives. *Globe*: Show only the world map, centred on the last selected dive. Like many other functions that can be accessed via the Main Menu, these options can be triggered using keyboard shortcuts. The shortcuts for a particular system are shown with an underline in the main menu entries. Since different Operating Systems and the user chosen language may cause _Subsurface_ to use different shortcut keys they are not listed here in the user manual. When the program is started for the first time, it shows no information at all. This is because the program doesn't have any dive information available. In the following sections, the procedures to create a new logbook will be described. [[S_NewLogbook]] Creating a new logbook ---------------------- Select _File -> New Logbook_ from the main menu. All existing dive data are cleared so that new information can be added. If there are unsaved data in an open logbook, the user is asked whether the open logbook should be saved before a new logbook is created. [[S_GetInformation]] == Storing dive information in the logbook Now that a new logbook was created, it is simple to add dive data to it. _Subsurface_ allows several ways of adding dive data to a logbook, detailed in the following sections. 1) If the user has a handwritten divelog, a spreadsheet or another form of manually maintained divelog, dive data can be added to the logbook using one of these approaches: - Enter dive information by hand. This is useful if the diver did not use a dive computer and dives were recorded in a written logbook. See: xref:S_EnterData[Entering dive information by hand] - Import dive log information that has been maintained either as a spreadsheet or as a CSV file. Refer to: xref:S_Appendix_D[APPENDIX D: Exporting a spreadsheet to CSV format] and to xref:S_ImportingCSVDives[Importing dives in CSV format]. 2) If one has dives recorded using a dive computer, the depth profile of the dive and a large amount of additional information can be accessed. These dives can be imported from: - The divecomputer itself. See: xref:S_ImportDiveComputer[Importing new dive information from a Dive Computer] or - Proprietary software distributed by manufacturers of dive computers. Refer to: xref:S_ImportingAlienDiveLogs[Importing dive information from other digital data sources or other data formats]. - Import from spreadsheet or CSV files containing dive profiles. See: xref:S_ImportingCSVDives[Importing dives in CSV format from dive computers or other dive log software] [[S_EnterData]] === Entering dive information by hand This is usually the approach for dives without a dive computer. The basic record of information within _Subsurface_ is a dive. The most important information in a simple dive logbook usually includes dive type, date, time, duration, depth, the names of your dive buddy and of the dive master or dive guide, and some remarks about the dive. _Subsurface_ can store much more information than this for each dive. In order to add a dive to a dive log, select _Log -> Add Dive_ from the Main Menu. The program then shows three panels to enter information for a dive: two tabs in the *Info* panel (*Notes* and *Equipment*), as well as the *Dive Profile* panel that displays a graphical profile of each dive. These panels are respectively marked [red]#A#, [red]#B# and [red]#C# in the figure below. Each of these tabs will now be explained for data entry. image::images/AddDive1_f22.jpg["FIGURE: Add dive",align="center"] When one edits a field in Notes or Equipment panels, _Subsurface_ enters *Editing Mode*, indicated by the message in the blue box at the top of the *Notes* panel (see the image below). This message is displayed in all the panels under Notes and Equipment when in *Editing Mode*. image::images/BlueEditBar_f22.jpg["Blue edit bar",align="center"] The _Apply changes_ button should only be selected after all the parts of a dive have been entered. When entering dives by hand, the _Info_, _Equipment_ and _Profile_ tabs should be completed before saving the information. By selecting the _Apply changes_ button, a local copy of the information for this specific dive is saved in memory. When one closes Subsurface, the program will ask again, this time whether the complete dive log should be saved on disk or not. [[S_CreateProfile]] ==== Creating a Dive Profile The *Dive Profile* (a graphical representation of the depth of the dive as a function of time) is indicated in the panel on the top right hand of the _Subsurface_ window. When a dive is manually added to a logbook, _Subsurface_ presents a default dive profile that needs to be modified to best represent the dive being described: image::images/DiveProfile1_f20.jpg["FIGURE: Initial dive profile",align="center"] _Modifying the dive profile_: When the cursor is moved around the dive profile, its position is indicated by two right-angled red lines as shown below. The time and depth represented by the cursor are indicated at the top of the black information box (@ and D). The units (metric/imperial) on the axes are determined by the *Preference* settings. The dive profile itself comprises several line segments demarcated by waypoints (white dots on the profile, as shown above). The default dive depth is 15 m. If the dive depth was 20 m then the user needs to drag the appropriate waypoints downwards to represent 20 m. To add a waypoint, double-click on any line segment. To move an additional waypoint, drag it. To remove this waypoint, right-click on it and choose "Remove this point" from the context menu. Drag the waypoints to represent an accurate time duration for the dive. Below is a dive profile for a dive to 20 m for 30 min, followed by a 5 minute safety stop at 5 m. image::images/DiveProfile2_f20.jpg["FIGURE: Edited dive profile",align="center"] _Specifying the gas composition:_ The gas composition used is clearly indicated along the line segments of the dive profile. This defaults to the first gas mixture specified in the *Equipment* tab, which was air in the case of the profile above. The gas mixtures of segments of the dive profile can be edited. This is done by right-clicking on the particular waypoint and selecting the appropriate gas from the context menu. Changing the gas for a waypoint affects the gas shown in the segment _to the left_ of that waypoint. Note that only the gases defined in the *Equipment* tab appear in the context menu (see image below). image::images/DiveProfile3_f20.jpg["FIGURE: Gas composition context menu",align="center"] With the profile having been defined, more details must be added in order to have a fuller record of the dive. To do this, the *Notes* and the *Equipment* tabs on the top left hand of the _Subsurface_ window should be used. Click on xref:S_Notes_dc[*this link*] for instructions to use these tabs. [[S_ImportDiveComputer]] === Importing new dive information from a Dive Computer ==== Connecting and importing data from a dive computer. The use of dive computers allows the collection of a large amount of information about each dive, e.g. a detailed record of depth, duration, rates of ascent/descent and of gas partial pressures. _Subsurface_ can capture this information and present it as part of the dive information, using dive information from a wide range of dive computers. The latest list of supported dive computers can be found at: link:http://subsurface-divelog.org/documentation/supported-dive-computers/[ Supported dive computers]. [icon="images/icons/warning2.png"] [WARNING] Several dive computers consume more power when they are in their PC-Communication mode. **This could drain the dive computer's battery**. We therefore recommend that the user checks if the dive computer is charged when connected to the USB port of a PC. For example, several Suunto and Mares dive computers do not recharge through the USB connection. Users should refer to the dive computer's manual if they are unsure whether the dive computer recharges its batteries while connected to the USB port. To import dive information from a dive computer to a computer with _Subsurface_, it is necessary that the two pieces of equipment communicate with one another. This involves setting up the communications port (or mount point) of the computer with _Subsurface_ that communicates with the dive computer. In order to set up this communication, one needs to find the appropriate information to instruct _Subsurface_ where and how to import the dive information. xref:_appendix_a_operating_system_specific_information_for_importing_dive_information_from_a_dive_computer[Appendix A] provides the technical information to help the user achieving this for different operating systems and xref:_appendix_b_dive_computer_specific_information_for_importing_dive_information[Appendix B] has dive computer specific information. After this, the dive computer can be hooked up to the user's PC, which can be achieved by following these steps: 1. The interface cable should be connected to a free USB port (or the Infra-red or Bluetooth connection set up as described later in this manual) 2. The dive computer should be placed into PC Communication mode. (Refer to the manual of the specific dive computer) 3. In _Subsurface_, from the Main Menu, select _Import -> Import From Dive Computer_. Dialogue *A* in the figure below appears: image::images/DC_import_f20.jpg["FIGURE: Download dialogue 1",align="center"] Dive computers tend to keep a certain number of dives in their memory, even though these dives have already been imported to _Subsurface_. For that reason, if the divecomputer allows this, _Subsurface_ only imports dives that have not been uploaded before. This makes the download process faster on most dive computers and also saves battery power of the dive computer (at least for those not charging while connected via USB). - The dialogue has two drop-down lists, *Vendor* and *Dive Computer*. On the *vendor* drop-down list select the make of the computer, e.g. Suunto, Oceanic, Uwatec, Mares. On the *Dive Computer* drop-down list, the model name of the dive computer must be selected, e.g. D4 (Suunto), Veo200 (Oceanic), or Puck (Mares). - The *Device or Mount Point* drop-down list contains the USB or Bluetooth port name that _Subsurface_ needs in order to communicate with the dive computer. The appropriate port name must be selected. Consult xref:_appendix_a_operating_system_specific_information_for_importing_dive_information_from_a_dive_computer[Appendix A] and xref:_appendix_b_dive_computer_specific_information_for_importing_dive_information[Appendix B] for technical details on how to find the appropriate port information for a particular dive computer and, in some cases, how to do the correct settings to the operating system of the computer on which _Subsurface_ is running. - If all the dives on the dive computer need to be downloaded, check the checkbox _Force download of all dives_. Normally, _Subsurface_ only downloads dives after the date-time of the last dive in the *Dive List* panel. If one or more of your dives in _Subsurface_ have been accidentally deleted or if there are older dives that still need to be downloaded from the dive computer, this checkbox needs to be activated. Some dive computers (e.g. Mares Puck) do not provide a contents list to _Subsurface_ before the download in order to select only new dives. Consequently, for these dive computers, all dives are downloaded irrespective of the status of this check box. - If the checkbox _Always prefer downloaded dives_ has been checked and, during download, dives with identical date-times exist on the dive computer and on the _Subsurface_ *Dive List* panel, the dive in the _Subsurface_ divelog will be overwritten by the dive record from the dive computer. - The checkbox marked _Download into new trip_ ensures that, after upload, the downloaded dives are grouped together as a new trip(s) in the *Dive List*. - Do *not* check the checkboxes labelled _Save libdivecomputer logfile_ and _Save libdivecomputer dumpfile_. These are only used as diagnostic tools when problems with downloads are experienced (see below). - Then select the _Download_ button. With communication established, one can see how the data are retrieved from the dive computer. Depending on the make of the dive computer and/or number of recorded dives, this could take some time. Be patient. The _Download_ dialogue shows a progress bar at the bottom of the dialogue (for some dive computers the progress information could be inaccurate as we cannot determine how much downloadable data there is until all data have been downloaded). After successful download, Dialogue *B* in the figure above appears. After the dives have been downloaded, they appear in a tabular format on the righthand side of the dialogue (see image *B*, above). Each dive comprises a row in the table, with the date, duration and depth shown. Next to each dive is a checkbox: check all the dives that need to be transfered to the *Dive List*. In the case of the image above, the last six dives are checked and will be transfered to the *Dive List*. Then click the _OK_ button at the bottom of the dialogue. All the imported dives appear in the *Dive List*, sorted by date and time. Disconnect and switch off the dive computer to conserve its battery power. After this has been completed, select the OK button. The checked dives are transfered to the *Dive List*. - If there is a problem in communicating with the dive computer, an error message will be shown, similar to this text: "Unable to open /dev/ttyUSB0 Mares (Puck Pro)". Refer to the text in the box below. **** *PROBLEMS WITH DATA DOWNLOAD FROM A DIVE COMPUTER?* [icon="images/icons/important.png"] [IMPORTANT] Check the following: - Is the dive computer still in PC-communication or Upload mode? - Is the battery of the dive computer fully charged? If not then the battery must be charged or replaced. - Is the connecting cable faulty? Does the cable work perfectly using other software? Has it worked before, or is this the first time the cable is being used? Are the contacts on the dive computer and the cable clean? - Consult xref:_appendix_a_operating_system_specific_information_for_importing_dive_information_from_a_dive_computer[Appendix A] and make sure that the correct Mount Point was specified (see above). - On Unix-like operating systems, does the user have write permission to the USB port? If not, consult xref:_appendix_a_operating_system_specific_information_for_importing_dive_information_from_a_dive_computer[Appendix A] If the _Subsurface_ computer does not recognise the USB adaptor by showing an appropriate device name next to the Mount Point, then there is a possibility that the cable or USB adaptor is faulty. A faulty cable is the most common cause of communication failure between dive computer and _Subsurface_ computer. It is also possible that the _Subsurface_ computer cannot interpret the data. Perform a download for diagnostic purposes with the following two check boxes checked in the download dialogue discussed above: Save libdivecomputer logfile Save libdivecomputer dumpfile *Important*: These check boxes are only used when problems are encountered during the download process: under normal circumstances they should not be checked. When checking these boxes, the user is prompted to select a folder to save the information to. The default folder is the one in which the _Subsurface_ dive log is kept. *Important:* _After downloading with the above checkboxes checked, no dives are added to the *Dive List* but two files are created in the folder selected above_: subsurface.log subsurface.bin These files should be send to the _Subsurface_ mail list: _subsurface@subsurface-divelog.org_ with a request for the files to be analysed. Provide the dive computer make and model as well as contextual information about the dives recorded on the dive computer. **** [[S_Bluetooth]] ==== Connecting _Subsurface_ to a Bluetooth-enabled dive computer [icon="images/icons/bluetooth.jpg"] Bluetooth is becoming a more common way of communication between dive computer and _Subsurface_. For instance, this mechanism is used by the Shearwater Petrel Mk2 and the OSTC Mk3. _Subsurface_ provides a largely operating system independent Bluetooth interface. Setting up _Subsurface_ for Bluetooth communication requires four steps: - Ensure that Bluetooth is activated on the host computer running _Subsurface_. - Ensure that _Subsurface_ sees the Bluetooth adapter on the host computer. - Ensure the Bluetooth-enabled dive computer is Bluetooth-discoverable and in PC upload mode. - Ensure that _Subsurface_ is paired with the Bluetooth-enabled dive computer. Select _Import -> Import from dive computer_ from the *Main Menu*. If one checks the check box labelled _"Choose Bluetooth download mode"_, the dialogue below appears. image::images/DC_import_Bluetooth.jpg["FIGURE: Download Bluetooth",align="center"] On the righthand side, the name of the _Subsurface_ computer and its Bluetooth address are shown. If the Bluetooth address is not shown, then _Subsurface_ does not see the local Bluetooth device. Ensure that Bluetooth is activated on the _Subsurface_ computer and restart _Subsurface_. This achieves the first two steps above. Ensure that the Bluetooth-enabled dive computer is in PC-upload mode and that it is discoverable by other Bluetooth devices. Consult the manual of the dive computer to perform this. Now the third item in the list above has been achieved. Select the _Scan_ button towards the bottom left of the dialogue above. After searching for a small amount of time, the dive computer should be listed (perhaps as one of a number of Bluetooth devices) in the main list box on the lefthand side of the dialogue (see image above). If this is not achieved, select the _Clear_ button and then scan again for Bluetooth devices using the _Scan_ button. After performing these actions _Subsurface_ sees the dive computer. Now select the dive computer by clicking its name. This initiates pairing between _Subsurface_ and the dive computer, thus achieving the last item on the list above.. Select the _Save_ button of the dialogue. This closes the Bluetooth dialogue. Now select _Download_ in the _Download from dive computer_ dialogue which should still be open. The downloaded dives are shown on the righthand side of the download dialogue. [[S_DeviceNames]] ==== Changing the name of a dive computer It may be necessary to distinguish between different dive computers used to upload dive logs to _Subsurface_. For instance if one's partner's dive computer is the same make and model as one's own and dive logs are uploaded from both dive computers to the same _Subsurface_ computer, then one would perhaps like to call one dc "Alice's Suunto D4" and the other one "Bob's Suunto D4". Alternatively, consider a technical diver dives with two or more dive computers of the same model, the logs of both (or all) being uploaded. In this case it might be prudent to call one of them "Suunto D4 (1)" and another one "Suunto D4 (2)". This is easily done in _Subsurface_. On the *Main Menu*, select _Log -> Edit device names_. A dialog opens, indicating the current Model, ID and Nickname of the dive computers used for upload. Edit the Nickname field for the appropriate dive computer. After saving the Nickname, the dive logs show the nickname for that particular device instead of the model name, allowing easy identification of devices. [[S_EditDiveInfo]] ==== Updating the dive information imported from the dive computer. With the uploaded dives in the *Dive List*, the information from the dive computer is not complete and more details must be added in order to have a fuller record of the dives. To do this, the *Notes* and the *Equipment* tabs on the top left hand of the _Subsurface_ window should be used. [[S_Notes_dc]] ===== Notes To have a more complete dive record the user needs to add additional information by hand. The procedure below is virtually identical for hand-entered dives and for dives downloaded from a dive computer. In some cases, one has to provide the date and time of the dive, e.g. when entering a dive by hand or when a dive computer does not privide the date and time of the dive. (Usually the date and time of the dive, gas mixture and water temperature are shown as obtained from the dive computer) If the contents of the *Notes tab* is changed or edited in any way, the message in a blue box at the top of the panel indicates that the dive is being edited. If one clicks on the *Notes* tab, the following fields are visible (left hand image, below): image::images/AddDive3_f22.jpg["FIGURE: The Notes tab",align="center"] The right hand image, above, shows a *Notes tab* filled with dive information. The *Time* field reflects the date and time of the dive. By clicking the date, a calendar is displayed from which one can choose the correct date. Press ESC to close the calendar. The time values (hour and minutes) can also be edited directly by clicking on each of them in the text box and by overtyping the information displayed. *Air/water temperatures*: Air and water temperatures during the dive are shown in text boxes to the right of the Start time. Many dive computers supply water temperature information and this box may therefore contain information. If air temperature is not provided by the dive computer, the first temperature reading might be used for the air temperature. Generally this is close enough to the real air temperature as the change in the temperature sensor reading is quite slow to follow the changes in the environment. If editing is required, only a value is required, the units of temperature will be automatically supplied by _Subsurface_ (following the _Preferences_, metric or imperial units will be used). *Location*: Here the name of the dive site can be entered, e.g. "Tihany, Lake Balaton, Hungary". Dive locations are managed as a separate part of the dive log. After entering the information for a particilar dive site, and several dives are performed at the same location, the information is re-used without requiring full dive site information again. Existing dive location information can be edited at any time by selecting (on the *Dive List* panel) a dive performed at that site and by opening the location information by clicking the globe button on the right of the location name (see image on the righ, above). When entering a dive location name, auto location of dive site names makes it easy to select a dive site that already exists in the dive log (i.e. when typing the name of a dive site, a dropdown list appears showing all sites with similar names). If the dive site has been used before, click on the already-existing name. If the present dive site has not been used before, a message appears as follows (image *A* below): image::images/Locations1_f22.jpg["FIGURE:Location description panel",align="center"] Click the + icon on the right hand side. A panel appears to enter the coordinates and other important information about the site (image *B*, above). The most important items are the coordinates of the site. There are three ways of specifying the coordinates: a. One can find the coordinates on the world map in the bottom right hand part of the Subsurface window. The map displays an orange bar indicating "No location data - Move the map and double-click to set the dive location". Upon a double-click at the appropriate place, the orange bar disappears and the coordinates are stored. b. The coordinates can be obtained from the _Subsurface_ Companion app if the user has an Android or iPhone device with GPS and if the coordinates of the dive site were stored using that device. xref:S_Companion[Click here for more information] c. The coordinates can be entered by hand if they are known, using one of four formats with latitude followed by longitude: ISO 6709 Annex D format e.g. 30°13'28.9"N 30°49'1.5"E Degrees and decimal minutes, e.g. N30° 13.49760' , E30° 49.30788' Degrees minutes seconds, e.g. N30° 13' 29.8" , E30° 49' 1.5" Decimal degrees, e.g. 30.22496 , 30.821798 Southern hemisphere latitudes are given with a *S*, e.g. S30°, or with a negative value, e.g. -30.22496. Similarly western longitudes are given with a *W*, e.g. W07°, or with a negative value, e.g. -7.34323. Some keyboards don't have the degree sign (°). It can be replaced by a *d* like this: N30d W20d. *Important*: GPS coordinates of a dive site are linked to the Location name - so adding coordinates to dives that do not have a location description will cause unexpected behaviour (Subsurface will think that all of these dives have the same location and try to keep their GPS coordinates the same). Enter any other textual information about the dive site (Description and Notes), then select _Apply Changes_ to save the geolocation for this dive site. At a later stage the dive site information can be edited by clicking the globe icon to the right of the dive site name in the *Notes tab*. *Dive mode*: This is a dropdown box allowing one to choose the type of dive performed. The options are OC (Open Circuit SCUBA, the default seting, meant for most recreational dives), Freedive (dive without SCUBA equipment), CCR (Closed-circuit rebreather) and pSCR (Passive semi-closed rebreather). *Divemaster*: The name of the dive master or dive guide for this dive should be entered in this field which offers auto selection based on the list of dive masters in the current logbook. *Buddy*: In this field, one enters the name(s) of the buddy / buddies (separated with commas) who accompanied him/her on the dive. Auto selection based on the list of buddies in the current logbook is offered. *Suit*: Here the type of dive suit used can be