// SPDX-License-Identifier: GPL-2.0 #include "configuredivecomputerthreads.h" #include "libdivecomputer/hw_ostc.h" #include "libdivecomputer/hw_ostc3.h" #include "libdivecomputer.h" #define OSTC3_GAS1 0x10 #define OSTC3_GAS2 0x11 #define OSTC3_GAS3 0x12 #define OSTC3_GAS4 0x13 #define OSTC3_GAS5 0x14 #define OSTC3_DIL1 0x15 #define OSTC3_DIL2 0x16 #define OSTC3_DIL3 0x17 #define OSTC3_DIL4 0x18 #define OSTC3_DIL5 0x19 #define OSTC3_SP1 0x1A #define OSTC3_SP2 0x1B #define OSTC3_SP3 0x1C #define OSTC3_SP4 0x1D #define OSTC3_SP5 0x1E #define OSTC3_CCR_MODE 0x1F #define OSTC3_DIVE_MODE 0x20 #define OSTC3_DECO_TYPE 0x21 #define OSTC3_PPO2_MAX 0x22 #define OSTC3_PPO2_MIN 0x23 #define OSTC3_FUTURE_TTS 0x24 #define OSTC3_GF_LOW 0x25 #define OSTC3_GF_HIGH 0x26 #define OSTC3_AGF_LOW 0x27 #define OSTC3_AGF_HIGH 0x28 #define OSTC3_AGF_SELECTABLE 0x29 #define OSTC4_VPM_CONSERVATISM 0x29 #define OSTC3_SATURATION 0x2A #define OSTC3_DESATURATION 0x2B #define OSTC3_LAST_DECO 0x2C #define OSTC3_BRIGHTNESS 0x2D #define OSTC3_UNITS 0x2E #define OSTC3_SAMPLING_RATE 0x2F #define OSTC3_SALINITY 0x30 #define OSTC3_DIVEMODE_COLOR 0x31 #define OSTC3_LANGUAGE 0x32 #define OSTC3_DATE_FORMAT 0x33 #define OSTC3_COMPASS_GAIN 0x34 #define OSTC3_PRESSURE_SENSOR_OFFSET 0x35 #define OSTC3_SAFETY_STOP 0x36 #define OSTC3_CALIBRATION_GAS_O2 0x37 #define OSTC3_SETPOINT_FALLBACK 0x38 #define OSTC3_FLIP_SCREEN 0x39 #define OSTC3_LEFT_BUTTON_SENSIVITY 0x3A #define OSTC3_RIGHT_BUTTON_SENSIVITY 0x3B #define OSTC4_BUTTON_SENSIVITY 0x3A #define OSTC3_BOTTOM_GAS_CONSUMPTION 0x3C #define OSTC3_DECO_GAS_CONSUMPTION 0x3D #define OSTC3_MOD_WARNING 0x3E #define OSTC4_TRAVEL_GAS_CONSUMPTION 0x3E #define OSTC3_DYNAMIC_ASCEND_RATE 0x3F #define OSTC3_GRAPHICAL_SPEED_INDICATOR 0x40 #define OSTC3_ALWAYS_SHOW_PPO2 0x41 #define OSTC3_TEMP_SENSOR_OFFSET 0x42 #define OSTC3_SAFETY_STOP_LENGTH 0x43 #define OSTC3_SAFETY_STOP_START_DEPTH 0x44 #define OSTC3_SAFETY_STOP_END_DEPTH 0x45 #define OSTC3_SAFETY_STOP_RESET_DEPTH 0x46 #define SUUNTO_VYPER_MAXDEPTH 0x1e #define SUUNTO_VYPER_TOTAL_TIME 0x20 #define SUUNTO_VYPER_NUMBEROFDIVES 0x22 #define SUUNTO_VYPER_COMPUTER_TYPE 0x24 #define SUUNTO_VYPER_FIRMWARE 0x25 #define SUUNTO_VYPER_SERIALNUMBER 0x26 #define SUUNTO_VYPER_CUSTOM_TEXT 0x2c #define SUUNTO_VYPER_SAMPLING_RATE 0x53 #define SUUNTO_VYPER_ALTITUDE_SAFETY 0x54 #define SUUNTO_VYPER_TIMEFORMAT 0x60 #define SUUNTO_VYPER_UNITS 0x62 #define SUUNTO_VYPER_MODEL 0x63 #define SUUNTO_VYPER_LIGHT 0x64 #define SUUNTO_VYPER_ALARM_DEPTH_TIME 0x65 #define SUUNTO_VYPER_ALARM_TIME 0x66 #define SUUNTO_VYPER_ALARM_DEPTH 0x68 #define SUUNTO_VYPER_CUSTOM_TEXT_LENGTH 30 #ifdef DEBUG_OSTC // Fake io to ostc memory banks #define hw_ostc_device_eeprom_read local_hw_ostc_device_eeprom_read #define hw_ostc_device_eeprom_write local_hw_ostc_device_eeprom_write #define OSTC_FILE "../OSTC-data-dump.bin" // Fake the open function. static dc_status_t local_dc_device_open(dc_device_t **out, dc_context_t *context, dc_descriptor_t *descriptor, const char *name) { if (strcmp(dc_descriptor_get_vendor(descriptor), "Heinrichs Weikamp") == 0 &&strcmp(dc_descriptor_get_product(descriptor), "OSTC 2N") == 0) return DC_STATUS_SUCCESS; else return dc_device_open(out, context, descriptor, name); } #define dc_device_open local_dc_device_open static dc_status_t local_hw_ostc_device_eeprom_read(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size) { FILE *f; if ((f = fopen(OSTC_FILE, "r")) == NULL) return DC_STATUS_NODEVICE; fseek(f, bank * 256, SEEK_SET); if (fread(data, sizeof(unsigned char), data_size, f) != data_size) { fclose(f); return DC_STATUS_IO; } fclose(f); return DC_STATUS_SUCCESS; } static dc_status_t local_hw_ostc_device_eeprom_write(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size) { FILE *f; if ((f = fopen(OSTC_FILE, "r+")) == NULL) f = fopen(OSTC_FILE, "w"); fseek(f, bank * 256, SEEK_SET); fwrite(data, sizeof(unsigned char), data_size, f); fclose(f); return DC_STATUS_SUCCESS; } #endif static int read_ostc_cf(unsigned char data[], unsigned char cf) { return data[128 + (cf % 32) * 4 + 3] << 8 ^ data[128 + (cf % 32) * 4 + 2]; } static void write_ostc_cf(unsigned char data[], unsigned char cf, unsigned char max_CF, unsigned int value) { // Only write settings supported by this firmware. if (cf > max_CF) return; data[128 + (cf % 32) * 4 + 3] = (value & 0xff00) >> 8; data[128 + (cf % 32) * 4 + 2] = (value & 0x00ff); } #define EMIT_PROGRESS() do { \ progress.current++; \ progress_cb(device, DC_EVENT_PROGRESS, &progress, userdata); \ } while (0) static dc_status_t read_suunto_vyper_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { unsigned char data[SUUNTO_VYPER_CUSTOM_TEXT_LENGTH + 1]; dc_status_t rc; dc_event_progress_t progress; progress.current = 0; progress.maximum = 16; rc = dc_device_read(device, SUUNTO_VYPER_COMPUTER_TYPE, data, 1); if (rc == DC_STATUS_SUCCESS) { dc_descriptor_t *desc = get_descriptor(DC_FAMILY_SUUNTO_VYPER, data[0]); if (desc) { // We found a supported device // we can safely proceed with reading/writing to this device. m_deviceDetails->model = dc_descriptor_get_product(desc); dc_descriptor_free(desc); } else { return DC_STATUS_UNSUPPORTED; } } EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_MAXDEPTH, data, 2); if (rc != DC_STATUS_SUCCESS) return rc; // in ft * 128.0 int depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128; m_deviceDetails->maxDepth = depth; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_TOTAL_TIME, data, 2); if (rc != DC_STATUS_SUCCESS) return rc; int total_time = data[0] << 8 ^ data[1]; m_deviceDetails->totalTime = total_time; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_NUMBEROFDIVES, data, 2); if (rc != DC_STATUS_SUCCESS) return rc; int number_of_dives = data[0] << 8 ^ data[1]; m_deviceDetails->numberOfDives = number_of_dives; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_FIRMWARE, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->firmwareVersion = QString::number(data[0]) + ".0.0"; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_SERIALNUMBER, data, 4); if (rc != DC_STATUS_SUCCESS) return rc; int serial_number = data[0] * 1000000 + data[1] * 10000 + data[2] * 100 + data[3]; m_deviceDetails->serialNo = QString::number(serial_number); EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_CUSTOM_TEXT, data, SUUNTO_VYPER_CUSTOM_TEXT_LENGTH); if (rc != DC_STATUS_SUCCESS) return rc; data[SUUNTO_VYPER_CUSTOM_TEXT_LENGTH] = 0; m_deviceDetails->customText = (const char *)data; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_SAMPLING_RATE, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->samplingRate = (int)data[0]; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_ALTITUDE_SAFETY, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->altitude = data[0] & 0x03; m_deviceDetails->personalSafety = data[0] >> 2 & 0x03; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_TIMEFORMAT, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->timeFormat = data[0] & 0x01; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_UNITS, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->units = data[0] & 0x01; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_MODEL, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->diveMode = data[0] & 0x03; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_LIGHT, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->lightEnabled = data[0] >> 7; m_deviceDetails->light = data[0] & 0x7F; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_ALARM_DEPTH_TIME, data, 1); if (rc != DC_STATUS_SUCCESS) return rc; m_deviceDetails->alarmTimeEnabled = data[0] & 0x01; m_deviceDetails->alarmDepthEnabled = data[0] >> 1 & 0x01; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_ALARM_TIME, data, 2); if (rc != DC_STATUS_SUCCESS) return rc; int time = data[0] << 8 ^ data[1]; // The stinger stores alarm time in seconds instead of minutes. if (m_deviceDetails->model == "Stinger") time /= 60; m_deviceDetails->alarmTime = time; EMIT_PROGRESS(); rc = dc_device_read(device, SUUNTO_VYPER_ALARM_DEPTH, data, 2); if (rc != DC_STATUS_SUCCESS) return rc; depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128; m_deviceDetails->alarmDepth = depth; EMIT_PROGRESS(); return DC_STATUS_SUCCESS; } static dc_status_t write_suunto_vyper_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { dc_status_t rc; dc_event_progress_t progress; progress.current = 0; progress.maximum = 10; unsigned char data; unsigned char data2[2]; int time; // Maybee we should read the model from the device to sanity check it here too.. // For now we just check that we actually read a device before writing to one. if (m_deviceDetails->model == "") return DC_STATUS_UNSUPPORTED; rc = dc_device_write(device, SUUNTO_VYPER_CUSTOM_TEXT, // Convert the customText to a 30 char wide padded with " " (const unsigned char *)QString("%1").arg(m_deviceDetails->customText, -30, QChar(' ')).toUtf8().data(), SUUNTO_VYPER_CUSTOM_TEXT_LENGTH); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data = m_deviceDetails->samplingRate; rc = dc_device_write(device, SUUNTO_VYPER_SAMPLING_RATE, &data, 1); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data = m_deviceDetails->personalSafety << 2 ^ m_deviceDetails->altitude; rc = dc_device_write(device, SUUNTO_VYPER_ALTITUDE_SAFETY, &data, 1); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data = m_deviceDetails->timeFormat; rc = dc_device_write(device, SUUNTO_VYPER_TIMEFORMAT, &data, 1); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data = m_deviceDetails->units; rc = dc_device_write(device, SUUNTO_VYPER_UNITS, &data, 1); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data = m_deviceDetails->diveMode; rc = dc_device_write(device, SUUNTO_VYPER_MODEL, &data, 1); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data = m_deviceDetails->lightEnabled << 7 ^ (m_deviceDetails->light & 0x7F); rc = dc_device_write(device, SUUNTO_VYPER_LIGHT, &data, 1); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data = m_deviceDetails->alarmDepthEnabled << 1 ^ m_deviceDetails->alarmTimeEnabled; rc = dc_device_write(device, SUUNTO_VYPER_ALARM_DEPTH_TIME, &data, 1); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); // The stinger stores alarm time in seconds instead of minutes. time = m_deviceDetails->alarmTime; if (m_deviceDetails->model == "Stinger") time *= 60; data2[0] = time >> 8; data2[1] = time & 0xFF; rc = dc_device_write(device, SUUNTO_VYPER_ALARM_TIME, data2, 2); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); data2[0] = (int)(mm_to_feet(m_deviceDetails->alarmDepth) * 128) >> 8; data2[1] = (int)(mm_to_feet(m_deviceDetails->alarmDepth) * 128) & 0x0FF; rc = dc_device_write(device, SUUNTO_VYPER_ALARM_DEPTH, data2, 2); EMIT_PROGRESS(); return rc; } static dc_status_t read_ostc4_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { // This code is really similar to the OSTC3 code, but there are minor // differences in what the data means, and how to communicate with the // device. If anyone can find a good way to harmonize the two, be my guest. dc_status_t rc = DC_STATUS_SUCCESS; dc_event_progress_t progress; progress.current = 0; progress.maximum = 23; EMIT_PROGRESS(); //Read gas mixes gas gas1; gas gas2; gas gas3; gas gas4; gas gas5; unsigned char gasData[4] = { 0, 0, 0, 0 }; rc = hw_ostc3_device_config_read(device, OSTC3_GAS1, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas1.oxygen = gasData[0]; gas1.helium = gasData[1]; gas1.type = gasData[2]; gas1.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS2, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas2.oxygen = gasData[0]; gas2.helium = gasData[1]; gas2.type = gasData[2]; gas2.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS3, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas3.oxygen = gasData[0]; gas3.helium = gasData[1]; gas3.type = gasData[2]; gas3.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS4, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas4.oxygen = gasData[0]; gas4.helium = gasData[1]; gas4.type = gasData[2]; gas4.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS5, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas5.oxygen = gasData[0]; gas5.helium = gasData[1]; gas5.type = gasData[2]; gas5.depth = gasData[3]; EMIT_PROGRESS(); m_deviceDetails->gas1 = gas1; m_deviceDetails->gas2 = gas2; m_deviceDetails->gas3 = gas3; m_deviceDetails->gas4 = gas4; m_deviceDetails->gas5 = gas5; EMIT_PROGRESS(); //Read Dil Values gas dil1; gas dil2; gas dil3; gas dil4; gas dil5; unsigned char dilData[4] = { 0, 0, 0, 0 }; rc = hw_ostc3_device_config_read(device, OSTC3_DIL1, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil1.oxygen = dilData[0]; dil1.helium = dilData[1]; dil1.type = dilData[2]; dil1.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL2, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil2.oxygen = dilData[0]; dil2.helium = dilData[1]; dil2.type = dilData[2]; dil2.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL3, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil3.oxygen = dilData[0]; dil3.helium = dilData[1]; dil3.type = dilData[2]; dil3.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL4, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil4.oxygen = dilData[0]; dil4.helium = dilData[1]; dil4.type = dilData[2]; dil4.