entered. Auto selection of the suit description is available. Some dry-suit users may choose to use this field to record what combination of suit and thermal undersuit was used. *Rating*: One can provide a subjective overall rating of the dive on a 5-point scale by clicking the appropriate star on the rating scale. *Visibility*: Similarly, one can provide a rating of visibility during the dive on a 5-point scale by clicking the appropriate star. *Tags*: Tags that describe the type of dive performed can be entered here (separated by commas). Examples of common tags are boat, drift, training, cave, etc. _Subsurface_ has many built-in tags. If the user starts typing a tag, the program will list the tags that correspond to the typing. For instance, if the user typed +cav+, then the tags *cave* and *cavern* are shown for the user to choose from. *Notes*: Any additional information for the dive can be entered here. The _Apply changes_ and _Discard changes_ buttons are used to save all the information for tabs in the *Info* panel and in the *Dive Profile* panel, so there's no need to use them until *ALL* other information has been added. The image xref:S_Notes_dc[at the beginning of this section] shows an example of a *Notes tab* after completion of the dive information. ===== Equipment The Equipment tab allows one to enter information about the type of cylinder and gas used as well as the weights used for the dive. The message in a blue box at the top of the panel: image::images/BlueEditBar_f22.jpg["FIGURE: Blue edit bar",align="center"] indicates that the dive is being edited. This is a highly interactive part of _Subsurface_ and the information on cylinders and gases (entered here) determines the behaviour of the *Dive profile* (top right-hand panel). [[cylinder_definitions]] *Cylinders*: The cylinder information is entered through a dialogue that looks like this: image::images/DC_gas-dialogue1_f20.jpg["FIGURE: Initial cylinder dialogue",align="center"] For hand-entered dives, this information needs to be typed in. For dive computers, _Subsurface_ often obtains the gas used from the dive computer and automatically inserts the gas composition(% oxygen or % helium) in the table. The + button at the top right allows the user to add more cylinders for this dive. The dark dustbin icon on the left allows the deletion of information for a cylinder. Note that it is not possible to delete a cylinder if it is used during the dive. A cylinder might be implicitly used in the dive, even without a gas change event. The user should start by selecting a cylinder type on the left-hand side of the table. To select a cylinder, the _Type_ box should be clicked. This brings up a list button that can be used to display a dropdown list of cylinders: image::images/DC_gas-dialogue2_f20.jpg["FIGURE: The cylinder drop-down list button",align="center"] The drop-down list can then be used to select the cylinder type that was used for this dive or the user may start typing in the box which shows the available options for the entered characters. The *Size* of the cylinder as well as its working pressure (_Work.press_) will automatically be shown in the dialogue. Next, indicate the starting pressure and the ending pressure of the specified gas during the dive. The unit of pressure (metric/imperial) corresponds to the settings chosen in the _Preferences_. Finally, provide the gas mixture used. If air was used, the value of 21% can be entered or this field can be left blank. If nitrox or trimix were used, their percentages of oxygen and/or helium should be entered. Any inappropriate fields should be left empty. After typing the information for the cylinder, save the data either by pressing _ENTER_ on the keyboard or by clicking outside the cell containing the cursor. Information for any additional cylinders can be added by using the + button at the top right hand. Following is an example of a complete description for a dive using two cylinders (air and EAN50): image::images/CylinderDataEntry3_f20.jpg["FIGURE: a completed cylinder dive information table",align="center"] *Weights*: Information about the weight system used can be entered using a dialogue very similar to that of the cylinder information. If one clicks the + button on the top right of the weights dialogue, the table looks like this: image::images/WeightsDataEntry1_f20.jpg["FIGURE:The Weights dialogue",align="center"] By clicking on the _Type_ field, a drop-down list becomes accessible through a down-arrow: image::images/WeightsDataEntry2_f20.jpg["FIGURE:Weights type drop-down list button",align="center"] This can be used to select the type of weight system used during the dive or the user may start typing in the box to specify a different weighting mechanism that will be saved by _Subsurface_. In the *Weight* field, type in the amount of weight used during the dive. After specifying the weight system, save the data by either pressing _ENTER_ on the keyboard or by clicking outside the cell with the cursor. It is possible to enter information for more than one weight system by adding an additional system using the + button on the top right hand. Weight systems can be deleted using the dustbin icon on the left hand. Here is an example of information for a dive with two types of weights: integrated as well as a weight belt: image::images/WeightsDataEntry3_f20.jpg["FIGURE: A completed weights information table",align="center"] ==== Editing several selected dives simultaneously _METHOD 1_: After uploading dives from a dive computer, the dive profiles of each uploaded dive is shown in the *Dive profile* tab, as well as a few items of information in the *Notes* tab (e.g. water temperature) and in the *Equipment* tab (e.g. gas pressures and gas composition). However the other fields remain empty. It may be useful to simultaneously edit some of the fields in the *Notes* and *Equipment* tabs. For instance, it is possible that a diver performed several dives during a single day, using identical equipment while diving at the same dive site or with the same dive master and/or buddy or tags. Instead of completing the information for each of these dives separately, one can select all the dives for that day in the *Dive List* and insert the same information in the *Notes* and *Equipment* fields that need identical information. This is achieved by editing the dive notes or the equipment for any one of the selected dives. The simultaneous editing only works with fields that do not already contain information. This means that, if some fields have been edited for a particular dive among the selected dives, these are not changed while editing the dives simultaneously. Technically, the rule for editing several dives simultaneously is: if the data field being edited contains _exactly the same information_ for all the dives that have been selected, the new, edited information is substituted for all the selected dives, otherwise only the edited dive is changed, even though several dives have been selected in the *Dive List*. This greatly speeds up the completion of the dive log after several similar dives. [[S_CopyComponents]] _METHOD 2_:There is a different way of achieving the same goal. Select a dive with all the appropriate information typed into the *Notes* and *Equipment* tabs. Then, from the main menu, select _Log -> Copy dive components_. A box is presented with a selection of check boxes for most of the fields in the *Notes* and *Equipment* tabs. Select the fields to be copied from the currently selected dive, then select _OK_. Now, in the *Dive List*, select the dives into which this information is to be pasted. Then, from the main menu, select _Log -> Paste dive components_. All the selected dives now contain the data initially selected in the original source dive log. ==== Adding Bookmarks to a dive Many divers wish to annotate their dives with text that indicate particular events during the dive, e.g. "Saw dolphins", or "Released surface buoy". This is easily done: - Right-click at the appropriate point on the dive profile. This brings up the dive profile context menu. Select _Add bookmark_. A red flag is placed on the dive profile at the point that was initially selected (see *A* below). - Right-click on the red flag. This brings up the context menu (see *B* below). Select _Edit name_. - A text box is shown. Type the explanatory text for the bookmark (see *C* below). Select _OK_. This saves the text associated with the bookmark. - If one hovers using the mouse over the red bookmark, the appropriate text is shown at the bottom of the information box (see *D* below). image::images/Bookmarks.jpg["FIGURE: Bookmark dialog",align="center"] ==== Saving the updated dive information The information entered in the *Notes* tab and the *Equipment* tab can be saved by using the two buttons on the top right hand of the *Notes* tab. If the _Apply changes_ button is clicked, the dive data are saved in the memory image of the dive. If the _Discard changes_ button is clicked, then the newly entered dive data are erased from the computer memory, although the dive profile is retained. When the user exits _Subsurface_ there is a final prompt to confirm that the new data should now be saved permanently on the computer disk. === Importing dive information from other digital data sources or other data formats [[S_ImportingAlienDiveLogs]] If a user has been diving for some time, it is possible that several dives were logged using other dive log software. This information does not need retyping because these dive logs can probably be imported into _Subsurface_. _Subsurface_ will import dive logs from a range of other dive log software. While some software is supported natively, for others the user has to export the logbook(s) to an intermediate format so that they can then be imported by _Subsurface_. Currently, _Subsurface_ supports importing CSV log files from several sources. APD LogViewer, XP5, Sensus and Seabear files are preconfigured, but because the import is flexible, users can configure their own imports. Manually kept log files (e.g. a spreadsheet) can also be imported by configuring the CSV import. _Subsurface_ can also import UDDF and UDCF files used by some divelog software and some dive computers, like the Heinrichs & Weikamp DR5. Finally, for some divelog software like Mares Dive Organiser it is currently suggested to import the logbooks first into a webservice like _divelogs.de_ and then import them from there with _Subsurface_, as divelogs.de supports a few additional logbook formats that _Subsurface_ currently cannot parse. If the format of other software is supported natively on Subsurface, it should be sufficient to select either _Import -> Import log files_ or _File -> Open log file_. _Subsurface_ supports the data formats of many dive computers, including Suunto and Shearwater. When importing dives, _Subsurface_ tries to detect multiple records for the same dive and merges the information as best as it can. If there are no time zone issues (or other reasons that would cause the beginning time of the dives to be significantly different) _Subsurface_ will not create duplicate entries. Below follows more specific information to achieve data import to _Subsurface_. ==== Using the universal import dialogue [[Unified_import]] Importing dives from other software is performed through a universal interface activated by selecting _Import_ from the Main Menu, then clicking on _Import Log Files_. This brings up dialogue *A*, below. image::images/Import1_f20.jpg["FIGURE: Import dialogue: step 1",align="center"] Towards the bottom right is a dropdown selector with a default label of _Dive Log Files_ which gives access to the different types of direct imports available, as in dialogue *B*, above. Currently these are: - XML-formatted dive logs (DivingLog 5.0, MacDive and several other dive log systems) - Cochran dive logs - UDDF-formatted dive logs (e.g. Kenozoooid) - UDCF-formatted dive logs - Poseidon MkVI CCR logs - APD Inspiration/Evolution CCR logs - LiquiVision logs - divelog.de logs - OSTC Tools logs - JDiveLog - Suunto Dive Manager (DM3 and DM4) - CSV (text-based and spreadsheet-based) dive logs, including APD CCR logs Selecting the appropriate format and then the specific log file in the large window containing the file list on the right of the dialogue opens the imported dive log in the _Subsurface_ *Dive List*. Some other formats, not accessible through the Import dialogue are also supported, as explained below. ==== Importing from OSTCTools _OSTC Tools_ is a Microsoft-based suite of dive download and dive management tools for the OSTC family of dive computers. _OSTC Tools_ downloads dive data from the dive computer and stores it as a binary file with file extension _.dive_ . Subsurface can directly import these files when using the universal import dialogue. From the dropdown list at the bottom right select _OSTCTools Files (.dive .DIVE)_. This makes the _OSTC Tools_ dive logs visible in the file list panel. Select one or more dive, then click the _Open_ button. The OSTC dives are shown in the *Dive List* panel. Actually, all H&W devices supported by OSTCTools can be imported to _Subsurface_, this includes OSTC, OSTC Mk2, OSTC 2N/2C, OSTC3, OSTC Sport, and probably although untested, Frog, OSTC2 and OSTC CR. Please, remember that OSTCTools is *not* a true diving log software, but a useful set of tools for analysis and management of OSTC devices. This way, only raw dive computer data will be performed with the import to _Subsurface_; one has to to manually complete the rest of data which may be important (buddies, equipment, notes, etc). ==== Importing from Mares Dive Organiser V2.1 Since Mares utilise proprietary Windows software not compatible with multi-platform applications, these dive logs cannot be directly imported into _Subsurface_. Mares dive logs need to be imported using a three-step process, using _www.divelogs.de_ as a mechanism to extract the dive log information. 1. Export the dive log data from Mares Dive Organiser to the user's desktop, using a _.sdf_ file name extension. Refer to xref:Mares_Export[Appendix C] for more information. 2. Data should then be imported into _www.divelogs.de_. One needs to create a user account in _www.divelogs.de_, log into that web site, then select _Import Logbook -> Dive Organiser_ from the menu on the left hand side. The instructions must be carefully followed to transfer the dive information (in _.sdf_ format) from the Dive Organiser database to _www.divelogs.de_. 3. Finally, import the dives from _divelogs.de_ to _Subsurface_, using the instructions below. [[S_ImportingDivelogsDe]] ==== Importing dives from *divelogs.de* The import of dive information from _divelogs.de_ is simple, using a single dialogue box. The _Import -> Import from Divelogs.de_ option should be selected from the Main Menu. This brings up a dialogue box (see image *A* below). Enter a user-ID and password for _divelogs.de_ into the appropriate fields and then select the _Download_ button. Download from _divelogs.de_ starts immediately, displaying a progress bar in the dialogue box. At the end of the download, the success status is indicated (see image *B*, below). The _Apply_ button should then be selected, after which the imported dives appear in the _Subsurface_ *Dive List* panel. image::images/Divelogs1.jpg["FIGURE:Download from Divelogs.de",align="center"] [[S_ImportingCSVData]] ==== Importing data in CSV format A comma-separated file (.csv) can be used to import dive information either as dive profiles (as in the case of the APD Inspiration and Evolution closed circuit rebreathers) or as dive metadata (in case the user keeps dive data in a spreadsheet). The _CSV_ format is a universal simplified format that allows for easy information exchange between different computers or software packages. For an introduction to CSV-formatted files see xref:S_CSV_Intro[A Diver's Introduction To CSV Files]. _Subsurface_ dive logs can also be exported in _CSV_ format to other software that reads this format. See xref:S_Appendix_D[APPENDIX D: Exporting a spreadsheet to CSV format] for information that may be helpful for importing spreadsheet-based data into _Subsurface_. [[S_ImportingCSVDives]] ===== Importing dives in CSV format from dive computers or other dive log software One can view a _CSV_ file by using an ordinary text editor. It is normally organised into a single line that provides the headers (or _field names_ or _column headings_) of the data columns, followed by the data, one record per line. There are two types of _CSV_ dive logs that can be imported into _Subsurface_: 1. _CSV dive details_: This dive log format contains similar information to that of a typical written dive log, e.g. dive date and time, dive depth, dive duration, names of buddy and dive master and perhaps some information about cylinder pressures before and after the dive, as well as a comment or two about the dive. All the data for a single dive go on a single line of text, following the order of the column headings. 2. _CSV dive profile_: This dive log format includes much more information about a single dive. For instance there may be information at 30-second intervals, indicating depth, water temperature at that depth, and cylinder pressure at that moment in time. Each line contains the information for a single instant in time during the dive, 30 seconds after that of the previous instant. Many lines are required to complete the depth profile information for a single dive. This is a common export format used by closed-circuit rebreather (CCR) dive equipment and many software packages that handle dive computer data and/or dive logs. Before being able to import the _CSV_ data to _Subsurface_ *one needs to know a few things about the data being imported*: a. Which character separates the different columns within a single line of data? This field separator should be either a comma (,) a semicolon (;) or a TAB character. This can be determined by opening the file with a text editor. If it is comma-delimited or semicolon-delimited, the comma or semicolon characters between the values are clearly visible. If these are not evident and the numbers are aligned in columns, the file is probably TAB-delimited (i.e. it uses a TAB as a field separator). b. Which data columns need to be imported into _Subsurface_? Is it a _CSV dive details_ file or a _CSV dive profile_ file? Open the file using a text editor and note the titles of the columns to be imported and their column positions. c. Is the numeric information (e.g. dive depth) in metric or in imperial unis? Armed with this information, importing the data into _Subsurface_ is straightforward. Select _Import -> Import Log Files_ from the main menu. In the resulting file selection menu, select _CSV files_ (towards the bottom right). This shows all .CSV files in the selected directory. Select the file that needs to be imported. A configuration panel appears as depicted below: image::images/csv_import1_f20.jpg["FIGURE: CSV download dialogue 1",align="center"] Notice that, at the top left, there is a dropdown list containing pre-configured settings for some of the more common dive computers and software packages encountered by divers. If the _CSV_ file being imported originated from any of these pre-configured items, then select it. Otherwise use the _Manual Import_ option. The configuration panel also has dropdown lists for the specification of the appropriate field separator (Tab, comma or semicolon), the date format used in the _CSV_ file, the time units (seconds, minutes or minutes:seconds), as well as the unit system (metric or imperial). Selecting the appropriate options among these is critical for the successful import of the data. The last remaining task is to ensure that all the data columns have the appropriate column headings. The top blue row of the data table contains the column headings found in the _CSV_ data file. The blue row of balloons immediately above these contains the names understood by _Subsurface_. These balloons can be moved using a drag-and-drop action. For instance, _Subsurface_ expects the column heading for Dive number (" # ") to be "Dive # ". If the column heading that _Subsurface_ expects is not in the blue row, then drag the appropriate balloon from the upper area and drop it in the appropriate blue cell at the top of the table. To indicate the correct column for "Dive #", drag the ballooned item labeled "Dive # " and drop it in the blue cell immediately above the white cell containing " # ". This is depicted in the image below. image::images/csv_import2_f20.jpg["FIGURE: CSV download dialogue 2",align="center"] Continue in this way to ensure that all the column headings in the blue row of cells correspond to the headings listed in the top part of the dialogue. Having completed this task, select the _OK_ button to the bottom right of the dialogue. The data from the _CSV_ file are imported and shown in the *Dive List* panel. [[S_CSV_Intro]] **** *A Diver's Introduction to _CSV_ Files* [icon="images/icons/important.png"] [IMPORTANT] _CSV_ is an abbreviation for a data file format: _Comma-Separated Values_. It is a file format allowing someone to view or edit the information using a text editor such as Notepad (Windows), gedit (Linux) or TextWrangler (OS/X). The two main advantages of the _CSV_ format is that the data are easily editable as text without any proprietary software and ensuring all information is human-readable, not being obscured by any custom or proprietary attributes that proprietary software insert into files. Because of its simplicity the _CSV_ format is used as an interchange format between many software packages, e.g. between spreadsheet, statistical, graphics, database and diving software. Within _Subsurface_, _CSV_ files can also be used to import information from other sources such as spreadsheet-based dive logs and even from some dive computers. _CSV_ files can be created or edited with a normal text editor. The most important attribute of a _CSV_ file is the _field separator_, the character used to separate fields within a single line. The field separator is frequently a comma, a colon, a SPACE character or a TAB character. When exporting data from spreadsheet software, the field separator needs to be specified in order to create the _CSV_ file. _CSV_ files are normally organised into a single line that provides the headers (or _field names_) of the data columns, followed by the data, one record per line. Note that each field name may comprise more than one word separated by spaces; for instance _Dive site_, below. Here is an example of dive information for four dives using a comma as a field separator: Dive site,Dive date,Time,Dive_duration, Dive_depth,Dive buddy Illovo Beach,2012-11-23,10:45,46:15,18.4,John Smith Key Largo,2012-11-24,09:12,34:15,20.4,Jason McDonald Wismar Baltic,2012-12-01,10:13,35:27,15.4,Dieter Albrecht Pulau Weh,2012-12-20,09:46,55:56,38.6,Karaeng Bontonompo The above data are not easily read by a human. Here is the same information in TAB-delimited format: Dive site Dive date Time Dive_duration Dive_depth Dive buddy Illovo Beach 2012-11-23 10:45 46:15 18.4 John Smith Key Largo 2012-11-24 09:12 34:15 20.4 Jason McDonald Wismar Baltic 2012-12-01 10:13 35:27 15.4 Dieter Albrecht Pulau Weh 2012-12-20 09:46 55:56 38.6 Karaeng Bontonompo It is clear why many people prefer the TAB-delimited format to the comma-delimited format. The disadvantage is that one cannot see the TAB characters. For instance, the space between _Dive_ and _date_ in the top line may be a SPACE character or a TAB character (in this case it is a SPACE character: the tabs are before and after _Dive date_). If the field names in the first line are long, the alignment with data in the other lines cannot be maintained. Here is a highly simplified and shortened TAB-delimited example of a _CSV_ dive log from an APD closed-circuit rebreather (CCR) dive computer: Dive Time (s) Depth (m) pO₂ - Setpoint (Bar) pO₂ - C1 Cell 1 (Bar) Ambient temp. (Celsius) 0 0.0 0.70 0.81 13.1 0 1.2 0.70 0.71 13.1 0 0.0 0.70 0.71 13.1 0 1.2 0.70 0.71 13.2 0 1.2 0.70 0.71 13.1 10 1.6 0.70 0.72 12.7 20 1.6 0.70 0.71 12.6 30 1.7 0.70 0.71 12.6 40 1.8 0.70 0.68 12.5 When a _CSV_ file is selected for import, _Subsurface_ displays the column headers as well as some of the data in the first few lines of the _CSV_ file, making it much easier to work with _CSV_ files. _CSV_ files can therefore be used in many contexts for importing data into a _Subsurface_ dive log. Knowledge of a few basic things about the content of the _CSV_ file allows a smooth import of the dives into _Subsurface_. **** [icon="images/icons/important.png"] [IMPORTANT] The _CSV_ import has a couple of caveats. One should avoid some special characters like ampersand (&), less than (<), greater than (>) and double quotes (") as part of the numbers or text within a cell. The file should use UTF-8 character set, if using non-ASCII characters. Also the size of the _CSV_ file might cause problems. Importing 100 dives at a time (_CSV dive details_) works, but larger files might exceed the limits of the parser used. When encountering problems with _CSV_ imports, first try with a smaller file to make sure everything works. [[S_Companion]] === Importing GPS coordinates with the _Subsurface Companion App_ for mobile phones Using the *Subsurface Companion App* on an _Android device_ or xref:S_iphone[_iPhone_] with GPS, the coordinates for the diving location can be automatically passed to the _Subsurface_ dive log. The Companion App stores the dive locations on a dedicated Internet file server. _Subsurface_, in turn, can collect the localities from the file server. To do this: ==== Create a Companion App account - Register on the http://api.hohndel.org/login/[_Subsurface companion web page_]. A confirmation email with instructions and a personal *DIVERID* will be sent, a long number that gives access to the file server and Companion App capabilities. - Download the app from https://play.google.com/store/apps/details?id=org.subsurface[Google Play Store] or from http://f-droid.org/repository/browse/?fdfilter=subsurface&fdid=org.subsurface[F-Droid]. ==== Using the Subsurface companion app on an Android smartphone On first use the app has three options: * _Create a new account._ Equivalent to registering in _Subsurface_ companion page using an Internet browser. One can request a *DIVERID* using this option, but this is supplied via email and followed up by interaction with the http://api.hohndel.org/login/[_Subsurface companion web page_] in order to activate the account. * _Retrieve an account._ If users forgot their *DIVERID* they will receive an email to recover the number. * _Use an existing account._ Users are prompted for their *DIVERID*. The app saves this *DIVERID* and does not ask for it again unless one uses the _Disconnect_ menu option (see below). [icon="images/icons/important.png"] [IMPORTANT] In the _Subsurface_ main program, the *DIVERID* should also be entered on the Default Preferences panel, obtained by selecting _File -> Preferences -> Defaults_ from the main menu in _Subsurface_ itself. This facilitates synchronisation between _Subsurface_ and the Companion App. ===== Creating new dive locations Now one is ready to get a dive position and send it to the server. The Android display will look like the left hand image (*A*) below, but without any dives. Touch the "+" icon on the top right to add a new dive site, a menu will be showed with 3 options: * Current: A prompt for a place name (or a request to activate the GPS if it is turned off) will be displayed, after which the current location is saved. * Use Map: This option allows the user to fix a position by searching a world map. A world map is shown (see *B* below) on which one should indicate the desired position with a _long press_ on the touch sensitive screen (if the marked location is erroneous, simply indicate a new location) and select the check symbol in the upper right. A dialog is shown allowing to enter the name of the dive location and the date-time of the dive (see *C* below). In order to import this dive location in _Subsurface_ it's advisable to set the time to agree with the time of that dive on the dive computer. image::images/Companion_5.jpg["FIGURE: Companion App, add location using map",align="center"] * Import local GPX file: The android device searches for .gpx files and located archives will be shown. The selected .gpx file is opened and the stored locations shown. Now one needs to select the appropriate locations, then select the tab in the upper right, after which the locations will be sent to the web service and added to the list on the Android device. ===== Dive lists of dive locations The main screen shows a list of dive locations, each with a name, date and time (see *A* below). Some locations may have an arrow-up icon over the selection box to the left indicating that they require upload to the server. One can select individual dive locations from the list. A selected location has a check mark in the selection box on the left. Group operations (such as _Delete_ or _Send_) are performed on several locations that are selected. Dive locations in this list can be viewed in two ways: a list of locations or a map indicating the dive locations. The display mode (List or Map) is changed by selecting _Dives_ at the top left of the screen (see *A* below) and then selecting the display mode. The display mode can be changed either from the list of locations or from the map (see *B* below). If one selects a location (on the list or on the map), an editing panel opens (see *C* below) where the dive description or other details may be changed. image::images/Companion_4.jpg["FIGURE: Companion App, add location using map",align="center"] When one selects a dive (*not* selecting the check box), the name given to it, date/time and GPS coordinates will be shown, with two options at the top of the screen: - Edit (pencil): Change the text name or other characteristics of the dive location. - Maps: Display a map showing the dive location. After editing and saving a dive location (see *C* above), one needs to upload it to the web service, as explained below. ===== Uploading dive locations There are several ways to send locations to the server. The easiest is by simply selecting the locations (See *A* below) and then touching the right arrow at the top right of the screen. [icon="images/icons/important.png"] [IMPORTANT] Users must be careful, as the trash icon on the right means exactly what it should; it deletes the selected dive location(s). image::images/Companion_1.jpg["FIGURE: Screen shots (A-B) of companion app",align="center"] After a dive trip using the Companion App, all dive locations are ready to be downloaded to a _Subsurface_ dive log (see below). ===== Settings on the Companion app Selecting the _Settings_ menu option results in the right hand image above (*B*). ===== Server and account - _Web-service URL._ This is predefined (http://api.hohndel.org/) - _User ID._ The DIVERID obtained by registering as described above. The easiest way to obtain it is simply to copy and paste from the confirmation email but, of course, users can also type this information. ===== Synchronisation - _Synchronize on startup._ If selected, dive locations in the Android device and those on the web service synchronise each time the app is started. - _Upload new dives._ If selected, each time the user adds a dive location it is automatically sent to the server. ===== Background service Instead of entering a unique dive location, users can leave the service running in the background of their Android device, allowing the continuous collection of GPS locations. The settings below define the behaviour of the service: - _Min duration._ In minutes. The app will try to get a location every X minutes until stopped by the user. - _Min distance._ In meters. Minimum distance between two locations. - _Name template._ The name the app will use when saving the locations. [icon="images/icons/info.jpg"] [TIP] _How does the background service work?_ Assuming the user sets 5 minutes and 50 meters in the settings above, the app will start by recording a location at the current location, followed by another one at every 5 minutes *or* every time one moves 50m from previous location. If subsequent locations are within a radius of 50 meters from the previous one, a new location is not saved. If the user is not moving, only one location is saved, but if the user is moving, a trace of the route is obtained by saving a location every 50 meters. ===== Other - _Mailing List._ The mail box for _Subsurface_. Users can send an email to the Subsurface mailing list. - _Subsurface website._ A link to the URL of Subsurface web - _Version._ Displays the current version of the Companion App. ===== Search Search the saved dive locations by name or by date and time. ===== Start service Initiates the _background service_ following the previously defined settings. ===== Disconnect This is a badly named option that disconnects the app from the server by resetting the user ID in the app, showing the first screen where an account can be created, retrieve the ID for an existing account or use the users own ID. The disconnect option is useful if a user's Android device was used to download the dive locations of another registered diver. ===== Send all locations This option sends all locations stored in the Android device to the server. [[S_iphone]] ==== Using the Subsurface companion app on an _iPhone_ to record dive locations The iPhone interface is quite simple. One needs to type the user ID (obtained during registration) into the space reserved for it, then select "Dive in" (see left part of the image below) and start collecting dive location information. image::images/iphone.jpg["FIGURE: Using iPhone companion application",align="center",width=640] Dives can be added automatically or manually. In manual mode, a dive location or waypoint is added to the GPS input stream. In automatic mode, a continuous path of GPS locations is created from which, much later, after import, subsurface can select the appropriate GPS locations based on the times of dives. The default mode for the _iphone_ is automatic. When one adds a dive, the location service is started automatically and a red bar appears at the bottom of the screen. After the dive one can click on the red bar to end the location service. While the location service is running one can only add dives using the manual mechanism. One can edit the site name afterwards by selecting the dive from the dive list and clicking on the site name. There are no other editable fields. The dive list is automatically uploaded from the iphone to the webservice and there is not an option to trigger upload manually. ==== Downloading dive locations to the _Subsurface_ divelog Download dive(s) from a dive computer or enter them manually into _Subsurface_ before obtaining the GPS coordinates from the server. The download dialog can be reached via _Ctrl+G_ or from the _Subsurface_ Main Menu _Import -> Import GPS data from Subsurface Service_, resulting in the image on the left (*A*), below. On first use the DIVERID text box is blank. Provide a DIVERID, then select the _Download_ button to initiate the download process, after which the screen on the right (*B*) below appears: image::images/DownloadGPS.jpg["FIGURE: Downloading Companion app GPS data",align="center"] Note that the _Apply_ button is now active. By clicking on it, users can update the locations of the newly entered or uploaded dives in _Subsurface_ which applies the coordinates and names entered on the app for all the new dives that match the date-times of the uploaded GPS localities. If one has entered the name of the dive location in _Subsurface_ before downloading the GPS coordinates, this name will take precedence over downloaded one. Since _Subsurface_ matches GPS locations from the Android device and dive information from the dive computer based on date-time data, automatic assignment of GPS data to dives is dependent on agreement of the date-time information between these two devices. Although _Subsurface_ has a wide range tolerance, it may be unable to identify the appropriate dive if there is a large difference between the time in the dive computer and that of the Android device, resulting in no updates. Similar date-times may not always be possible and there may be many reasons for this (e.g. time zones), or _Subsurface_ may be unable to decide which is the correct position for a dive (e.g. on repetitive dives while running _background service_ there may be several locations that would be included in the time range that fit not only the first dive, but one or more subsequent dives as well). A workaround for this situation to manually edit the date-time of a dive in the _Subsurface_ Dive List *before* downloading the GPS data and then to change the date-time back again *after* downloading GPS data. [icon="images/icons/info.jpg"] [NOTE] TIPS: - _Background service_, being a very powerful tool, may fill the location list with many unnecessary locations not corresponding to the exact dive point but reflecting the boat's route. Currently these locations are difficult to delete from the server. In some situations it is therefore prudent to clean up the list on the Android device before sending the dive points to the web server by simply deleting the inappropriate locations. This might be necessary, for instance, if one wants to keep the location list clear to see dives in the web service map display (see above). - It may also make sense to give informative names to the locations sent to the web server, or at least to use an informative name in the _Name Template_ setting while running the _background service_, especially on a dive trip with many dives and dive locations. [[S_LoadImage]] === Adding photographs to dives Many (if not most) divers take a camera with them and take photographs during a dive. One would like to associate each photograph with a specific dive. _Subsurface_ allows one to load photos into a dive. Photos are superimposed on the dive profile, from where they can be viewed. ==== Loading photos and getting synchronisation between dive computer and camera Left-lick on a dive or on a group of dives on the dive list. Then right-click on this dive or group of dives and choose the option _Load Images_: image::images/LoadImage1_f20.jpg["FIGURE: Load images option",align="center"] The system file browser appears. Select the folder and photographs that need to be loaded into _Subsurface_ and click the _Open_ button. image::images/LoadImage2_f20.jpg["FIGURE: Load images option",align="center"] This brings up the time synchronisation dialog, shown below. The critical problem is that the time synchronisation is not perfect between the dive computer used during a dive, and the camera used during that same dive. These two devices often differ by several minutes. If _Subsurface_ can achieve synchronisation, then the exact times of photographs can be used to position photographs on the dive profile. _Subsurface_ achieves this synchronisation in three ways: - *Pro-actively*: Before the dive, ensure synchronisation of the dive computer time settings with the time settings of the camera by changing the date-time settings on one or both of these devices. - *Manually*: If the user wrote down the exact camera time at the start of a dive, the difference in time between the two devices can be determined. Actually, as long as the device settings for time has not been changed in either device, one could write down the times of both devices after the dive or even at the end of the day. One can then manually set the time difference in the _Time shift_ dialog. Towards the top of the dialog is a time setting tool immediately under the heading _Shift times of image(s) by_, evident in figure *A* below. If the camera time is 7 minutes later than that of the dive computer, set the time setting tool to a value of 00:07. Select either the _earlier_ or _later_ radio button. In the above example, the _earlier_ option is appropriate, since the photos need to be shifted 7 minutes earlier (camera is 7 minutes ahead of dive computer). Ignore any "AM" or "PM" suffix in that tool. Click the _OK_ button and synchronisation is achieved. image::images/LoadImage3b_f20.jpg["FIGURE: Synchronisation dialog",align="center"] - *By photograph*: There is a very slick way of achieving synchronisation. If one takes a photograph of the face of the dive computer showing the time, then _Subsurface_ can obtain the exact time the photograph was taken, using the metadata that the camera stores within each photo. In order to do this, use the bottom half of the _Time shift_ dialog. If one uses the bottom part, the top part of the dialog is ignored. Click on the horizontal bar entitled "_Select image of divecomputer showing time_. This brings up a file browser with which one can select the photograph of the dive computer time. Select the photograph using the file browser and click on _OK_. This photograph of the dive computer appears in the bottom panel of the _Shift times_ dialog. Now _Subsurface_ knows exactly when the photograph has been taken. Now set the date-time dialog to the left of the photo so that this tool reflects the date and time of the dive computer in the photo. When the date-time tool has been set, _Subsurface_ knows exactly what the time difference between camera and dive computer is, and synchronisation is achieved. Image *B* above shows a photograph of the face of the dive computer and with the date-time tool set to the date-time. If the timestamp of a photograph is more than 30 minutes before or after the dive, it is not placed on the dive profile. ==== Viewing the photos After the images have been loaded, they appear in two places: - the _Photos_ tab of the *Notes* panel. - as tiny icons (stubs) on the dive profile at the appropriate positions reflecting the time each photograph was taken. In order to view the photos on the dive profile, activate the _show-photos_ button in the tool bar to the left of the dive profile: image::images/icons/ShowPhotos_f20.png["FIGURE:Show photos toolbar button",align="left"] This results in a profile display as in the image below: image::images/LoadImage4_f20.jpg["FIGURE: Photos on dive profile",align="center"] If one hovers with the mouse over any of the photo icons, then a thumbnail photo is shown of the appropriate photo. See the image below: image::images/LoadImage5_f20.jpg["FIGURE:Thumbnail photo on dive profile",align="center"] Clicking on the thumbnail brings up a full size photo overlaid on the _Subsurface_ window. This allows good viewing of the photographs that have been added (see the image below). Note that the thumbnail has a small dustbin icon in the bottom right hand corner (see image above). If one selects the dustbin, the image is removed from the dive. Therefore some care is required when clicking on a thumbnail. Images can also be deleted using the _Photos_ tab (see text below). image::images/LoadImage6_f20.jpg["FIGURE: Full-screen photo on dive profile",align="center"] ==== The _Photos_ tab Photographs associated with a dive are shown as thumbnails in the _Photos_ tab of the _Notes_ panel. Photos taken in rapid succession during a dive (therefore sometimes with large overlap on the dive profile) can easily be accessed in the _Photos_ tab. This tab serves as a tool for individually accessing the photos of a dive, while the stubs on the dive profile give an indication of when during a dive a photo was taken. By single-clicking on a thumbnail in the _Photos_ panel, a photo is selected. By double-clicking a thumbnail, the full-sized image is shown, overlaying the _Subsurface_ window. A photo can be deleted from the _Photos_ panel by selecting it (single-click) and then by pressing the _Del_ key on the keyboard. This removes the photo both from the _Photos_ tab as well as the dive profile. ==== Photos on an external hard disk Most underwater photographers store their photos on an external drive. If such a drive can be mapped by the operating system (almost always the case) the photos can be directly accessed by _Subsurface_. This facilitates the interaction between _Subsurface_ and an external repository of photos. When associating a dive profile with photos from an external drive, the normal procedure of selection and synchronisation (see text above) is used. However, after the external drive has been disconnected, _Subsurface_ cannot access these photos any more. If the display of photos is activated (using the toolbox to the left of the _Dive Profile_), the program only shows a small white dot where each photo should be on the dive profile. In addition the _Photos_ tab only shows the file names of the photos. This is normal behaviour. If, later, the external drive with the photos is connected again, the photos can be seen in the normal way. [[S_FindMovedImages]] ==== Moving photographs among directories, hard disks or computers After a photograph has been loaded into _Subsurface_ and associated with a specific dive, the directory where the photo lies is stored, allowing _Subsurface_ to find the photograph when the dive is opened again. If the photo or the whole photo collection is moved to another drive or to a different machine, it is unlikely that the directory structure will remain identical to that of the original uploaded photo. When this happens, _Subsurface_ looks for the photos at their original location before they were moved, cannot find them and therefore cannot display them. Because, after moving photos, large numbers of photos may need to be deleted and re-imported from the new location, _Subsurface_ has a mechanism that eases the process of updating the directory information for each photo: automatic updates using fingerprints. When a photo is loaded into _Subsurface_, a fingerprint for the image is calculated and stored with the other reference information for that photo. After moving a photo collection (that has already been loaded into _Subsurface_) to a different directory, disk or computer, _Subsurface_ can perform the following steps: - look through a particular directory (and all its subdirectories recursively) where photos have been moved to, - calculate fingerprints for all photos in this directory, and - if there is a match between a calculated fingerprint and the one originally calculated when a photo was loaded into _Subsurface_ (even if the original file name has changed), to automatically update the directory information so that _Subsurface_ can find the photo in the new moved directory. This is achieved by selecting from the Main Menu: _File -> Find moved images_. This brings up a window within which the NEW directory of the photos needs to be specified. Select the appropriate directory and click the _Scan_ button towards the bottom right of the panel. The process may require several minutes to complete, after which _subsurface_ will show the appropriate photographs when a particular dive is opened. [[Image_fingerprint_upgrade]] **** *Upgrading existing photo collections without fingerprints* [icon="images/icons/important.png"] [IMPORTANT] Software for the automated finger print calculation of existing photo collections is under developement. Currently single dives must be upgraded one at a time. Select the toolbar button on the *Dive profile* panel that enables the display of images. The thumbnails of images are shown on the dive profile. Then open the dive and change anything in the *Notes* panel that brings up the blue edit bar at the top of the notes panel to save the edits. For instance, add a space character at the end of the _Notes_ text box and immediately delete that space character. Select the optio _Apply changes_ in the blue edit bar to save the dive information. Fingerprints are calculated while saving this specific dive. **** === Logging special types of dives [[S_MulticylinderDives]] ==== Multicylinder dives _Subsurface_ easily handles dives involving more than one cylinder. Multicylinder diving usually happens (a) if a diver does not have enough gas for the complete dive in a single cylinder; (b) if the diver needs more than one gas mixture because of the depth or the decompression needs of the dive. For this reason multicylinder dives are often used by technical divers who dive deep or long. As far as _Subsurface_ is concerned, there are only two types of information that need to be provided: - *Describe the cylinders used during the dive* This is performed in the *Equipment tab* of the *Info* panel, as xref:cylinder_definitions[described above]. Enter the cylinders one by one, specifying the characteristics of the cylinder and the gas composition within each cylinder. - *Record the times at which switches from one cylinder to another was done:* This is information provided by some dive computers (provided the diver indicated these changes to the dive computer by pressing specific buttons). If the dive computer does not provide the information, the diver has to record these changes using a different method, e.g. writing it on a slate. - *Record the cylinder changes on the dive profile*: If the latter option was followed, the diver needs to indicate the gas change event by right-clicking at the appropriate point in time on the *Dive Profile* panel and indicating the cylinder to which the change was made. After right-clicking, follow the context menu to "Add gas change" and select the appropriate cylinder from those defined during the first step, above (see image below). If the *tank bar* button in the toolbar has been activated, the cylinder switches are also indicated in the tank bar. Having performed these tasks, _Subsurface_ indicates the appropriate use of cylinders in the dive profile. Below is a multi-cylinder dive, starting off with EAN28, then changing cylinders to EAN50 after 26 minutes to perform decompression. image::images/multicylinder_dive.jpg["FIGURE: Multicylinder profile",align="center"] ==== Sidemount dives Sidemount diving is just another form of multicylinder diving, often with both or all cylinders having the same gas mixture. Although it is a popular configuration for cave divers, sidemount diving can be performed by recreational divers who have completed the appropriate training. Sidemount dive logging involves, exactly as with multicylinder dives, above, three steps: - *During the dive, record cylinder switch events*. Since sidemount diving normally involves two cylinders with air or with the same gas mixture, _Subsurface_ distinguishes among these different cylinders. In contrast, many dive computers that allow gas switching only distinguish among different _gases_ used, not among different _cylinders_ used. This means that when sidemount dives are downloaded from these dive computers, the events of switching between cylinders with the same gas are not downloaded. This may mean that one may have to keep a written log of cylinder switch times using a slate, or (if the dive computer has this facility) marking each cylinder switch with a bookmark that can be retrieved later. Returning from a dive with the times of cylinder changes is the only tricky part of logging sidemount dives. - *Within _Subsurface_ describe the cylinders used during the dive*. The diver needs to provide the specifications of the different cylinders, using the *Equipment* tab of the *Info Panel* (see image below where two 12 litre cylinder were used). - *Indicate cylinder change events on the _Subsurface_ dive profile*. Once the dive log has been imported from a dive computer into _Subsurface_, the cylinder switch events need to be indicated on the dive profile. Cylinder changes are recorded by right-clicking at the appropriate point on the dive profile and then selecting _Add gas change_. A list of the appropriate cylinders is shown with the currently used cylinder greyed out. In the image below Tank 1 is greyed out, leaving only Tank 2 to be selected. Select the appropriate cylinder. The cylinder change is then indicated on the dive profile with a cylinder symbol. If the *Tank Bar* is activated using the toolbar to the left of the profile, then the cylinder change is also indicated on the Tank Bar (see image below). After all the cylinder change events have been recorded on the dive profile, the correct cylinder pressures for both cylinders are shown on the dive profile, as in the image below. image::images/sidemount1.jpg["FIGURE: Sidemount profile",align="center"] This section gives an example of the versatility of _Subsurface_ as a dive logging tool. [[S_sSCR_dives]] ==== Semi-closed circuit rebreather (SCR) dives [icon="images/halcyon_RB80.jpg"] [NOTE] Passive semi-closed rebreathers (pSCR) comprise a technical advance in diving equipment that recirculates the breathing gas that a diver breathes, while removing carbon dioxide from the exhaled gas. While a small amount (typically a tenth) of the exhaled breathing gas is released into the water, a small amount of fresh gas is released from the back gas cylinder (typically containing nitrox). A diver, using a single cylinder of breathing gas can therefore dive for much longer periods than using a recreational open-circuit configuration. With pSCR equipment, a very small amount of breathing gas is released every time the breather inhales. With active SCR (aSCR) equipment, in contrast, a small amount of breathing gas is released continuously from the back cylinder. To log pSCR dives, no special procedures are required, just the normal steps outlined above: - Select pSCR in the _Dive Mode_ dropdown list on the *Info* panel. - pSCR diving often involves gas changes, requiring an additional cylinder. Define all the appropriate cylinders as described above and indicate the cylinder/gas changes as described above in the section on xref:S_MulticylinderDives[multicylinder dives]. If a pSCR _Dive Mode_ has been selected, the dive ceiling for pSCR dives is adjusted for the oxygen drop across the mouthpiece which often requires longer decompression periods. Below is a dive profile of a pSCR dive using EAN36 on the back cylinder and oxygen for decompression. Note that this dive lasted over two hours. image::images/pSCR_profile.jpg["FIGURE: pSCR profile",align="center"] [[S_CCR_dives]] ==== Closed circuit rebreather (CCR) dives [icon="images/APD.jpg"] [NOTE] Closed system rebreathers use advanced technology to recirculate gas that has been breathed while doing two things to maintain a breathable oxygen concentration: a) remove carbon dioxide from the gas that has been exhaled b) regulate the oxygen concentration to remain within safe diving limits. The CCR interface of _Subsurface_ is currently experimental and under active development. Subsurface currently supports Poseidon MkVI and APD Discovery/Evolution dive computers. In contrast to a conventional recreational dive computer, a CCR system computer does not allow the download of a log containing multiple dives. Rather, each dive is stored independently. This means that _Subsurface_ cannot download a dive log directly from a CCR dive computer, but that it imports CCR dive logs in the same way that it imports dive log data from other digital databases: one dive at a time. ===== Import a CCR dive See the section dealing with xref:S_ImportingAlienDiveLogs[Importing dive information from other digital sources]. From the main menu of _Subsurface_, select _Import -> Import log files_ to bring up the xref:Unified_import[universal import dialogue]. As explained in that section, the bottom right hand of the import dialogue contains a dropdown list (labled _Filter:_) of appropriate devices that currently includes(Poseidon) MkVI or APD log viewer files (import for other CCR equipment is under active development). Having selected the appropriate CCR format and the directory where the original dive logs have been stored from the CCR dive computer, one can select a particular dive log file (in the case of the MkVI it is a file with a .txt extension). After selecting the appropriate dive log, activate the _Open_ button at the bottom right hand of the universal import dialogue. The selected dive is imported to the _Subsurface_ dive list. ===== Displayed information for a CCR dive _Partial pressures of gases_: The graph of oxygen partial pressure shows the information from the oxygen sensors of the CCR equipment. In contrast to recreational equipment (where pO~2~ values are calculated based on gas composition and dive depth), CCR equipment provide actual measurements of pO~2~, derived from oxygen sensors. In this case the graph for oxygen partial pressure should be fairly flat, reflecting the setpoint settings during the dive. The mean pO~2~ is NOT the mean oxygen partial pressure as given by the CCR equipment, but a value calculated by _Subsurface_ as follows: - For TWO O~2~ sensors the mean value of the two sensors are given. - For THREE-sensor systems (e.g. APD), the mean value is also used. However differences of more than 0,1 bar in the simultaneous readings of different sensors are treated as spurious. If one of the three sensors provides spurious data, it is ignored. - If no sensor data are available, the pO~2~ value is assumed to be equal to the setpoint. The mean pO~2~ of the sensors is indicated with a green line, The oxygen setpoint values as well as the readings from the individual oxygen sensors can be shown. The display of additional CCR information is turned on by checking the appropriate checkboxes in the _Preferences_ panel (accessible by selecting xref:S_CCR_options[_File -> Preferences -> Graph_]). This part of the _Preferences_ panel is shown in the image below, representing two checkboxes that modify the display of pO~2~ when the appropriate toolbar button on the Dive Profile has been activated. image::images/CCR_preferences_f20.jpg["FIGURE: CCR preferences panel",align="center"] Checking any of these check boxes allows the display of additional oxygen-related information whenever the pO~2~ toolbar button on the _Profile_ panel is activated. The first checkbox allows the display of setpoint information. This is a red line superimposed on the green oxygen partial pressure graph and allows a comparison of the mean measured oxygen partial pressure and the setpoint values, as shown below. image::images/CCR_setpoint_f20.jpg["FIGURE: CCR setpoint and po2 graph",align="center"] The second checkbox allows the display of the data from each individual oxygen sensor of the CCR equipment. The data for each sensor is colour-coded as follows: - Sensor 1: grey - Sensor 2: blue - Sensor 3: brown The mean oxygen pO~2~ is indicated by the green line. This allows the direct comparison of data from each of the oxygen sensors, useful for detecting abnormally low or erratic readings from a particular sensor. image::images/CCR_sensor_data_f20.jpg["FIGURE: CCR sensor data graph",align="center"] The setpoint data can be overlaid on the oxygen sensor data by activating both of the above check boxes. Partial pressures for nitrogen (and helium, if applicable) are shown in the usual way as for open circuit dives. _Events_: Several events are logged, e.g. switching the mouthpiece to open circuit. These events are indicated by yellow triangles and, if one hovers over a triangle, a description of that event is given as the bottom line in the xref:S_InfoBox[Information Box]. _Cylinder pressures_: Some CCR dive computers like the Poseidon MkVI record the pressures of the oxygen and diluent cylinders. The pressures of these two cylinders are shown as green lines overlapping the depth profile. In addition, start and end pressures for both oxygen and diluent cylinders are shown in the _Equipment Tab_. Below is a dive profile for a CCR dive, including an overlay of setpoint and oxygen sensor data, as well as the cylinder pressure data. In this case there is good agreement from the readings of the two oxygen sensors. image::images/CCR_dive_profile_f22.jpg["FIGURE: CCR dive profile",align="center"] _Equipment-specific information_: Equipment-specific information gathered by _Subsurface_ is shown in the xref:S_ExtraDataTab[Extra data tab]. This may include setup information or metadata about the dive. The deco ceiling calculated by Subsurface is not very accurate because the precise pressure of nitrogen in the loop can usually not be determined from the dive log imported from the CCR equipment. Many CCR dive computers, however, report an internally-calculated deco ceiling that is reported in the dive log, reflecting a more accurate assessment. The display of this ceiling is activated by clicking the appropriate button to the left of the dive profile: image::images/icons/cceiling.jpg["DC ceiling icon"] The default colour of the computer-generated deco ceiling is white. However, this can be set to red by checking the appropriate check box after selecting _File -> Preferences -> Graph_. Below is a dive profile indicating the dive computer-generated deco ceiling: image::images/CCR_dive_ceilingF22.jpg["FIGURE: CCR computer-generated deco ceiling",align="center"] More equipment-specific information for downloading CCR dive logs for Poseidon MkVI and APD equipment can be found in xref:_appendix_b_dive_computer_specific_information_for_importing_dive_information[Appendix B]. == Obtaining more information about dives entered into the logbook === The *Info* tab (for individual dives) The Info tab gives some summary information about a particular dive that has been selected in the *Dive List*. Useful information here includes the surface interval before the dive, the maximum and mean depths of the dive, the gas volume consumed, the surface air consumption (SAC) and the number of oxygen toxicity units (OTU) incurred. [icon="images/icons/info.jpg"] [NOTE] Gas consumption and SAC calculations: _Subsurface_ calculates SAC and Gas consumption taking in account gas incompressibility, particularly at tank pressures above 200 bar, making them more accurate. Users should refer to xref:SAC_CALCULATION[Appendix D] for more information. [[S_ExtraDataTab]] === The *Extra Data* tab (usually for individual dives) When using a dive computer, it often reports several data items that cannot easily be presented in a standardised way because the nature of the information differs from one dive computer to another. These data often comprise setup information, metadata about a dive, battery levels, no fly times, or gradient factors used during the dive. When possible, this information is presented in the *Extra Data* tab. Below is an image showing extra data for a dive using a Poseidon rebreather. image::images/ExtraDataTab_f20.jpg["FIGURE: Extra Data tab",align="center"] === The *Stats* tab (for groups of dives) The Stats tab gives summary statistics for more than one dive, assuming that more than one dive has been selected in the *Dive List* using the standard Ctrl-click or Shift-click of the mouse. If only one dive has been selected, figures pertaining to only that dive are given. This tab shows the number of dives selected, the total amount of dive time in these dives, as well as the minimum, maximum and mean for the dive duration, water temperature and surface air consumption (SAC). It also shows the depth of the shallowest and deepest dives of those selected. [[S_DiveProfile]] === The *Dive Profile* image::images/Profile2.jpg["Typical dive profile",align="center"] Of all the panels in _Subsurface_, the Dive Profile contains the most detailed information about each dive. The Dive Profile has a *button bar* on the left hand side that allows control over several display options. The functions of these buttons are described below. The main item in the Dive Profile is the graph of dive depth as a function of time. In addition to the obvious information of the depth it also shows the ascent and descent rates compared to the recommended speed of going up or down in the water column. This information is given using different colours: |==================== |*Colour*|*Descent speed (m/min)*|*Ascent speed (m/min)* |Red|> 30|> 18 |Orange|18 - 30|9 - 18 |Yellow|9 - 18|4 - 9 |Light green|1.5 - 9|1.5 - 4 |Dark green|< 1.5|< 1.5 |===================== The profile also includes depth readings for the peaks and troughs in the graph. Thus, users should see the depth of the deepest point and other peaks. Mean depth is plotted as a grey line, indicating mean dive depth up to a particular moment during the dive. [icon="images/icons/scale.jpg"] [NOTE] In some cases the dive profile does not fill the whole area of the *Dive Profile* panel. Clicking the *Scale* button in the toolbar on the left of the dive profile frequently increases the size of the dive profile to fill the area of the panel efficiently. *Water temperature* is displayed with its own blue line with temperature values placed adjacent to significant changes. The dive profile can include graphs of the *partial pressures* of O~2~, N~2~, and He during the dive (see figure above) as well as a calculated and dive computer reported deco ceilings (only visible for deep, long, or repetitive dives). Partial pressures of oxygen are indicated in green, those of nitrogen in black, and those of helium in dark red. These partial pressure graphs are shown below the profile data. [icon="images/icons/O2.jpg"] [NOTE] Clicking this button allows display of the partial pressure of *oxygen* during the dive. This is depicted below the dive depth and water temperature graphs. [icon="images/icons/N2.jpg"] [NOTE] Clicking this button allows display of the partial pressure of *nitrogen* during the dive. [icon="images/icons/He.jpg"] [NOTE] Clicking this button allows display of the partial pressure of *helium* during the dive. This is only of importance to divers using Trimix, Helitrox or similar breathing gasses. The *air consumption* graph displays the tank pressure and its change during the dive. The air consumption takes depth into account so that even when manually entering the start and end pressures the graph is not a straight line. Similarly to the depth graph the slope of the tank pressure gives the user information about the momentary SAC rate (Surface Air Consumption) when using an air integrated dive computer. Here the colour coding is not relative to some absolute values but relative to the average normalised air consumption during the dive. So areas that are red or orange indicate times of increased normalized air consumption while dark green reflects times when the diver was using less gas than average. [icon="images/icons/Heartbutton.png"] [NOTE] Clicking on the heart rate button will allow the display of heart rate information during the dive if the dive computer was attached to a heart rate sensor. It is possible to *zoom* into the profile graph. This is done either by using the scroll wheel / scroll gesture of your mouse or trackpad. By default _Subsurface_ always shows a profile area large enough for at least 30 minutes and 30m (100ft) – this way short or shallow dives are intuitively recognizable; something that free divers clearly won’t care about. image::images/MeasuringBar.png["FIGURE: Measuring Bar",align="center"] [icon="images/icons/ruler.jpg"] [NOTE] Measurements of *depth or time differences* can be achieved by using the *ruler button* on the left of the dive profile panel. The measurement is done by dragging the red dots to the two points on the dive profile that the user wishes to measure. Information is then given in the horizontal white area underneath the two red dots. [icon="images/icons/ShowPhotos.png"] [NOTE] Photographs that have been added to a dive can be shown on the profile by selecting the *Show-photo* button. The position of a photo on the profile indicates the exact time when this photo was taken. If this button is not active, the photos are hidden. The profile can also include the dive computer reported *ceiling* (more precisely, the deepest deco stop that the dive computer calculated for each particular moment in time) as a red overlay on the dive profile. Ascent ceilings arise when a direct ascent to the surface increases the risk of a diver suffering from decompression sickness (DCS) and it is necessary to either ascend slower or to perform decompression stop(s) before ascending to the surface. Not all dive computers record this information and make it available for download; for example all of the Suunto dive computers fail to make this very useful data available to divelog software. _Subsurface_ also calculates ceilings independently, shown as a green overlay on the dive profile. Because of the differences in algorithms used and amount of data available (and other factors taken into consideration at the time of the calculation) it is unlikely that ceilings from dive computers and from _Subsurface_ are the same, even if the same algorithm and _gradient factors_ (see below) are used. It is also quite common that _Subsurface_ calculates a ceiling for non-decompression dives when the dive computer stayed in non-deco mode during the whole dive (represented by the [green]#dark green# section in the profile at the beginning of this section). This is caused by the fact that _Subsurface’s_ calculations describe the deco obligation at each moment during a dive, while dive computers usually take the upcoming ascent into account. During the ascent some excess nitrogen (and possibly helium) are already breathed off so even though the diver technically encountered a ceiling at depth, the dive still does not require an explicit deco stop. This feature allows dive computers to offer longer non-stop bottom times. [icon="images/icons/cceiling.jpg"] [NOTE] If the dive computer itself calculates a ceiling and makes it available to _Subsurface_ during upload of dives, this can be shown as a red area by checking *Dive computer reported ceiling* button on the Profile Panel. [icon="images/icons/ceiling1.jpg"] [NOTE] If the *Calculated ceiling* button on the Profile Panel is clicked, then a ceiling, calculated by _Subsurface_, is shown in green if it exists for a particular dive (*A* in figure below). This setting can be modified in two ways: [icon="images/icons/ceiling2.jpg"] [NOTE] If, in addition, the *show all tissues* button on the Profile Panel is clicked, the ceiling is shown for the tissue compartments following the Bühlmann model (*B* in figure below). [icon="images/icons/ceiling3.jpg"] [NOTE] If, in addition, the *3m increments* button on the Profile Panel is clicked, then the ceiling is indicated in 3 m increments (*C* in figure below). image::images/Ceilings2.jpg["Figure: Ceiling with 3m resolution",align="center"] [icon="images/icons/ShowCylindersButton.jpg"] [NOTE] By selecting this icon, the different cylinders used during a dive can be represented as a coloured bar at the bottom of the *Dive Profile*. In general oxygen is represented by a green bar, nitrogen with a yellow bar and helium with a red bar. The image below shows a dive which first uses a trimix cylinder (red and green), followed by a switch to a nitrox cylinder (yellow and green) after 23 minutes. Cylinders with air are shown as a light blue bar. image::images/ShowCylinders_f20.jpg["Figure: Cylinder use graph",align="center"] [icon="images/tissues.jpg"] [NOTE] Display inert gas tissue pressures relative to ambient inert gas pressure (horizontal grey line). Tissue pressures are calculated using the Bühlmann ZH-L16 algorithm and are displayed as lines ranging from green (faster tissues) to blue (slower tissues). The black line, graphed above the ambient pressure, is the maximum allowable tissue supersaturation (pressure limit) derived from the gradient factors specified in the *Preferences*. For divers involved in planned decompression diving, efficient rates of offgasing are obtained with tissue pressures between the ambient inert gas pressure (grey line) and the pressure limit (black line). This display is a representation of the tissue pressures during the whole dive. In contast, the xref:S_gas_pressure_graph[Gas Pressure Graph] in the *Information Box* on the *Dive Profile* is an instantaneous reflection of tissue pressures at the moment in time reflected by the position of the cursor on the dive profile. image::images/tissuesGraph.jpg["Figure: Inert gas tissue pressure graph",align="center"] Gradient Factor settings strongly affect the calculated ceilings and their depths. For more information about Gradient factors, see the section on xref:S_GradientFactors[Gradient Factor Preference settings]. The currently used gradient factors (e.g. GF 35/75) are shown above the depth profile if the appropriate toolbar buttons are activated. *N.B.:* The indicated gradient factors are NOT the gradient factors in use by the dive computer, but those used by _Subsurface_ to calculate deco obligations during the dive. For more information external to this manual see: ** http://www.tek-dive.com/portal/upload/M-Values.pdf[Understanding M-values by Erik Baker, _Immersed_ Vol. 3, No. 3.] ** link:http://www.rebreatherworld.com/general-and-new-to-rebreather-articles/5037-gradient-factors-for-dummies.html[Gradient factors for dummies, by Kevin Watts] === The Dive Profile context menu The context menu for the Dive Profile is accessed by right-clicking while the mouse cursor is over the Dive Profile panel. The menu allows the creation of Bookmarks or Gas Change Event markers or manual CCR set-point changes other than the ones that might have been imported from a Dive Computer. Markers are placed against the depth profile line and with the time of the event set by where the mouse cursor was when the right mouse button was initially clicked to bring up the menu. Gas Change events involve a selection of which gas is being switched to, the list of choices being based on the available gases defined in the *Equipment* Tab. Set-point change events open a dialog allowing to choose the next set-point value. As in the planner, a set-point value of zero indicates the diver is breathing from an open circuit system while any non-zero value indicates the use of a closed circuit rebreather (CCR). By right-clicking while over an existing marker a menu appears, adding options to allow deletion of the marker or to allow all markers of that type to be hidden. Hidden events can be restored to view by selecting Unhide all events from the context menu. [[S_InfoBox]] === The *Information Box* The Information box displays a large range of information pertaining to the dive profile. Normally the Information Box is located to the top left of the *Dive Profile* panel. If the mouse points outside of the *Dive Profile* panel, then only the top line of the Information Box is visible (see left-hand part of figure (*A*) below). The Information Box can be moved around in the *Dive Profile* panel by click-dragging it with the mouse so that it is not obstructing important detail. The position of the Information Box is saved and used again during subsequent dive analyses. image::images/InfoBox2.jpg["Figure: Information Box",align="center"] The moment the mouse points inside the *Dive Profile* panel, the information box expands and shows many data items. In this situation, the data reflect the time point along the dive profile indicated by the mouse cursor (see right-hand part of figure (*B*) above where the Information Box reflects the situation at the position of the cursor [arrow] in that image). Therefore, moving the cursor in the horizontal direction allows the Information Box to show information for any point along the dive profile. In this mode, the Information Box gives extensive statistics about depth, gas and ceiling characteristics of the particular dive. These include: Time period into the dive (indicated by a @), depth, cylinder pressure (P), temperature, ascent/descent rate, surface air consumption (SAC), oxygen partial pressure, maximum operating depth, equivalent air depth (EAD), equivalent narcotic depth (END), equivalent air density depth (EADD), decompression requirements at that instant in time (Deco), time to surface (TTS), the calculated ceiling, as well as the calculated ceiling for several Bühlmann tissue compartments. The user has control over the display of several statistics, represented as four buttons on the left of the profile panel. These are: [icon="images/icons/MOD.jpg"] [NOTE] Clicking this button causes the Information Box to display the *Maximum Operating Depth (MOD)* of the dive, given the gas mixture used. MOD is dependent on the oxygen concentration in the breathing gas. For air (21% oxygen) it is around 57 m if a maximum pO~2~ of 1.4 is specified in the *Preferences* section (select _File_ -> Preferences -> Graph_ and edit the text box _Max pO~2~ when showing MOD_. Below the MOD there is a markedly increased risk of exposure to the dangers associated with oxygen toxicity. [icon="images/icons/NDL.jpg"] [NOTE] Clicking this button causes the Information Box to display the *No-deco Limit (NDL)* or the *Total Time to Surface (TTS)*. NDL is the time duration that a diver can continue with a dive, given the present depth, that does not require decompression (that is, before an ascent ceiling appears). Once one has exceeded the NDL and decompression is required (that is, there is an ascent ceiling above the diver, then TTS gives the number of minutes required before the diver can surface. TTS includes ascent time as well as decompression time. [icon="images/icons/SAC.jpg"] [NOTE] Clicking this button causes the Information Box to display the *Surface Air Consumption (SAC)*. SAC is an indication of the surface-normalised respiration rate of a diver. The value of SAC is less than the real respiration rate because a diver at 10m uses breathing gas at a rate roughly double that of the equivalent rate at the surface. SAC gives an indication of breathing gas consumption rate independent of the depth of the dive so that the respiratory rates of different dives can be compared. The units for SAC is litres/min or cub ft/min. [icon="images/icons/EAD.jpg"] [NOTE] Clicking this button displays the *Equivalent Air Depth (EAD)* for nitrox dives as well as the *Equivalent Narcotic Depth (END)* for trimix dives. These are numbers of importance to divers who use breathing gases other than air. Their values are dependent on the composition of the breathing gas. The EAD is the depth of a hypothetical air dive that has the same partial pressure of nitrogen as the current depth of the nitrox dive at hand. A nitrox dive leads to the same decompression obligation as an air dive to the depth equaling the EAD. The END is the depth of a hypothetical air dive that has the same sum of partial pressures of the narcotic gases nitrogen and oxygen as the current trimix dive. A trimix diver can expect the same narcotic effect as a diver breathing air diving at a depth equaling the END. Figure (*B*) above shows an information box with a nearly complete set of data. [[S_gas_pressure_graph]] ==== The Gas Pressure Bar Graph On the left of the *Information Box* is a vertical bar graph indicating the pressures of the nitrogen (and other inert gases, e.g. helium, if applicable) that the diver was inhaling _at a particular instant during the dive_, indicated by the position of the cursor on the *Dive Profile*. The drawing on the left below indicates the meaning of the different parts of the Gas Pressure Bar Graph. image::images/GasPressureBarGraph.jpg["FIGURE:Gas Pressure bar Graph",align="center"] - The light green area indicates the total gas, with the top margin of the light green area indicating the total gas pressure inhaled by the diver and measured from the bottom of the graph to the top of the light green area. This pressure has a _relative_ value in the graph and does not indicate absolute pressure. - The horizontal black line underneath the light green margin indicates the equilibrium pressure of the inert gases inhaled by the diver, usually nitrogen. In the case of trimix, it is the pressures of nitrogen and helium combined. In this example, the user is diving with EAN32, so the inert gas pressure is 68% of the distance from the bottom of the graph to the total gas pressure value. - The dark green area at the bottom of the graph represents the pressures of inert gas in each of the 16 tissue compartments, following the Bühlmann algorithm, the fast tissues being on the left hand side. - The top black horizontal line indicates the gradient factor that applies to the depth of the diver at the particular point on the *Dive Profile*. The gradient factor shown is an interpolation between the FGLow and GFHigh values specified in the Graph tab of the *Preferences Panel* of *Subsurface*. - The bottom margin of the red area in the graph indicates the Bühlman-derived M-value, that is the pressure value of inert gases at which bubble formation is expected to be severe, resulting in decompression sickness. These five values are indicated on the left in the graph above. The way the Gas Pressure Bar Graph changes during a dive is indicated on the right hand side of the above figure for a diver using EAN32. - Graph *A* indicates the situation at the start of a dive with diver at the surface. The pressures in all the tissue compartments are still at the equilibrium pressure because no diving has taken place. - Graph *B* indicates the situation after a descent to 30 meters. Few of the tissue compartments have had time to respond to the descent, their gas pressures being far below the equilibrium gas pressure. - Graph *C* represents the pressures after 30 minutes at 30 m. The fast compartments have attained equilibrium (i.e. they have reached the hight of the black line indicating the equilibrium pressure). The slower compartments (towards the right) have not reached equilibrium and are in the process of slowly increasing in pressure. - Graph *D* shows the pressures after ascent to a depth of 4.5 meters. Since, during ascent, the total inhaled gas pressure has decreased strongly from 4 bar to 1.45 bar, the pressures in the different tissue compartments now exceed that of the total gas pressure and approaches the gradient factor value (i.e. the top black horizontal line). Further ascent will result in exceeding the gradient factor value (GFHigh), endangering the diver. - Graph *E* indicates the situation after remaining at 4.5 meters for 10 minutes. The fast compartments have decreased in pressure. As expected, the pressures in the slow compartments have not changed much. The pressures in the fast compartments do not approach the GFHigh value any more and the diver is safer than in the situation indicated in graph *D*. == Organising the logbook (Manipulating groups of dives) === The Dive List context menu Several actions on either a single dive or a group of dives can be performed using the Dive List Context Menu, found by selecting either a single dive or a group of dives and then right-clicking. image::images/ContextMenu.jpg["Figure: Context Menu",align="center"] # NEEDS REPLACEMENT The context menu is used in many manipulations described below. ==== Customising the columns showed in the *Dive List* panel image::images/DiveListOptions.jpg["Example: Dive list info options",align="center"] The default information in the *Dive List* includes, for each dive, Dive_number, Date, Rating, Dive_depth, Dive_duration and Dive_location. This information can be controlled and changed by right-clicking on the header bar of the *Dive List*. For instance, a right-click on the 'Date' header brings up a list of items that can be shown in the dive list (see above). Select an item to be shown in the *Dive List* or to be deleted from the dive list (reflected by the check symbols) and the list is immediately updated. Preferences for information shown in the *Dive List* are saved and used when _Subsurface_ is re-opened. [[S_Renumber]] === Renumbering the dives Dives are normally numbered incrementally from non-recent dives (low sequence numbers) to recent dives (having the highest sequence numbers). The numbering of the dives is not always consistent. For instance, when non-recent dives are added to the dive list the numbering does not automatically follow on because of the dives that are more recent in date/time than the newly-added dive with an older date/time. Therefore, one may sometimes need to renumber the dives. This is performed by selecting (from the Main Menu) _Log -> Renumber_. Users are given a choice with respect to the lowest sequence number to be used. Completing this operation results in new sequence numbers (based on date/time) for the dives in the *Dive List* panel. One can also renumber a few selected dives in the dive list. Select the dives that need renumbering. Right-click on the selected list and use the Dive List Context Menu to perform the renumbering. A popup window appears requiring the user to specify the starting number for the renumbering process. [[S_Group]] === Grouping dives into trips and manipulating trips For regular divers, the dive list can rapidly become very long. _Subsurface_ can group dives into _trips_. It performs this by grouping dives that have date/times not separated in time by more than two days, thus creating a single heading for each diving trip represented in the dive log. Below is an ungrouped dive list (*A*, on the left) as well as the corresponding grouped dive list comprising five dive trips (*B*, on the right): image::images/Group2.jpg["Figure: Grouping dives",align="center"] Grouping into trips allows a rapid way of accessing individual dives without having to scan a long lists of dives. In order to group the dives in a dive list, (from the Main Menu) select _Log -> Autogroup_. The *Dive List* panel now shows only the titles for the trips. ==== Editing the title and associated information for a particular trip Normally, in the dive list, minimal information is included in the trip title. More information about a trip can be added by selecting its trip title from the *Dive List*. This shows a *Trip Notes* tab in the *Notes* panel. Here one can add or edit information about the date/time, the trip location and any other general comments about the trip as a whole (e.g. the dive company that was dived with, the general weather and surface conditions during the trip, etc.). After entering this information, select *Save* from the buttons at the top right of the *Trip Notes* tab. The trip title in the *Dive List* panel should now reflect the edited information. ==== Viewing the dives during a particular trip Once the dives have been grouped into trips, users can expand one or more trips by clicking the arrow-head on the left of each trip title. This expands the selected trip, revealing the individual dives performed during the trip. ==== Collapsing or expanding dive information for different trips After selecting a particular trip in the dive list, the context menu allows several possibilities to expand or collapse dives within trips. This includes expanding all trips and collapsing all trips. ==== Merging dives from more than one trip into a single trip After selecting a trip title, the context menu allows the merging of trips by either merging the selected trip with the trip below or with the trip above. (Merge trip with trip below; Merge trip with trip above) ==== Splitting a single trip into more than one trip If a trip includes ten dives, the user can split this trip into two trips (trip 1: top 4 dives; trip 2: bottom 6 dives) by selecting and right-clicking the top four dives. The resulting context menu allows the user to create a new trip by choosing the option *Create new trip above*. The top four dives are then grouped into a separate trip. The figures below shows the selection and context menu on the left (A) and the completed action on the right (B): image::images/SplitDive3a.jpg["FIGURE: Split a trip into 2 trips",align="center"] === Manipulating single dives ==== Delete a dive from the dive log Dives can be permanently deleted from the dive log by selecting and right-clicking them to bring up the context menu, and then selecting *Delete dive(s)*. Typically this would apply to a case where a user wishes to delete workshop calibration dives of the dive computer or dives of extremely short duration. ==== Unlink a dive from a trip Users can unlink dives from the trip to which they belong. In order to do this, select and right-click the relevant dives to bring up the context menu. Then select the option *Remove dive(s) from trip*. The dive(s) now appear immediately above or below the trip to which they belonged, depending on the date and time of the unliked dive. ==== Add a dive to the trip immediately above Selected dives can be moved from the trip to which they belong and placed within a separate trip. To do this, select and right-click the dive(s) to bring up the context menu, and then select *Create new trip above*. ==== Shift the start time of dive(s) Sometimes it is necessary to adjust the start time of a dive. This may apply to situations where dives are performed in different time zones or when the dive computer has an erroneous time. In order to do this, select and right-click the dive(s) to be adjusted. This action brings up the context menu on which the *Shift times* option should be selected. User must then specify the time (in hours and minutes) by which the dives should be adjusted and click on the option indicating whether the time adjustment should be ealier or later. ==== Merge dives into a single dive Sometimes a dive is briefly interrupted, e.g. if a diver returns to the surface for a few minutes, resulting in two or more dives being recorded by the dive computer and appearing as different dives in the *Dive List* panel. Users can merge these dives onto a single dive by selecting the appropriate dives, right-clicking them to bring up the context menu and then selecting *Merge selected dives*. It may be necessary to edit the dive information in the *Notes* panel to reflect events or conditions that apply to the merged dive. The figure below shows the depth profile of two dives that were merged: image::images/MergedDive.png["Example: Merged dive",align="center"] ==== Undo dive manipulations Important actions on dives or trips, described above, can be undone or redone. This includes: _delete dives_, _merge dives_, _renumber dives_ and _shift dive times_. To do this after performing any of these actions, from the *Main Menu* select _Edit_. This brings up the possibility to _Undo_ or _Redo_ an action. [[S_Filter]] === Filtering the dive list The dives in the *Dive List* panel can be filtered, that is, one can select only some of the dives based on their attributes, e.g. dive tags, dive site, dive master, buddy or protective clothing. For instance, filtering allows one to list the deep dives at a particular dive site, or otherwise the cave dives with a particular buddy. To open the filter, select _Log -> Filter divelist_ from the main menu. This opens the _Filter Panel_ at the top of the _Subsurface_ window. Three icons are located at the top right hand of the filter panel (see image below). The _Filter Panel_ can be reset (i.e. all current filters cleared) by selecting the *yellow angled arrow*. The _Filter Panel_ may also be minimised by selecting the *green up-arrow". When minimised, only these three icons are shown. The panel can be maximised by clicking the icon that minimised the panel. The filter may also be reset and closed by selecting the *red button* with the white cross. image::images/Filterpanel.jpg["Figure: Filter panel",align="center"] Four filter criteria may be used to filter the dive list: dive tags, person (buddy / dive master), dive site and dive suit, each of which is represented by a check list with check boxes. Above each check list is a second-level filter tool, allowing the listing of only some of the attributes within that check list. For instance, typing "_ca_" in the filter textbox above the tags check list results in the tags check list being reduced to "_cave_" and "_cavern_". Filtering of the check list enables the rapid finding of search terms for filtering the dive list. To activate filtering of the dive list, check at least one check box in one of the four check lists. The dive list is then shortened to include only the dives that pertain to the criteria specified in the check lists. The four check lists work as a filter with _AND_ operators, Subsurface filters therefore for _cave_ as a tag AND _Joe Smith_ as a buddy; but the filters within a category are inclusive - filtering for _cave_ and _boat_ shows those dives that have either one OR both of these tags. [[S_ExportLog]] == Exporting the dive log or parts of the dive log There are two routes for the export of dive information from Subsurface: - Export dive information to _Facebook_ - xref:S_Export_other[Export dive information to other destinations or formats] [[S_facebook]] === Exporting dive information to _Facebook_ Export of dives to _Facebook_ is handled differently from other types of export because a connection to _Facebook_ is required, needing a _Facebook_ userID and password. If, from the Main Menu, one selects _File -> Preferences -> Facebook_, a login screen is presented (see image *A* to the left, below). Provide your _Facebook_ userID and password. Once a successful login to _Facebook_ has been achieved, the panel in image *B*, below is presented, including a _Disconnect from Facebook_ button to close the _Facebook_ connection. image::images/facebook1_f20.jpg["Figure: Facebook login",align="center"] Having established a login to _Facebook_, transfer of a dive profile to one's _Facebook_ timeline is easy. Ensure that the dive to transfer to the timeline is depicted in the _Subsurface_ *Dive Profile* panel. If one selects _Share on -> Facebook_ from the *Main Menu* a dialogue is shown, determining the amount of additional information transferred with the dive profile (see image *B*, below). In order to transfer a dive profile to _Facebook_, the name of a _Facebook_ album needs to be provided. The checkboxes on the lefthand side allow one to determine how much additional information should be transferred with the dive profile. This information is shown in the text box on the right hand side of the panel (see image *B*, below). One can easily edit the message that will be posted with the dive profile. Having specified the additional information and verified the text, select the _OK_ button that triggers the transfer to _Facebook_. After a while, an acknowledgement dialogue appears, indicating successful transfer to _Facebook_. Both the album created and the post to one's timeline will be marked as private. In order for friends to be able to see the post, change its permissions from a regular Facebook login either in a browser or a Facebook app. While this is an extra step this is the better solution to avoid having unwanted posts in one's public timeline. image::images/facebook2_f20.jpg["Figure: Facebook login",align="center"] If required, then close the _Facebook_ connection by either closing _Subsurface_ or by selecting _File -> Preferences -> Facebook_ from the Main Menu, and clicking the appropriate button on the Facebook Preferences panel. [[S_Export_other]] === Export dive information to other destinations or formats For non-_Facebook exports_, the export function can be reached by selecting _File -> Export_, which brings up the Export dialog. This dialog always gives two options: save ALL dives, or save only the dives selected in *Dive List* panel of _Subsurface_. Click the appropriate radio button (see images below). image::images/Export_f20.jpg["Figure: Export dialog",align="center"] A dive log or part of it can be saved in three formats: * _Subsurface XML_ format. This is the native format used by _Subsurface_. * Universal Dive Data Format (_UDDF_). Refer to _http://uddf.org_ for more information. UDDF is a generic format that enables communication among many dive computers and computer programs. * _Divelogs.de_, an Internet-based dive log repository. In order to upload to _Divelogs.de_, one needs a user-ID as well as a password for _Divelogs.de_. Log into _http://en.divelogs.de_ and subscribe to this service in order to upload dive log data from _Subsurface_. * _DiveShare_ is also a dive log repository on the Internet focusing on the recreational dives. In order to upload dives one has to provide a used ID, so registration with _http://scubadiveshare.com_ is required. * _CSV dive details_, that includes the most critical information of the dive profile. Included information of a dive is: dive number, date, time, buddy, duration, depth, temperature and pressure: in short, most of the information that recreational divers enter into handwritten log books. * _CSV dive profile_, that includes a large amount of detail for each dive, including the depth profile, temperature and pressure information of each dive. * _HTML_ format, in which the dive(s) are stored in HTML files, readable with an Internet browser. Most modern web browsers are supported, but JavaScript must be enabled. The HTML export cannot be changed or edited. It contains most of the information recorded in the dive log. However, it does not show the calculated values in the *Dive Profile* panel, e.g. calculated cylinder pressure, gas pressures and MOD. The HTML export contains a search option to search the dive log. HTML export is specified on the second tab of the Export dialog (image *B* above). A typical use of this option is to export all one's dives to a smartphone or a tablet where it would serve as a very portable record of dives useful for dive companies that wish to verify the dive history of a diver, often doing away with the need to carry one's original logbook with one when doing dives with dive companies. * _Worldmap_ format, an HTML file with a world map upon which each dive and some information about it are indicated. This map is not editable. If one selects any of the dive sites on the map, a summary of the dive is available in text, as shown in the image below. image::images/mapview_f20.jpg["Figure: HTML Map export view",align="center"] * _Image depths_, which creates a text file that contains the file names of all photos or images attached to any of the selected dives in the _Dive List_, together with the depth under water where of each of those photos were taken. * _General Settings_, under the HTML tab, provides the following options: ** Subsurface Numbers: if this option is checked, the dive(s) are exported with the numbers associated with them in Subsurface, Otherwise the dive(s) will be numbered starting from 1. ** Export Yearly Statistics: if this option is checked, a yearly statistics table will be attached to the HTML exports. ** Export List only: a list of dives only (date, time, depth, duration) will be exported and the detailed dive information, e.g. dive profile, will not be available. * Under _Style Options_ some style-related options are available like font size and theme. Export to other formats can be achieved through third party facilities, for instance _www.divelogs.de_. [[S_Cloud_access]] == Keeping a _Subsurface_ dive log in the Cloud For each diver, dive log information is highly important. Not only is it a record of diving activities for one's own pleasure, but it is important information required for admission to further training courses or (sometimes) even diving sites. The security of the dive log is therefore critical. In order to have a dive log that is resistant to failure of a home computer hard drive, loss or theft of equipment, the Cloud is an obvious solution. This also has the added benefit that one can access one's dive log from anywhere in the world without having to carry it with oneself. For this reason, facilities such as _divelogs.de_ and _Diving Log_ offer to store dive log information on the Internet. _Subsurface_ includes access to a transparently integrated cloud storage backend that is available to all Subsurface users. Storing and retrieving a dive log from the cloud is no more difficult than accessing the dives on the local hard disk. The only requirement is that one should first register as a user on the cloud. To use _Subsurface cloud storage_ , follow these steps: === Create a cloud storage account ** Open the *Network Preferences* by selecting _File_ -> _Preferences_ -> _Network_. ** In the section headed _Subsurface cloud storage_, enter an email address that _Su bsurface can use for user registration. ** Enter a novel password that_Subsurface_ will use to store the dive log in the cloud. ** Click _Apply_ to send the above email address and password to the (remote) cloud server. The server responds by sending a verification PIN to the above email address (This is the *only* occasion that _Subsurface_ uses the email address provided above). The *Network Preferences* dialog now has a new PIN text box, not visible previously. ** Enter the PIN in the corresponding text box in the *Network Preferences* dialog (this field is only visible while the server is waiting for email address confirmation) ** Click _Apply_ again. The _Subsurface cloud storage_ account will be marked as verified and the _Subsurface cloud storage_ service is initialised for use. === Using _Subsurface cloud storage_ ** Once the cloud storage has been initialised, two new items appear in the _File_ menu of the main menu system: _Open cloud storage_ and _Save to cloud storage_. These options allow the user to load and save data to the _Subsurface cloud storage_ server. ** In the _Defaults Preferences_ tab, one can select to use the _Subsurface cloud storage_ data as one's default data file by checking the check box marked _Cloud storage default file_. This means that the data from the _Subsurface cloud storage_ is loaded when _Subsurface_ starts ans saved there when one closes _Subsurface_. ** _Subsurface_ keeps a local copy of the data and the cloud facility remains fully functional even if used while disconnected to the Internet. _Subsurface_ simply synchronises the data with the cloud server the next time ithe program is used while the computer is connected to the Internet. [[S_Cloud_storage]] === Web access to _Subsurface cloud storage_ One of the nice side benefits of using _Subsurface cloud storage_ is that one can also access one's dive data from any web browser. Simply open https://cloud.subsurface-divelog.org[_https://cloud.subsurface-divelog.org_], log in with the same email and password, and you can see an HTML export of the last dive data that was synced to the _Subsurface cloud storage_. The dive information that is shown is only the contents of the recorded dive logs, NOT the calculated values shown in the *Profile* panel, including some cylinder pressures, deco ceilings and O~2~/He/N~2~ partial pressures. === Other cloud services If one prefers not to use the integrated cloud storage of dive logs (and don't need the web access), it is also simple to store dive logs in the cloud using several of the existing facilities on the Internet. For instance http://www.dropbox.com/[_Dropbox_] offers a free application that allows files on the Dropbox servers to be seen as a local folder on one's desktop computer. image::images/Cloud.jpg["FIGURE: Dropbox folder",align="center"] The _Dropbox_ program creates a copy of the _Dropbox_ Internet Cloud content on one's desktop computer. When the computer is connected to the Internet, the Internet content is automatically updated. Therefore both the _Open_ and _Save_ of dive logs are done using the local copy of the dive log in the local _Dropbox_ folder, so there's no need for a direct internet connection. If the local copy is modified, e.g. by adding a dive, the remote copy in the _Dropbox_ server in the Cloud will be automatically updated whenever Internet access is available. In this way a dive log in one's _Dropbox_ folder can be accessed seamlessly from the Internet and can be accessed from any place with Internet access. Currently there are no costs involved for this service. Dropbox (Windows, Mac and Linux) can be installed by accessing the http://www.dropbox.com/install[_Install Page on the Dropbox website_] . Alternatively one can use _Dropbox_ as a mechanism to backup one's dive log. To Store a dive log on _Dropbox_, select _File -> Save as_ from the _Subsurface_ main menu, navigate to the _Dropbox_ folder and select the _Save_ button. To access the dive log in _Dropbox_, select _File -> Open Logbook_ from the _Subsurface_ main menu and navigate to the dive log file in the _Dropbox_ folder and select the _Open_ button. Several paid services exist on the Internet (e.g. Google, Amazon) where the same process could be used for the Cloud-based storage of dive logs. [[S_PrintDivelog]] == Printing a dive log _Subsurface_ provides a simple and flexible interface to print a whole dive log or only a few selected dives. Pre-installed templates or a custom written template can be used to choose where the data are fitted into the page. Before printing, two decisions are required: - Should the whole dive log be printed or only part of it? If only part of the dive log is required, then select the required dives from the *Dive List* panel. - If the dive profiles needs printing, what gas partial pressure information should be shown? Select the appropriate toggle-buttons on the button bar to the left of the *Dive Profile* panel. If _File -> Print_ is selected from the Main menu, the the dialogue below (image *A*) appears. Three specifications are needed to achieve the desired information and page layout: image::images/Print1_f22.jpg["FIGURE: Print dialogue",align="center"] 1. Under _Print type_ select one of two options: - _Dive list print_: Print dives from the *Dive List* panel with profiles and other information. - _Statistics print_: Print yearly statistics of the dives. 2. Under _Print options_ select: - Printing only the dives selected from the dive list prior to activating the print dialogue by checking the box _Print only selected dives_. If this check box is *not* checked all dives in the *Dive List* panel are printed. - Printing in colour, achieved by checking the box with _Print in colour_. If this check box is not checked, printing is in monochrome (grey scale). 3. Under _Template_ select a template to be used as the page layout. There are several templates (see image *B*, above). - _Table_: This prints a summary table of all dives selected (see below). image::images/Print_summarylist_f22.jpg["FIGURE: Print summary table",align="center"] - _Flow layout_: Print the text associated with each diev without printing the dive profiles of each dive (see below): image::images/Print_flow_layout_f22.jpg["FIGURE: Print flow layout",align="center"] - _One Dive_: Print one dive per page, also showing the dive profile (see below) image::images/print2_f22.jpg["FIGURE: Print one dive / page",align="center"] - _Two Dives_: Print two dives per page, also showing the dive profiles. - _Six Dives_: Print six dives per page, also showing the dive profiles. - _Custom_: This option allows customisation of the print contents and layout. This is discussed at the end of this section. Users can _Preview_ the printed page by selecting the _Preview_ button on the dialogue (see image *A* at the start of this section). After preview, changes to the options in the print dialogue can be made, resulting in a layout that fits personal taste. Next, select the _Print_ button (see image *A* at the start of this section). This activates the regular print dialogue used by the user operating system, allowing one to choose a printer and to set its properties (see image below): image::images/Print_print_f22.jpg["FIGURE: Print one dive / page",align="center"] Set the print resolution of the printer to an appropriate value by changing the printer _Properties_. Finally, select the _Print_ button to print the dives. Below is a (rather small) example of the output for one particular page. image::images/Printpreview.jpg["FIGURE: Print preview page",align="center"] === Write a custom printing template (advanced) Writing a custom template is an effective way to produce highly customized printouts. Subsurface uses HTML templates to render printing. One can create a template, export a new template, import an existing template and delete an existing template by using the appropriate buttons under the _Template_ dropdown list in the print dialogue. See <> for information on how to write or modify a template. [[S_Configure]] == Configuring a dive computer _Subsurface_ enables one to configure a dive computer. Currently the Heinrichs-Weikamp (OSTC 2, OSTC 3) and Suunto Vyper (Stinger, Mosquito, D3, Vyper, Vytec, Cobra, Gekko and Zoop) family of dive computers are supported. A large number of settings of these dive computers can be read and changed to different values. As a first step, ensure that the appropriate hardware driver is installed for the dive computer (also required for downloading dives) and that the device name of the dive computer is known. See <<_appendix_a_operating_system_specific_information_for_importing_dive_information_from_a_dive_computer,APPENDIX A>> for information on how to do this. Once the dive computer is connected to the _Subsurface_ computer, select _File -> Configure dive computer_ from the _Main Menu_. Provide the appropriate device name in the text box at the top of the configuration panel and select the appropriate dive computer model from the panel on the lefthand (see image below). image::images/Configure_dc_f20.jpg["FIGURE: Configure dive computer",align="center"] Using the appropriate buttons on the configuration panel, the following actions can be performed: - *Retrieve available details*. This loads the existing configuration from the dive computer to _Subsurface_, showing it in the configuration panel. - *Save changes to device*. This changes the configuration of the dive computer to correspond to the information shown in the configuration panel. - *Backup*. This saves the configuration data to a file. _Subsurface_ asks for a file location and file name for the saved information. - *Restore backup*. This loads the information from a backup file and displays it in the configuration panel. - *Update firmware*. If new firmware is available for the dive computer, this is loaded into the dive computer. [[S_Preferences]] == Setting user _Preferences_ for _Subsurface_ There are several settings within _Subsurface_ that the user can specify. These are found when selecting _File -> Preferences_. The settings are performed in five groups: *Defaults*, *Units*, *Graph*, *Language* and *Network*. All five sections operate on the same principles: the user must specify the settings that are to be changed, then these changes are saved using the *Apply* button. After applying all the new settings users can then leave the settings panel by selecting *OK*. === Defaults There are several settings in the *Defaults* panel: image::images/Pref1_f20.jpg["FIGURE: Preferences defaults page",align="center"] ** *Lists and tables*: Here one can specify the font type and font size of the *Dive Table* panel. By decreasing the font size of the *Dive Table*, users can see more dives on a screen. ** *Dives*: For the _Default Dive File_ one needs to specify the directory and file name of one's electronic dive log book. This is a file with filename extension of either _.xml_ or _ssrf_. When launched, _Subsurface_ will automatically load the specified dive log book. There are three options: - _No default file_: When checked, _Subsurface_ does not automatically load a dive log at startup. - _Local default file_: When checked, _Subsurface_ automatically loads a dive log from the local hard disk as descibed above. - _Cloud storage default file_: When checked, _Subsurface automatically loads the dive log from the cloud device that was initialised using the *Preferences* _Network_ tab (see below). ** *Display invalid*: Dives can be marked as invalid (when a user wishes to hide dives that he/she don't consider valid dives, e.g. pool dives, but still want to keep them in the dive log). This controls whether those dives are displayed in the dive list. ** *Default cylinder*: Specify the default cylinder listed in the *Equipment* tab of the *Notes* panel. ** *Animations*: Some actions in showing the dive profile are performed using animations. For instance, the axis values for depth and time change from dive to dive. When viewing a different dive, these changes in axis characteristics do not happen instantaneously, but are animated. The _Speed_ of animations can be controlled by setting this slider with faster animation speed to the left, and a 0 value representing no animation at all. ** *Clear all settings*: As indicated in the button below this heading, all settings are cleared and set to default values. === Units image::images/Pref2_f20.jpg["FIGURE: Preferences Units page",align="center"] Here user can choose between metric and imperial units of depth, pressure, volume, temperature and mass. By selecting the Metric or Imperial radio button at the top, users can specify that all units are in the chosen measurement system. Alternatively, if one selects the *Personalise* radio button, units can be selected independently, with some units in the metric system and others in imperial. Irrespective of the above settings, dive time measurements can be either in seconds or minutes. Choose the appropriate option. GPS coordinates can be represented either as traditionla coordinates (degrees, minutes, seconds) or as decimal degrees Choose the appropiate option. === Graph [[S_CCR_options]] image::images/Pref3_f20.jpg["FIGURE: Preferences Graph page",align="center"] [[S_GradientFactors]] This panel allows two type of selections: * *Show*: Here users can specify the amount of information shown as part of the dive profile: ** Thresholds: _Subsurface_ can display the nitrogen, oxygen and the helium partial pressures during the dive. enabled using the toolbar on the left hand side of the *Dive Profile* panel. For each of these graphs users can specify a threshold value on the right-hand side of the Preferences panel. If any of the graphs go above the specified threshold level, the graph is highlighted in red, indicating that the particular partial presure threshold has been exceeded. ** _Max pO~2~ whn displaying MOD_ is the value used to calculate the maximum operative depth (MOD) for a dive. Specify an appropriate partial pressure. A value of 1.4 is commonly used. ** _Draw dive computer reported ceiling red_: This checkbox allows exactly what it says. By default the computer reported ceiling is shown in white. Not all dive computers report ceiling values. If the dive computer does report it, it may differ from the ceilings calculated by _Subsurface_. This is because of the different algorithms and gradient factors available for calculating ceilings, as well as the dynamic way that a dive computer can calculate ceilings during a dive. ** _Show unused cylinders in Equipment Tab_: This checkbox allows display of information about unused cylinders when viewing the *Equipment Tab*. Conversely, if this box is not checked, and any cylinders entered using the *Equipment Tab* are not used (e.g. there was no gas switch to such a cylinder), then these cylinders are omitted from that list. ** _Show average depth_: If this box is checked, the *Dive Profile* panel contains a grey line that indicates the mean depth of the dive up to any time instant during the dive. Normally this is a u-shaped line indicating the deepest average depth just before the ascent. * *Misc*: [[GradientFactors_Ref]] ** Gradient Factors (GFLow and GFHigh):* Set the _gradient factors_ used while diving. GF_Low is the gradient factor at depth and GF_High is used just below the surface. At intermediate depths gradient factors between GF_Low and GF_High are used. Gradient factors add conservatism to the nitrogen exposure during a dive, in a similar way that many dive computers have a conservatism setting. The lower the value of a gradient factor, the more conservative the calculations are with respect to nitrogen loading and the deeper the ascent ceilings are. Gradient factors of 20/60 are considered conservative and values of 70/90 are considered harsh. Checking the *GFLow at max depth* box causes GF_Low to be used at the deepest depth of a dive. If this box is not checked, GF_Low is applied at all depths deeper than the first deco stop. For more information see: *** http://www.tek-dive.com/portal/upload/M-Values.pdf[Understanding M-values by Erik Baker, _Immersed_ Vol. 3, No. 3.] *** link:http://www.rebreatherworld.com/general-and-new-to-rebreather-articles/5037-gradient-factors-for-dummies.html[Gradient factors for dummies, by Kevin Watts] ** _CCR: Show setpoints when viewing pO2:_ With this checkbox ativated, the pO~2~ graph on the dive profile has an overlay in red which inticates the CCR setpoint values. See the section on xref:S_CCR_dives[Closed Circuit Rebreather dives]. ** _CCR: Show individual O~2~ sensor values when viewing pO~2~:_ Show the pO~2~ values associated with each of the individual oxygen sensors of a CCR system. See the section on xref:S_CCR_dives[Closed Circuit Rebreather dives]. * *Configuring dive planning using rebreather equipment:* ** _Default CCR setpoint for dive planning:_ Specify the O~2~ setpoint for a CCR dive plan. This determines the pO~2~ maintained during a particular dive. Setpoint changes during the dive can be added via the profile context menu. ** _pSCR O~2~ metabolism rate:_ For a semiclosed rebreather (pSCR) system, this is the volume of oxygen used by a diver during a minute. Set this value for pSCR dive planning and decompression calculations. ** _pSCR ratio:_ For pSCR equipment the dump ratio is the ratio of gas released to the environment to that of the gas recirculated to the diver. Set this value for a pSCR dive plan. A 1:10 ratio is commonly used. === Language Choose a language that _Subsurface_ will use. image::images/Pref4_f20.jpg["FIGURE: Preferences Language page",align="center"] A checkbox allows one to use the _System Default_ language which in most cases will be the correct setting; with this _Subsurface_ simply runs in the same language / country settings as the underlying OS. If this is for some reason undesirable users can uncheck this checkbox and pick a language / country combination from the list of included localizations. The _Filter_ text box allows one to list similar languages. For instance there are several system variants of English or French. *This particular preference requires a restart of _Subsurface_ to take effect*. === Network This panel facilitates communication between _Subsurface_ and data sources on the Internet. This is important, for instance, when _Subsurface_ needs to communicate with Internet services such as Cloud storage, the <> or data export/import from _Divelogs.de_. These Internet requirements are determined by one's type of connection to the Internet and by the Internet Service Provider (ISP) used. One's ISP should provide the appropriate information. image::images/Pref5_f20.jpg["FIGURE: Preferences Network page",align="center"] This dialogue has three sections: ** _Proxy type_: If a proxy server is used for Internet access, the type of proxy needs to be selected from the dropdown list, after which the IP address of the host and the appropriate port number should be provided. If the proxy server uses authentication, the appropriate userID and password are required so that _Subsurface_ can automatically pass through the proxy server to access the Internet. This information is usually obtained from one's ISP. ** _Subsurface cloud storage_: In order to store one's dive log in the cloud, a valid email address and password are required. This allows _Subsurface_ to email security information regarding cloud storage to a user, and to set up the cloud storage appropriately. Two additional options are given: - Sync to cloud in the background_: This option allows saving of dive information to the cloud storage while the user performs other tatsks inside _Subsurface_. - _Save password locally_: This allows local storage of the cloud storage password. Note that this information is saved in raw text form, not encoded in any way. ** _Subsurface web service_: When one subscribes to the <>, a very long and hard-to-remember userID is issued. This is the place to save that userID. By checking the option _Save User ID locally?_, one ensures that a local copy of that userID is saved. [[S_Facebook]] === Facebook Accesss This panel allows one to log into a Facebook account in order to transfer information from Subsurface to Facefook. image::images/Pref6_f20.jpg["FIGURE: Facebook login panel",align="center"] If one provides a valid Facebook userID and password, a connection to Facebook is created. The connection to Facebook is closed when one closes down Subsurface. At this point the checkbox labelled "Keep connection to Subsurface", on the login screen has no effect. See the section xref:S_facebook[Exporting dive profiles to Facebook] for more information. === Georeference _Subsurface provides a geo-lookup service (that is, an ability to look up the geographic coordinates of a place name). [[S_DivePlanner]] == The _Subsurface_ dive planner Dive planning is an advanced feature of _Subsurface_, accessible by selecting _Log -> Plan Dive_ from the main menu. It allows calculation of nitrogen load during a dive by using the Bühlmann ZH-L16 algorithm with the addition of gradient factors as implemented by Erik Baker. **** [icon="images/icons/warning2.png"] [WARNING] The _Subsurface_ dive planner IS CURRENTLY EXPERIMENTAL and assumes the user is already familiar with the _Subsurface_ user interface. It is explicitly used under the following conditions: - The user is conversant with dive planning and has the necessary training to perform dive planning. - The user plans dives within his/her certification limits. - Dive planning makes large assumptions about the characteristics of the _average person_ and cannot compensate for individual physiology or health or personal history or life style characteristics. - The safety of a dive plan depends heavily on the way in which the planner is used. - The user is familiar with the user interface of _Subsurface_. - A user who is not absolutely sure about any of the above requirements should not use this feature. **** === The _Subsurface_ dive planner screen Like the _Subsurface_ dive log, the planner screen is divided into several sections (see image below). The *setup* parameters for a dive are entered into the several sections on the left hand side of the screen. The setup is divided into several sections: Available Gases, Rates, Planning, Gas Options and Notes. At the top right hand is a green *design panel* upon which the profile of the dive can be manipulated directly by dragging and clicking as explained below. This feature makes the _Subsurface_ dive planner unique in ease of use. At the bottom right is a text panel with a heading of _Dive Plan Details_. This is where the details of the dive plan are provided in a way that can easily be copied to other software. This is also where any warning messages about the dive plan are printed. image::images/PlannerWindow1_f20.jpg["FIGURE: Dive planner startup window",align="center"] === Open circuit dives - Towards the centre bottom of the planner (circled in blue in the image above) is a dropbox with three options. Select the appropriate one of these: ** Open Circuit (the default) ** CCR ** pSCR - Choose the Open Circuit option. - In the top left-hand area of the planning screen, ensure that the constant dive parameters are appropriate. These are: Start date and time of the intended dive, Atmospheric Pressure and Altitude above sea level of the dive site. The atmospheric pressure can also be entered as an altitude in metres, assuming a sea-level atmospheric pressure of 1.013 bar. - In the table labeled _Available Gases_, add the information of the cylinders to be used as well as the gas composition within that cylinder. This is done in a similar way as for <>. Choose the cylinder type by double clicking the cylinder type and using the dropdown list, then specify the work pressure of this cylinder. By leaving the oxygen concentration (O2%) filed empty, the cylinder is assumed to contain air. Otherwise enter the oxygen and/or helium concentration in the boxes provided in this dialogue. Add additional cylinders by using the "+" icon to the top righthand of the dialogue. - The profile of the planned dive can be created in two ways: * Drag the waypoints (the small white circles) on the existing dive profile in a way to represent the dive. Additional waypoints can be created by double-clicking the existing dive profile. Waypoints can be deleted by right-clicking a particular waypoint and selecting the _delete_ item from the resulting context menu. * The most efficient way to create a dive profile is to enter the appropriate values into the table marked _Dive planner points_. The first line of the table represents the duration and the final depth of the descent from the surface. Subsequent segments describe the bottom phase of the dive. The _CC set point_ column is only relevant for closed circuit divers. The ascent is usually not specified because this is what the planner is supposed to calculate. Add additional segments to the profile by selecting the "+" icon at the top right hand of the table. Segments entered into the _Dive planner points_ table automatically appear in the *Dive Profile* diagram. ==== Recreational dives The _Subsurface_ dive planner allows a sophisticated way of planning recreational dives, i.e. dives that remain within no-decompression limits. The dive planner automatically takes into account the nitrogen load incurred in previous dives. But conventional dive tables are also used in a way that can take into account previous dives. Why use a dive planner for recreational dives? Using recreational dive tables, the maximum depth of a dive is taken into acount. However, few dives are undertaken at a constant depth corresponding to the maximum depth (i.e. a "square" dive profile). This means that dive tables overestimate the nitrogen load incurred during previous dives. The _Subsurface_ dive planner calculates nitrogen load according to the real dive profiles of all uploaded previous dives, in a similar way as dive computers calculate nitrogen load during a dive. This mean that the diver gets 'credit' in terms of nitrogen loading for not remaining at maximum depth during previous dives, enabling planning a longer subsequent dive. For the planner to work it is therefore crucial to upload all previous dives onto _Subsurface_ before performing dive planning. To plan a dive, the appropriate settings need to be defined. - Ensure that the date and time is set to that of the intended dive. This allows calculation of the nitrogen load incurred during previous dives. - Immediately under the heading _Planning_ are two checkboxes _Recreational_ and _Safety Stop_. Check these two boxes. - Then define the cylinder size, the gas mixture (air or % oxygen) and the starting cylinder pressure in the top left-hand section of the planner under _Available gases_. - The planner calculates whether the specified cylinder contains enough air/gas to complete the planned dive. In order for this to be realistic, under _Gas options_, specify an appropriate surface air consumption (SAC) rate for _Bottom SAC_. Suitable values are between 15 l/min and 30 l/min, with novice divers or difficult dives requiring SAC rates closer to 30l/min. - Define the amount of gas that the cylinder must have at the end of the bottom section of the dive just before ascent. A value of 50 bar is often used. - Define the depth of the dive by dragging the waypoints (white dots) on the dive profile or (even better) defining the appropriate depths using the table under _Dive planner points_ as desribed under the previous heading. If this is a multilevel dive, set the appropriate dive depths to represent the dive plan by adding waypoints to the dive profile or by adding appropriate dive planner points to the _Dive Planner Points_ table. - The ascent speed can be changed. The default ascent speeds are those considered safe for recreational divers. The dive profile in the planner indicates the maximum dive time within no-deco limits using the Bühlmann ZH-L16 algorithm and the gas and depth settings specified as described above. The _Subsurface_ planner allows rapid assessment of dive duration as a function of dive depth, given the nitrogen load incurred during previous dives. The dive plan includes estimates of the amount of air/gas used, depending on the cylinder settings specified under _Available gases_. If the initial cylinder pressure is set to 0, the dive duration shown is the true no-deco limit (NDL) without taking into account gas used during the dive. If the surface above the dive profile is RED it means that recreational dive limits are exceeded and either the dive duration or the dive depth needs to be reduced. Below is an image of a dive plan for a recreational dive at 30 metres. Although the no-deco limit (NDL) is 23 minutes, the duration of the dive is limited by the amount of air in the cylinder, reflected by the information in the text box at the bottom right of the panel that requires sufficient air for buddy-sharing during the ascent. image::images/rec_diveplan.jpg["FIGURE: A recreational dive plan: setup",align="center"] ==== Non-recreational open circuit dives, including decompression Non-recreational dive planning involves exceeding the no-deco limits and/or using multiple breathing gases. Such dives are planned in three stages: *a) Nitrogen management*: This is performed by specifying the rates for descent and ascent, as well as the deco model (GFLow, GFHigh or Conservatism level) under the headings _Rates_ and _Planning_ to the bottom left of the planning screen. Two deco models are supported the Bühlmann model and the VPM-B model. Select one of the two models. When selecting the Bühlmann model, the gradient factors (GF_high and GF_low need to be specified. Initially, the GFHigh and GFLow values in the _Preferences_ panel of _Subsurface_ is used. If these are changed within the planner (see _Gas Options_ within the planner), the new values are used without changing the original values in the _Preferences_. Gradient Factor settings strongly affect the calculated ceilings and their depths. A very low GFLow value brings about decompression stops early on during the dive. ** For more information about Gradient factors, see the section on xref:S_GradientFactors[Gradient Factor Preference settings]. If the VPM-B model is selected, the Conservatism_level needs to be specified on a scale of 0 (least conservative) to 4 (most conservative). This model tends to give deco stops at deeper levels than the Beuhlmann model and often results in slightly shorter dive durations than the Bühlmann model. When selecting one of these models, keep in mind that they are NOT exact physiological models but only mathematical models that appear to work in practice. For more information external to this manual see: * link:http://www.tek-dive.com/portal/upload/M-Values.pdf[Understanding M-values by Erik Baker, _Immersed_ Vol. 3, No. 3.] * link:http://www.rebreatherworld.com/general-and-new-to-rebreather-articles/5037-gradient-factors-for-dummies.html[Gradient factors for dummies, by Kevin Watts] * link:http://www.amazon.com/Deco-Divers-Decompression-Theory-Physiology/dp/1905492073/ref=sr_1_1?s=books&ie=UTF8&qid=1403932320&sr=1-1&keywords=deco+for+divers[_Deco for Divers_, by Mark Powell (2008). Aquapress] Southend-on-Sea, UK. ISBN 10: 1-905492-07-3. An excellent non-technical review that discusses both the Bühlmann deco model and the VPM-B model. The ascent rate is critical for nitrogen off-gassing at the end of the dive and is specified for several depth ranges, utilising the average (or mean) depth as a yardstick. The mean depth of the dive plan is indicated by a light grey line on the dive profile. Ascent rates at deeper levels are often in the range of 8-12 m/min, while ascent rates near the surface are often in the range of 4-9 m/min. The descent rate is also specified. If the option _Drop to first depth_ is activated, then the descent phase of the planned dive will be at the maximal descent rate specified in the _Rates_ section of the dive setup. *b) Oxygen management*: In the *Gas Options* part of the dive specification, the maximum partial pressure for oxygen needs to be specified for the bottom part of the dive (_bottom po2_) as well as for the decompression part of the dive (_deco po2_). The most commonly used values are 1.4 bar for the bottom part of the dive and 1.6 bar for any decompression stages. Normally, a partial pressure of 1.6 bar is not exceeded. PO2 settings and the depth at which switching to a gas takes place can also be edited in the _Available Gases_ dialog. Normally the planner decides on switching to a new gas when, during ascent, the partial pressure of the new gas has increased to 1.6 bar. *c) Gas management*: With open-circuit dives this is a primary consideration. One needs to keep within the limits of the amount of gas within the dive cylinder(s), allowing for an appropriate margin for a safe return to the surface, possibly sharing with a buddy. Under the _Gas Options_ heading, specify the best (but conservative) estimate of your surface-equivalent air consumption (SAC, also termed RMV) in litres/min (for the time being, only SI units are supported). Specify the SAC during the bottom part of the dive (_bottom SAC_) as well as during the decompression or safety stops of the dive (_deco SAC_). Values of 15-30 l/min are common. For good gas management, a thumbsuck guess is not sufficient and one needs to monitor one's gas consumption on a regular basis, dependent on different dive conditions and/or equipment. The planner calculates the total volume of gas used during the dive and issues a warning if one exceeds the total amount of gas available. Good practice demands that one does not dive to the limit of the gas supply but that an appropriate reserve is kept for unforeseen circumstances. For technical diving, this reserve can be up to 66% of the total available gas. Now (at last) one can start the detailed time-depth planning of the dive. _Subsurface_ offers a unique graphical interface for performing this part of the planning. The mechanics of doing this is similar to hand-entering a dive profile in the dive log part of _Subsurface_. Upon activating the planner, a default dive of depth 15 m for 40 min is offered in the bue design surface to the top right hand of the screen. The white dots (waypoints) on the profile can be dragged with a mouse. Create more waypoints by double-clicking on the profile line and ensuring that the profile reflects the intended dive. Drag the waypoints to represent the depth and duration of the dive. It is NOt necessary to specify the ascent part of the dive since the planner calculates this, based on the settings that have been specified. If any of the management limits (for nitrogen, oxygen or gas) is exceeded, the surface above the dive profile changes from BLUE to RED. Each waypoint on the dive profile creates a _Dive Planner Point_ in the table on the left of the dive planner panel. Ensure that the _Used Gas_ value in each row of that table corresponds to one of the gas mixtures specified in the _Available Gases_ table. Add new waypoints until the main features of the dive have been completed, e.g. the bottom time segment and deep stops (if these are implemented). Leave the remaining waypoints on the ascent to _Subsurface_. In most cases _Subsurface_ computes additional way points in order to fulfill decompression requirements for that dive. A waypoint can be moved by selecting that waypoint and by using the arrow keys. The waypoints listed in the _Dive Planner Points_ dialogue can be edited by hand in order to obtain a precise presentation of the dive plan. In fact, one can create the whole dive profile by editing the _Dive Planner Points_ dialog. Indicate any changes in gas cylinder used by indicating gas changes as explained in the section <>. These changes should reflect the cylinders and gas compositions defined in the table with _Available Gases_. If two or more gases are used, automatic gas switches will be suggested during the ascent to the surface. However, these changes can be deleted by right-clicking the gas change and by manually creating a gas change by right-clicking on the appropriate waypoint. A non-zero value in the "CC set point" column of the table of dive planner points indicates a valid setpoint for oxygen partial pressure and that the segment is dived using a closed circuit rebreather (CCR). If the last manually entered segment is a CCR segment, the decompression phase is computed assuming the diver uses a CCR with the specified set-point. If the last segment (however short) is on open circuit (OC, indicated by a zero set-point) the decompression is computed in OC mode. The planner only considers gas changes in OC mode. Below is an example of a dive plan to 45m using EAN26, followed by an ascent using EAN50 and using the settings as described above. image::images/DivePlanner2_f20.jpg["FIGURE: Planning a dive: setup",align="center"] Once the above has been completed, one can save it by clicking the _Save_ button towards the top middle of the planner. The saved dive plan will appear in the *Dive List* panel of _Subsurface_. *The dive plan details* On the bottom right of the dive planner, under _Dive Plan Details_, the exact details of the dive plan are provided. These details may be modified by checking any of the options under the _Notes_ section of the dive planner, immediately to the left of the _Dive Plan Details_. If a _Verbatim diveplan_ is requested, a detailed sentence-level explanation of the dive plan is given. If any of the management specifications have been exceeded during the planning, a warning message is printed underneath the dive plan information. If the option _Display segment duration_ is checked, then the duration of each depth level is indicated in the _Dive Plan Details_. This duration INCLUDES the transition time to get to that level. However, if the _Display transition in deco_ option is checked, the transitions are shown separately from the segment durations at a particular level. === Planning pSCR dives To plan a dive using a passive semi-closed rebreather (pSCR), select _pSCR_ rather than _Open circuit_ in the dropdown list. The parameters of the pSCR diver can be set by selecting _File -> Preferences -> Graph_ from the main menu, where the gas consumption calculation takes into account the pSCR dump ratio (default 10:1) as well as the metabolism rate. The calculation also takes the oxygen drop accross the mouthpiece of the rebreather into account. If the pO~2~ drops below what is considered a save value, a warning appears in the _Dive plan details_. A typical pSCR configuration is with a single cylinder and one or more bail-out cylinders. Therefore the setup of the _Available gases_ and the _Dive planner points_ tables are very similar to that of a CCR dive plan, described above. However, no oxygen setpoints are specified for pSCR dives. Below is a dive plan for a pSCR dive. The dive is comparable to that of the CCR dive above, but note the longer ascent duration due to the lower oxygen in the loop due to the oxygen drop across the mouthpiece of the pSCR equipment. image::images/Planner_pSCR1_f20.jpg["FIGURE: Planning a pSCR dive: setup",align="center"] === Planning CCR dives To plan a dive using a closed circuit rebreather, select the _CCR_ option in the dropdown list, circled in blue in the image below. *Available gases*: In the _Available gases_ table, enter the cylinder information for the diluent cylinder and for any bail-out cylinders. Do NOT enter the information for the oxygen cylinder since it is implied when the _CCR_ dropdown selection is made. *Entering setpoints*: Specify a default setpoint in the Preferences tab, by selecting _File -> Preferences -> Graph_ from the main menu. All user-entered segments in the _Dive planner points_ table use the default setpoint value. Then, different setpoints can be specified for dive segments in the _Dive planner points_ table. A zero setpoint means the diver bails out to open circuit mode for that segment. The decompression is always calculated using the setpoint of the last manually entered segment. So, to plan a bail out ascent for a CCR dive, add a one-minute dive segment to the end with a setpoint value of 0. The decompression algorithm does not switch deco-gases automatically while in CCR mode (i.e. when a positive setpoint is specified) but, of course, this is calculated for bail out ascents. The dive profile for a CCR dive may look something like the image below. image::images/Planner_CCR1_f20.jpg["FIGURE: Planning a CCR dive: setup",align="center"] Note that, in the _Dive plan details_, the gas consumption for a CCR segment is not calculated, so gas consumptions of 0 litres are the norm. [[S_Replan]] === Modifying an existing dive plan Normally, when a dive plan has been saved, it is accessible from the *Dive List*, like any other dive log. Within the *Dive List* there is not a way to change a saved dive plan. To perform changes to a dive plan, select it on the *Dive List*. Then, in the main menu, select _Log -> Re-plan dive_. This will open the selected dive plan within the dive planner, allowing changes to be made and saved as usual. In addition there is the option "Save new". This keeps the original planned dive and adds a (possibly modified) copy to the dive list. If that copy is saved with the same start time as the original, the two dives are considered two versions of the same dive and do not influence other each during decompression calculation (see next section). === Planning for repetitive dives Repetitive dives can easily be planned if the dates and start times of the repetitive dive set is specified appropriately in the top left-hand _Start Time_ field. _Subsurface_ calculates the gas loading figures correctly and the effect of the first dive is evaluated on later dives. If one has just completed a long/deep dive and is planning another dive, then highlight, in the *Dive List*, the dive that has just been completed and then activate the planner. Depending on the start time of the planned dive, the planner takes into account the gas loading incurred during the completed dive and allows planning within these limitations. If only a few standard configurations are used (e.g. in GUE), then a template dive can be created conforming to one of the configurations. If one now wishes to plan a dive using this configuration, just highlight the template dive in the *Dive List* and activate the planner: the planner takes into account the configuration in the highlighted dive. === Printing the dive plan Selecting the _Print_ button in the planner allows printing of the _Dive Plan Details_ for wet notes. Alternatively one can cut and paste the _Dive Plan Details_ for inclusion in a text file or word processing document. Dive plans have many characteristics in common with dive logs (dive profile, dive notes, etc). After a dive plan has been saved, the dive details and gas calculations are saved in the *Notes* tab. While a dive plan is being designed, it can be printed using the _Print_ button in the dive planner. This prints the dive details and gas calculations in the _Dive Plan Details_ panel of the dive planner. However, after the plan has been saved, it is represented in a way very similar to a dive log and the gas calculations cannot be accessed in the same way as during the planning process. The only way to print the dive plan is to use the _File -> Print_ facility on the main menu in the same way as for dive logs or by copy and paste to a word processor. == Description of the Subsurface Main Menu items This section describes the functions and operation of the items in the Main Menu of Subsurface. Several of the items below are links to sections of this manual dealing with the appropriate operations. === File - <> - Close the currently open dive logbook and clear all dive information. - _Open logbook_ - This opens the file manager in order to select a dive logbook to open. - _Open cloud storage_ - Open the log book previously saved in <>. - _Save_ - Save the dive logbook that is currently open. - _Save to cloud storage_ - Save the current dive log to <>. - _Save as_ - Save the current logbook under a different file name. - _Close_ - Close the dive logbook that is currently open. - <> - Export the currently open dive logbook (or the selected dives in the logbook) to one of several formats. - <> - Print the currently open logbook. - <> - Set the _Subsurface_ preferences. - <> - If photos taken during dives have been moved to a different disk or directory, locate them and link them to the appropriate dives. - <> - Edit the configuration of a dive computer. - _Quit_ - Quit _Subsurface_. === Import - <> - Import dive information from a dive computer. - <> - Import dive information from a file in in a _Subsurface_-compatible format. - <> - Load GPS coordinates from the _Subsurface_ mobile phone app. - <> - Import dive information from _www.Divelogs.de_. === Log - <> - Manually add a new dive to the *Dive List* panel. - _Edit dive_ - Edit a dive of which the profile was entered by hande and not from a dive computer. - <> - This feature allows the planning of dives. - <> - Edit a dive plan that has been saved into the *Dive List*. - <> - By selecting this option, one can copy information from several fields of a dive log onto the clipboard. - _Paste dive components_ - Paste, into the selected dives in the *Dive List*, the information copied using the _Copy dive components_ option. - <> - Renumber the dives listed in the *Dive List* panel. - <> - Group the dives in the *Dive List* panel into dive trips. - <> - Edit the names of dive computers to facilitate your logs. - <> - Select only some dives, based on specific tags or dive criteria. === View - <> - View the four main _Subsurface_ panels simmultaneously. - <> - View only the *Dive List* panel. - <> - View only the *Dive Profile* panel. - <> - View only the *Notes* panel. - <> - View only the *World Map* panel. - _Yearly Statistics_ - Display summary statistics about dives during this and past years. - _Prev DC_ - If a single dive was logged from more than one dive computer, switch to data from previous dive computer. - _Next DC_ - Switch to next dive computer. - _Full Screen_ - Toggles Full Screen mode. === Share on - <> - Share the currently selected dive on your Facebook timeline. === Help - _About Subsurface_ - Show a panel with the version number of _Subsurface_ as well as licensing information. - _Check for updates_ - Find out whether a newer version of Subsurface is available on the http://subsurface-divelog.org/[_Subsurface_ web site]. - <> - Help to make _Subsurface_ even better by taking part in our user survey or by completing another survey if your diving habits have changed. - _User manual_ - Open a window showing this user manual. == APPENDIX A: Operating system specific information for importing dive information from a dive computer. === Make sure that the OS has the required drivers installed [icon="images/icons/drivers.jpg"] [NOTE] The operating system of the desktop computer needs the appropriate drivers in order to communicate with the dive computer in whichever way the dive computer prefers (e.g. bluetooth, USB, infra-red). * On Linux users need to have the correct kernel module loaded. Most distributions will do this automatically, so the user does not need to load kernel modules. However, some communication protocols require an additional driver, especially for rarely used technology such as infra-red. * On Windows, the OS should offer to download the correct driver once the user connects the dive computer to the USB port and operating system sees the equipment for the first time. * On a Mac users sometimes have to manually hunt for the correct driver. For example the correct driver for the Mares Puck devices or any other dive computer using a USB-to-serial interface based on the Silicon Labs CP2101 or similar chip can be found as _Mac_OSX_VCP_Driver.zip_ at the http://www.silabs.com/support/pages/document-library.aspx?p=Interface&f=USB%20Bridges&pn=CP2101[Silicon Labs document and software repository]. [[S_HowFindDeviceName]] === How to Find the Device Name for USB devices and set its write permission [icon="images/icons/usb.jpg"] [NOTE] When a user connects the dive computer by using a USB connector, usually _Subsurface_ will either propose a drop down list that contains the correct device name (or mount point for the Uemis Zurich), or it will disable the device select drop down if no device name is needed at all. In the rare cases where this doesn't work, here are some suggestions of ways to find out what the device name is: .On Windows: Simply try COM1, COM2, etc. The drop down list should contain all connected COM devices. .On MacOS: The drop down box should find all connected dive computers. .On Linux: There is a definitive way to find the port: - Disconnect the USB cable from the dive computer - Open a terminal - Type the command: 'dmesg' and press enter - Plug in the USB cable of the dive computer - Type the command: 'dmesg' and press enter A message similar to this one should appear: usb 2-1.1: new full speed USB device number 14 using ehci_hcd usbcore: registered new interface driver usbserial USB Serial support registered for generic usbcore: registered new interface driver usbserial_generic usbserial: USB Serial Driver core USB Serial support registered for FTDI USB Serial Device ftdi_sio 2-1.1:1.0: FTDI USB Serial Device converter detected usb 2-1.1: Detected FT232BM usb 2-1.1: Number of endpoints 2 usb 2-1.1: Endpoint 1 MaxPacketSize 64 usb 2-1.1: Endpoint 2 MaxPacketSize 64 usb 2-1.1: Setting MaxPacketSize 64 usb 2-1.1: FTDI USB Serial Device converter now attached to ttyUSB3 usbcore: registered new interface driver ftdi_sio ftdi_sio: v1.6.0:USB FTDI Serial Converters Driver The third line from the bottom shows that the FTDI USB adapter is detected and connected to +ttyUSB3+. This information can now be used in the import settings as +/dev/ttyUSB3+ which directs Subsurface to the correct USB port. Ensuring that the user has write permission to the USB serial port: On Unix-like operating systems the USB ports can only be accessed by users who are members of the +dialout+ group. If one is not root, one may not be a member of that group and will not be able to use the USB port. Let us assume one's username is 'johnB'. - As root, type: +usermod -a -G dialout johnB+ (Ubuntu users: +sudo usermod -a -G dialout johnB+) This makes johnB a member of the +dialout+ group. - Type: +id johnB+ This lists all the groups that johnB belongs to and verifies that the appropriate group membership has been created. The +dialout+ group should be listed among the different IDs. - Under some circumstances this change takes only effect (eg. on Ubuntu) after one logs out and then logs in again. With the appropriate device name (e.g. +dev/ttyUSB3+) and with write permission to the USB port, the dive computer interface can connect and one should be able to import dives. [[_appendix_b_dive_computer_specific_information_for_importing_dive_information]] == APPENDIX B: Dive Computer specific information for importing dive data. [[S_ImportUemis]] === Importing from Uemis Zurich [icon="images/icons/iumis.jpg"] [NOTE] _Subsurface_ downloads the information stored on the SDA (the built-in file system of the Uemis) including information about dive spots and equipment. Buddy information is not yet downloadable. Things are very similar to a normal USB-connected dive computer (the Uemis is one of those that recharge when connected to the USB port). The main difference is that one does not enter a device name, but instead the location where the UEMISSDA file system is mounted once connected to the dive computer. On Windows this is a drive letter ( often 'E:' or 'F:'), on a Mac this is '/Volumes/UEMISSDA' and on Linux systems this differs depending on the distribution. On Fedora it usually is '/var/run/media//UEMISSDA'. In all cases _Subsurface_ should suggest the correct location in the drop down list. After selecting the above device name, download the dives from the Uemis Zurich. One technical issue with the Uemis Zurich download implementation (this is a Uemis firmware limitation, not a _Subsurface_ issue) is that one cannot download more than about 40-50 dives without running out of memory on the SDA. This will usually only happen the very first time one downloads dives from the Uemis Zurich. Normally when downloading at the end of a day or even after a dive trip, the capacity is sufficient. If _Subsurface_ displays an error that the dive computer ran out of space the solution is straight forward. Disconnect the SDA, turn it off and on again, and reconnect it. You can now retry (or start a new download session) and the download will continue where it stopped previously. One may have to do this more than once, depending on how many dives are stored on the dive computer. [[S_ImportingGalileo]] === Importing from Uwatec Galileo [icon="images/icons/Galileo.jpg"] [NOTE] The Uwatec Galileo dive computers use infra red (IrDA) communication between the dive computer and Subsurface. The Uwatec hardware uses a USB dongle based on the serial infra-red (SIR) protocol and the MSC7780 IrDA controller manufactured by MosChip and marketed by Scubapro and some electronics companies. Under Linux, the kernel already provides for communication using the IrDA protocol. However, the user additionally needs to load a driver for the IrDA interface with the dive computer. The easiest way is to load the *irda-tools* package from the http://irda.sourceforge.net/docs/startirda.html[Linux IrDA Project]. After the installation of the irda-tools, the *root user* can specify a device name from the console as follows: +irattach irda0+ After executing this command, Subsurface will recognise the Galileo dive computer and download dive information. Under Windows, a similar situation exists. Drivers for the MCS7780 are available from some Internet web sites e.g. http://www.drivers-download.com/Drv/MosChip/MCS7780/[www.drivers-download.com]. Windows-based IrDA drivers for the Uwatec can also be downloaded from the ScubaPro web site, drivers being located on the download page for the ScubaPro SmartTrak software. For the Apple Mac, IrDA communication via the MCS7780 link is not available for OSX 10.6 or higher. [[S_ImportingDR5]] === Importing from Heinrichs Weikamp DR5 [icon="images/icons/HW_DR5.jpg"] [NOTE] When mounted as a USB drive the Heinrichs Weikamp DR5 saves a single UDDF file for every dive. Mark all the dives you'd like to import or open. Note: The DR5 does not seem to store gradient factors nor deco information, so for _Subsurface_ it is not possible to display them. Adjust the gradient factors in the _Graph Settings_ in _Subsurface_ to generate a deco overlay in the _Subsurface_ *Dive Profile* panel but please note that the deco calculated by _Subsurface_ will most likely differ from the one displayed on the DR5. [[S_ImportingXDeep]] === Importing from xDEEP BLACK [icon="images/icons/HW_xdeepblack.jpg"] [NOTE] Each dive has to be individually saved as UDDF file using "Export UDDF" option in BLACK's logbook menu. When mounted as a USB drive UDDF files are available in LOGBOOK directory. Note: The xDEEP BLACK saves NDL time but does not seem to store gradient factors nor deco information, so for _Subsurface_ it is not possible to display them. Adjust the gradient factors in the _Graph Settings_ in _Subsurface_ to generate a deco overlay in the _Subsurface_ *Dive Profile* panel but please note that the deco calculated by _Subsurface_ will most likely differ from the one displayed on the xDEEP BLACK. === Importing from Shearwater Predator/Petrel using Bluetooth [icon="images/icons/predator.jpg"] [NOTE] Specific instructions for downloading dives using Bluetooth are given in the section above, <>. [[S_PoseidonMkVI]] === Importing from Poseidon MkVI Discovery [icon="images/MkVI.jpeg"] [NOTE] Download of dive logs from the MkVI is performed using a custom communications adapter and the _Poseidon PC Configuration Software_, obtained when purchasing the MKVI equipment. The latter is a Windows application allowing configuration of equipment and storage of dive logs. Communication between dive computer and desktop computer utilises the IrDA infra-red protocol. Only data for one dive can be downloaded at a time, comprising three files: - Setup configuration for the dive and key dive parameters (file with a .txt extension) - Dive log details (file with a .csv extension) - Redbook format dive log (file with .cvsr extension). This is a compressed version of the dive log using a proprietary format. _Subsurface_ accesses the .txt and the .csv files to obtain dive log information. === Importing from APD Inspiration/Evolution CCR [icon="images/APDComputer.jpg"] [NOTE] The dive logs of an APD Inspiration or similar CCR dive computer are downloaded using a communications adapter and _AP Communicator_, obtained when purchasing the equipment. The dive logs can be viewed using the _AP Log Viewer_, within Windows or Mac/OS. However, APD logs can be viewed and managed from within _Subsurface_ (together with dives using many other types of dive computer). The APD inspiration dive logs are imported into _Subsurface_ as follows: - Download the dive using _AP Communicator_. - Open a dive within the _AP Log Viewer_. - Select the tab at the top of the screen, entitled "_Data_". - With the raw dive log data show on the screen, click on "_Copy to Clipboard_". - Open a text editor, e.g. Notepad (Windows) or TextWrangler (Mac). - Copy the contents of the clipboard into the text editor and save the text file with a filename extension of _.apd_ - Within _Subsurface_, select _Import -> Import log files_ to open the xref:Unified_import[universal import dialogue]. - In the dropdown list towards the bottom right of the dialogue (labled 'Filter:'), select "APD log viewer". - On the list of file names select the _.apd_ file that has been created above. An import dialogue opens indicating the default settings for the data in the _.apd_ file. If any changes are required, do this as for xref:S_ImportingCSVDives[CSV imports]. image::images/APD_CSVimportF22.jpg["Figure: APD log viewer import",align="center"] - The top left hand dropdown box in the import panel allows one to select the APD dive computer for which the dive log needs to be imported. The default it is DC1, _i.e._ the first of the two dive computers the APD uses. It is possible to sequentially import the data for both dive computers by first importing CD1 and then DC2.(*Hint*: The logs for the two dive computers are viewed by selecting _View -> Next DC_ from the Main Menu after the uploading has been completed) - Click the _Ok_ button at the bottom of the import panel. The APD dive log will appear within _Subsurface_. The dive computer-generated ceiling generated by the Inspiration can be viewed by selecting the appropriate button on the left of the *Dive Profile*. Cylinder pressure data are not logged by the APD equipment but can be manually entered in the _Equipment_ Tab. == APPENDIX C: Exporting Dive log information from external dive log software. The import of dive log data from external dive log software is mostly performed using the dialogue found by selecting _Import_ from the Main Menu, then clicking on _Import Log Files_. This is a single-step process, more information about which can be found xref:Unified_import[here.] However, in some cases, a two-step process may be required: 1. Export the foreign dive log data to format that is accessible from _Subsurface_. 2. Import the accessible dive log data into _Subsurface_. This appendix provides some information about approaches to export dive log data from foreign dive log software. The procedures below mostly apply to Linux and/or Windows. [[S_ImportingDivesSuunto]] === Exporting from *Suunto Divemanager (DM3, DM4 or DM5)* [icon="images/icons/suuntologo.jpg"] [NOTE] DiveManager is a MS Windows application for Suunto dive computers. Divemanager 3 (DM3) is an older version of the Suunto software. More recent Suunto dive computers use Divemanager version 4 or 5 (DM4 or DM5). The different versions of Divemanager use different methods and different file naming conventions to export dive log data. *Divemanager 3 (DM3):* 1. Start 'Suunto Divemanager 3' and log in with the name containing the logs 2. Do not start the import wizard to import dives from the dive computer. 3. In the navigation tree on the left side of the program-window, select the appropriate dives. 4. Within the list of dives, select the dives you would like to import later: * To select certain dives: hold 'ctrl' and click the dive * To select all dives: Select the first dive, hold down shift and select the last dive 5. With the dives marked, use the program menu _File -> Export_ 6. The export pop-up will show. Within this pop-up, there is one field called 'Export Path'. * Click the browse button next to the field Export Path ** A file-manager like window pops up ** Navigate to the directory for storing the Divelog.SDE file ** Optionally change the name of the file for saving ** Click 'Save' * Back in the Export pop-up, press the button 'Export' 7. The dives are now exported to the file Divelog.SDE. *Divemanager 4 (DM4) and Divemanager 5 (DM5):* DM4 and DM5 use identical mechanisms for exporting dive logs. To export a divelog from Divemanager one needs to locate the DM4/DM5 database where the dives are stored. the user can either look for the original database or make a backup of the dives. Both methods are described here. Locating the Suunto DM4 (or DM5) database: 1. Start Suunto DM4/DM5 2. Select 'Help -> About' 3. Click 'Copy' after text 'Copy log folder path to clipboard' 4. Now open Windows Explorer 5. Paste the address to the path box at the top of the File Explorer 6. The database is called DM4.db or DM5.db Making a backup copy of the Suunto DM4/DM5 database: 1. Start Suunto DM4/DM5 2. Select 'File - Create backup' 3. From the file menu select the location and name for the backup, we'll use DM4 (or DM5) in here with the default extension .bak 4. Click 'Save' 5. The dives are now exported to the file DM4.bak (or DM5.bak) === Exporting from Atomic Logbook [[Atomic_Export]] [icon="images/icons/atomiclogo.jpg"] [NOTE] Atomic Logbook is a Windows software by Atomic Aquatics. It allows downloading of dive information from Cobalt and Cobalt 2 dive computers. The divelog is kept in a SQLite database at C:\ProgramData\AtomicsAquatics\Cobalt-Logbook\Cobalt.db. This file can be directly imported to Subsurface. === Exporting from Mares Dive Organiser V2.1 [[Mares_Export]] [icon="images/icons/mareslogo.jpg"] [NOTE] Mares Dive Organiser is a Windows application. The dive log is kept as a Microsoft SQL Compact Edition database with a '.sdf' filename extension. The database includes all Dive Organiser-registered divers on the particular computer and all Mares dive computers used. The safest way to obtain a copy of the dive database is to export the information to another compatible format which can be imported into _Subsurface_. 1. Within Dive Organiser, select _Database -> Backup_ from the main menu and back up the database to the desk top. This creates a zipped file DiveOrganiserxxxxx.dbf. 2. Rename the file to DiveOrganiserxxxxx.zip. Inside the zipped directory is a file _DiveOrganiser.sdf_. 3. Extract the _.sdf_ file from the zipped folder to your Desktop. 4. The password for accessing the .zip file is _mares_. [[S_ImportingDivingLog]] === Exporting from *DivingLog 5.0 and 6.0* [icon="images/icons/divingloglogo.jpg"] [NOTE] The best way to bring your logs from DivingLog to Subsurface is to convert the whole database. This is because other export formats do not include all the details, and we would lack e.g. gas switches and information of what units are used. With database import, all this information is included and readily available for us. To transfer all files from DivingLog to Subsurface, do the following: 1. In DivingLog open the 'File -> Export -> SQLite' menu 2. Select 'Settings' button 3. Set the 'RTF2Plaintext' to 'true' 4. Close the Settings dialog 5. Click 'Export' button and select the filename Once this is done, open the saved database file with Subsurface and the dives are automatically converted to our own format. Last step to do is save the log file in Subsurface. == APPENDIX D: Exporting a spreadsheet to CSV format [[S_Appendix_D]] Many divers keep a diving log in some form of a digital file, commonly a spreadsheet with various fields of information. These logs can be easily imported into _Subsurface_ after the spreadsheet is converted in a .CSV file. This section explains the procedure to convert a diving logbook stored in a spreadsheet to a .CSV file that will later be imported from _Subsurface_. Creating a .CSV is a straightforward task, although the procedure is somewhat different according to which spreadsheet program is used. The first step is to organize the diving data in the spreadsheet, so that the first row contains the names (or titles) of each column and the information for each dive is stored in a single row. _Subsurface_ supports many data items (Dive #, Date, Time, Duration, Location, GPS, Max Depth, Mean Depth, Buddy, Notes, Weight and Tags). The user can organize dive data following a few simple rules: 1. Date: use one of the following formats: yyyy-mm-dd, dd.mm.yyyy, mm/dd/yyyy 2. Duration: the format should be minutes:seconds. 3. Unit system: only one unit system should be used (i.e., no mixture between imperial and metric units) 4. Tags and buddies: values should be separated using a comma. 5. GPS position: users must use decimal degrees, e.g. 30.22496 30.821798 === _LibreOffice Calc_ and _OpenOffice Calc_ These are open source spreadsheet applications forming parts of larger open source office suite applications. The user interaction with _LibreOffice_ and _OpenOffice_ is very similar. In Libreoffice Calc the time format should be set to minutes:seconds - [mm]:ss and dates should be set to one of: yyyy-mm-dd, dd.mm.yyyy, mm/dd/yyyy. A typical dive log may look like this: image::images/LOffice_spreadsheetdata.jpg["FIGURE: Spreadsheet data",align="center"] To export the data as a .CSV file from within LibreOffice click _File -> Save As_. On the dialogue that comes up, select the _Text CSV (.csv)_ as the file type and select the option _Edit filter settings_. image::images/LOffice_save_as_options.jpg["FIGURE: Save as options",align="center"] After selecting _Save_, select the appropriate field delimiter (choose _Tab_ to prevent conflicts with the comma when using this as a decimal point), then select _OK_. image::images/LOffice_field_options.jpg["FIGURE: Field options",align="center"] One can double check the .CSV file by opening it with a text editor, and then import the dive data as explained on the section xref:S_ImportingCSVDives[Importing CSV dives]. === Microsoft _Excel_ The field delimiter (called "_list separator_" in Microsoft manuals) is not accessible from within _Excel_ and needs to be set through the _Microsoft Control Panel_. After changing the separator character, all software on the Windows machine use the new character as a separator. One can change the character back to the default character by following the same procedure, outlined below. - In Microsoft Windows, click the *Start* button, and then select _Control Panel_ from the list on the right-hand side. - Open the _Regional and Language Options_ dialog box. - Do one of the following: ** In Windows 7, click the _Formats_ tab, and then click _Customize this format_. ** In Windows XP, click the _Regional Options_ tab, and then click _Customize_. - Type a new separator in the _List separator_ box. To use a TAB-delimited file, type the word TAB in the box. - Click _OK_ twice. Below is an image of the _Control Panel_: image::images/Win_SaveCSV2.jpg["FIGURE: Win List separator",align="center"] To export the dive log in CSV format: With the dive log opened in _Excel_, select the round Windows button at the top left, then _Save As_. image::images/Win_SaveCSV1.jpg["FIGURE: Excel save as option",align="center"] Click on the left-hand part of the _Save as_ option, NOT on the arrow on the right-hand. This brings up a dialogue for saving the spreadsheet in an alternative format. From the dropdown list at the bottom of the dialogue, marked _Save as Type:_, select _CSV(Comma delimited) (*.CSV)_. Ensure that the appropriate folder has been selected to save the CSV file into. image::images/Win_SaveCSV3.jpg["FIGURE: Excel save CSV dialogue",align="center"] Select the _Save_ button. The CSV-formatted file is saved into the folder that was selected. One can double check the .CSV file by opening it with a text editor, and then import the dive data as explained on the section xref:S_ImportingCSVDives[Importing CSV dives]. [[S_APPENDIX_E]] == APPENDIX E: Writing a custom print template _Subsurface_ provides a mechanism to create or modify templates for printing dive logs in order to produce customised printouts of dive logs. Templates, written in HTML as well as a simple Grantlee instruction set, are rendered to the print device by _Subsurface_. Templates are accessed using the print dialogue (see image *B* below). image::images/Print1_f22.jpg["FIGURE: Print dialogue",align="center"] The buttons under the _Template_ dropdown box allows one to _Edit_, _Delete_, _Import_ and to _Export_ templates (see image *A* above). New or modified templates are stored as HTML files in the same directory as the dive log being processed. In order to create or modify a template, select the _Custom_ template from the template dropdown list in the print dialogue (see image *B* above), then select _Edit_. The Edit Panel comprises three tabs: image::images/Template1_f22.jpg["FIGURE: template edit dialogue",align="center"] 1) The _Style_ tab (image *A* above) controls the font, line spacing and colour template used for printing the dive log. The style attributes are editable. Choose one of the four colour palets used for colour printing. 2) The _Colors_ tab (image *B* above) allows editing the colours used for printing the dive log. The colours are highly customisable: the _Edit_ buttons in the _Colors_ tab allows choosing abritrary colours for different components of the dive log printout. 3) The _Template_ tab of the Edit Panel (see image below) allows creating a template using HTML as well as a few Grantlee programming primitives. Grantlee provides the ability to create and format HTML code in a highly simple but efficient way (see below). The HTML of the template can be edited and saved. The saved template is stored in the same directory as the dive being processed. By default, a _Custom_ template is a skeleton with no specific print instructions. The informastion being printed needs to be specified and formatted in the by replacing the section marked with: "". Writing HTML code with Grantlee instructions allows unlimited freedom in determining what is printed an in which way it should be rendered. image::images/Template2_f22.jpg["FIGURE:Template tab",align="center"] One can adapt any of the existing templates and save it to the dive log directory. The standard templates (e.g. One dive, Six dives, Table) can be modified in this way. To write a custom template the following elements must exist so that the template will be correctly handled and rendered. === Main dive loop _Subsurface_ exports a dive list called (*dives*) to the _Grantlee_ backend. It is possible to iterate over the list as follows: .template.html .... {% for dive in dives %}

{{ dive.number }}

{% endfor %} .... .output.html ....

1

2

3

.... Additional information about _Grantlee_ can be found http://www.grantlee.org/apidox/for_themers.html[here] === Grantlee exported variables Only a subset of the dive data is exported: |==================== |*Name*|*Description* |number| (*int*) dive number |id| (*int*) unique dive ID, should be used to fetch the dive profile |date| (*string*) data of the dive |time| (*string*) time of the dive |location| (*string*) location of the dive |duration| (*string*) duration of the dive |depth| (*string*) depth of the dive |divemaster| (*string*) divemaster data |buddy| (*string*) buddy data |airTemp| (*string*) air temperature of dive |waterTemp| (*string*) water temperature of dive |notes| (*string*) dive notes |rating| (*int*) dive rating ranges from 0 to 5 |sac| (*string*) sac value |tags| (*string*) all dive tags concatenate together |gas| (*string*) used gas cylinder |===================== _Subsurface_ also exports *template_options* data. This data must be used as _CSS_ values to provide a dynamically editable template. The exported data is shown in the following table: |==================== |*Name*|*Description* |font| (*string*) font family |borderwidth| (*int*) border-width value dynamically calculated as 0.1% of the page width with minimum value of 1px |font_size| (*double*) size of fonts in vw, ranges between 1.0 and 2.0 |line_spacing| (*double*) distance between text lines, ranges between 1.0 and 3.0 |color1| (*string*) background color |color2| (*string*) primary table cell color |color3| (*string*) secondary table cell color |color4| (*string*) primary text color |color5| (*string*) secondary text color |color6| (*string*) border colors |===================== .template.html .... border-width: {{ template_options.borderwidth }}px; .... .output.html .... border-width: 3px; .... Another variable that _Subsurface_ exports is *print_options*. This variable contains a single member: |===================== |*Name*|*Description* |grayscale | Use _CSS_ filters to convert the page into grayscale (should be added to body style to enable printing grayscale prints) |===================== .template.html .... body { {{ print_options.grayscale }}; } .... .output.html .... body { -webkit-filter: grayscale(100%); } .... === Defined CSS selectors As the dive profile is placed after rendering, _Subsurface_ uses a special _CSS_ selectors to do some searches in the HTML output. The _CSS_ selectors in the following table should be added. |==================== |*Selector*|*Type*|*Description* |dive_{{ dive.id }} | id | is used to fetch the relevant dive profile |diveProfile | class | each div that will contain a dive profile should have this class selector in addition to the dive_{{ dive.id }} id selector |dontbreak | class | prevents the div with this class to be divided into two pages, this can be used in flow layout templates only (when data-numberofdives = 0) |===================== IMPORTANT: Rendering dive profiles is not supported for flow layout templates (when data-numberofdives = 0). === Special attributes There are two ways of rendering- either rendering a specific number of dives in each page or make _Subsurface_ try to fit as much dives as possible into one page (_flow_ rendering). The *data-numberofdives* data attribute is added to the body tag to set the rendering mode - render 6 dives per page: .... .... - render as much dives as possible: .... .... IMPORTANT: All CSS units should be in relative lengths only, to support printing on any page size. == APPENDIX F: FAQs. [[S_APPENDIX_F]] === Subsurface appears to miscalculate gas consumption and SAC [[SAC_CALCULATION]] 'Question': I dived with a 12.2 l tank, starting with 220 bar and ending with 100 bar, and I calculate a different SAC compared what _Subsurface_ calculates. Is _Subsurface_ miscalculating? 'Answer': Not really. What happens is that _Subsurface_ actually calculates gas consumption differently - and better - than you expect. In particular, it takes the incompressibility of the gas into account. Traditionally, Gas consumption and SAC should be: +consumption = tank size x (start pressure - end pressure)+ and that's true for an ideal gas, and it's what you get taught in dive theory. But an "ideal gas" doesn't actually exist, and real gases actually don't compress linearly with pressure. Also, you are missing the fact that one atmosphere of pressure isn't actually one bar. So the *real* calculation is: +consumption = (amount_of_air_at_beginning - amount_of_air_at_end)+ where the amount of air is *not* just "tank size times pressure in bar". It's a combination of: "take compressibility into account" (which is a fairly small issue under 220 bar - you'll see more differences when you do high-pressure tanks with 300bar) and "convert bar to atm" (which is the majority of your discrepancy). Remember: one ATM is ~1.013 bar, so without the compressibility, your gas use is: +12.2*((220-100)/1.013)+ which is about 1445, not 1464. So there was 19 l too much in your simple calculation that ignored the difference between 1 bar and one ATM. The compressibility does show up above 200 bar, and takes that 1445 down about eight litres more, so you really did use only about 1437 l of air at surface pressure. So be happy: your SAC really is better than your calculations indicated. Or be sad: your cylinder contains less air than you thought it did. And as mentioned, the "contains less air than you thought it did" really starts becoming much more noticeable at high pressure. A 400 bar really does not contain twice as much air as a 200 bar one. At lower pressures, air acts pretty much like an ideal gas. === Some dive profiles have time discrepancies with the recorded samples from my dive computer... _Subsurface_ ends up ignoring surface time for many things (average depth, divetime, SAC, etc). 'Question': Why do dive durations in my dive computer differ from that given by _Subsurface_? 'Answer': For example, if you end up doing a weight check (deep enough to trigger the "dive started") but then come back up and wait five minutes for your buddies, your dive computer may say that your dive is 50 minutes long - because you have fifty minutes worth of samples - but subsurface will say it's 45 minutes - because you were actually diving for 45 minutes. It's even more noticeable if you do things like divemastering the initial OW dives, when you may stay in the water for a long time, but spend most of it at the surface. And then you don't want that to count as some kind of long dive”. === Some dive profiles are missing from the download [[DC_HISTORY]] 'Question': I cannot download all my dives, only the most recent ones even though my dive computer's manual states that it records history of e.g. 999 dives. 'Answer': Dive history is different than the dive profiles on the log. The history only keeps track of the total number of dives and total amount of time spent below surface. The logs, on the other hand, store the dive profile, but they have limited amount of memory to do so. The exact amount of dive profiles that can be stored on the device depend on sample interval and duration of the dives. Once the memory is full the oldest dives get overwritten with new dives. Thus we are only able to download the last 13, 30 or 199 dives. If you have downloaded your dives to different dive logging software before they were overwritten, there is a high change that Subsurface can import these. However, if the logs are only on your dive computer, they cannot be salvaged after being over written by new dives.