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL5, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil5.oxygen = dilData[0]; dil5.helium = dilData[1]; dil5.type = dilData[2]; dil5.depth = dilData[3]; EMIT_PROGRESS(); m_deviceDetails->dil1 = dil1; m_deviceDetails->dil2 = dil2; m_deviceDetails->dil3 = dil3; m_deviceDetails->dil4 = dil4; m_deviceDetails->dil5 = dil5; //Read setpoint Values setpoint sp1; setpoint sp2; setpoint sp3; setpoint sp4; setpoint sp5; unsigned char spData[4] = { 0, 0, 0, 0}; rc = hw_ostc3_device_config_read(device, OSTC3_SP1, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp1.sp = spData[0]; sp1.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP2, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp2.sp = spData[0]; sp2.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP3, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp3.sp = spData[0]; sp3.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP4, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp4.sp = spData[0]; sp4.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP5, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp5.sp = spData[0]; sp5.depth = spData[1]; EMIT_PROGRESS(); m_deviceDetails->sp1 = sp1; m_deviceDetails->sp2 = sp2; m_deviceDetails->sp3 = sp3; m_deviceDetails->sp4 = sp4; m_deviceDetails->sp5 = sp5; //Read other settings unsigned char uData[4] = { 0 }; #define READ_SETTING(_OSTC4_SETTING, _DEVICE_DETAIL) \ do { \ rc = hw_ostc3_device_config_read(device, _OSTC4_SETTING, uData, sizeof(uData)); \ if (rc != DC_STATUS_SUCCESS) \ return rc; \ m_deviceDetails->_DEVICE_DETAIL = uData[0]; \ EMIT_PROGRESS(); \ } while (0) READ_SETTING(OSTC3_DIVE_MODE, diveMode); READ_SETTING(OSTC3_LAST_DECO, lastDeco); READ_SETTING(OSTC3_BRIGHTNESS, brightness); READ_SETTING(OSTC3_UNITS, units); READ_SETTING(OSTC3_SALINITY, salinity); READ_SETTING(OSTC3_DIVEMODE_COLOR, diveModeColor); READ_SETTING(OSTC3_LANGUAGE, language); READ_SETTING(OSTC3_DATE_FORMAT, dateFormat); READ_SETTING(OSTC3_SAFETY_STOP, safetyStop); READ_SETTING(OSTC3_GF_HIGH, gfHigh); READ_SETTING(OSTC3_GF_LOW, gfLow); READ_SETTING(OSTC3_PPO2_MIN, ppO2Min); READ_SETTING(OSTC3_PPO2_MAX, ppO2Max); READ_SETTING(OSTC3_FUTURE_TTS, futureTTS); READ_SETTING(OSTC3_CCR_MODE, ccrMode); READ_SETTING(OSTC3_DECO_TYPE, decoType); READ_SETTING(OSTC3_AGF_HIGH, aGFHigh); READ_SETTING(OSTC3_AGF_LOW, aGFLow); READ_SETTING(OSTC4_VPM_CONSERVATISM, vpmConservatism); READ_SETTING(OSTC3_SETPOINT_FALLBACK, setPointFallback); READ_SETTING(OSTC4_BUTTON_SENSIVITY, buttonSensitivity); READ_SETTING(OSTC3_BOTTOM_GAS_CONSUMPTION, bottomGasConsumption); READ_SETTING(OSTC3_DECO_GAS_CONSUMPTION, decoGasConsumption); READ_SETTING(OSTC4_TRAVEL_GAS_CONSUMPTION, travelGasConsumption); READ_SETTING(OSTC3_ALWAYS_SHOW_PPO2, alwaysShowppO2); READ_SETTING(OSTC3_SAFETY_STOP_LENGTH, safetyStopLength); READ_SETTING(OSTC3_SAFETY_STOP_START_DEPTH, safetyStopStartDepth); /* * Settings not yet implemented * * logbook offset 0x47 0..9000 low byte 0..9000 high byte * Extra display 0x71 0=0ff, 1=BigFont * Custom View Center 0x72 0..8 (..9 Bonex Version) * CV Center Fallback 0x73 0..20 sec * Custom View Corner 0x74 1..7 * CV Corner Fallback 0x75 0..20 sec */ #undef READ_SETTING rc = hw_ostc3_device_config_read(device, OSTC3_PRESSURE_SENSOR_OFFSET, uData, sizeof(uData)); if (rc != DC_STATUS_SUCCESS) return rc; // OSTC3 stores the pressureSensorOffset in two-complement m_deviceDetails->pressureSensorOffset = (signed char)uData[0]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_TEMP_SENSOR_OFFSET, uData, sizeof(uData)); if (rc != DC_STATUS_SUCCESS) return rc; // OSTC3 stores the tempSensorOffset in two-complement m_deviceDetails->tempSensorOffset = (signed char)uData[0]; EMIT_PROGRESS(); //read firmware settings unsigned char fData[64] = { 0 }; rc = hw_ostc3_device_version(device, fData, sizeof(fData)); if (rc != DC_STATUS_SUCCESS) return rc; int serial = fData[0] + (fData[1] << 8); m_deviceDetails->serialNo = QString::number(serial); unsigned char X, Y, Z, beta; unsigned int firmwareOnDevice = (fData[3] << 8) + fData[2]; X = (firmwareOnDevice & 0xF800) >> 11; Y = (firmwareOnDevice & 0x07C0) >> 6; Z = (firmwareOnDevice & 0x003E) >> 1; beta = firmwareOnDevice & 0x0001; m_deviceDetails->firmwareVersion = QString("%1.%2.%3%4").arg(X).arg(Y).arg(Z).arg(beta?" beta":""); QByteArray ar((char *)fData + 4, 60); m_deviceDetails->customText = ar.trimmed(); EMIT_PROGRESS(); return rc; } static dc_status_t write_ostc4_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { // This code is really similar to the OSTC3 code, but there are minor // differences in what the data means, and how to communicate with the // device. If anyone can find a good way to harmonize the two, be my guest. dc_status_t rc = DC_STATUS_SUCCESS; dc_event_progress_t progress; progress.current = 0; progress.maximum = 21; //write gas values unsigned char gas1Data[4] = { m_deviceDetails->gas1.oxygen, m_deviceDetails->gas1.helium, m_deviceDetails->gas1.type, m_deviceDetails->gas1.depth }; unsigned char gas2Data[4] = { m_deviceDetails->gas2.oxygen, m_deviceDetails->gas2.helium, m_deviceDetails->gas2.type, m_deviceDetails->gas2.depth }; unsigned char gas3Data[4] = { m_deviceDetails->gas3.oxygen, m_deviceDetails->gas3.helium, m_deviceDetails->gas3.type, m_deviceDetails->gas3.depth }; unsigned char gas4Data[4] = { m_deviceDetails->gas4.oxygen, m_deviceDetails->gas4.helium, m_deviceDetails->gas4.type, m_deviceDetails->gas4.depth }; unsigned char gas5Data[4] = { m_deviceDetails->gas5.oxygen, m_deviceDetails->gas5.helium, m_deviceDetails->gas5.type, m_deviceDetails->gas5.depth }; //gas 1 rc = hw_ostc3_device_config_write(device, OSTC3_GAS1, gas1Data, sizeof(gas1Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 2 rc = hw_ostc3_device_config_write(device, OSTC3_GAS2, gas2Data, sizeof(gas2Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 3 rc = hw_ostc3_device_config_write(device, OSTC3_GAS3, gas3Data, sizeof(gas3Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 4 rc = hw_ostc3_device_config_write(device, OSTC3_GAS4, gas4Data, sizeof(gas4Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 5 rc = hw_ostc3_device_config_write(device, OSTC3_GAS5, gas5Data, sizeof(gas5Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //write setpoint values unsigned char sp1Data[4] = { m_deviceDetails->sp1.sp, m_deviceDetails->sp1.depth }; unsigned char sp2Data[4] = { m_deviceDetails->sp2.sp, m_deviceDetails->sp2.depth }; unsigned char sp3Data[4] = { m_deviceDetails->sp3.sp, m_deviceDetails->sp3.depth }; unsigned char sp4Data[4] = { m_deviceDetails->sp4.sp, m_deviceDetails->sp4.depth }; unsigned char sp5Data[4] = { m_deviceDetails->sp5.sp, m_deviceDetails->sp5.depth }; //sp 1 rc = hw_ostc3_device_config_write(device, OSTC3_SP1, sp1Data, sizeof(sp1Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 2 rc = hw_ostc3_device_config_write(device, OSTC3_SP2, sp2Data, sizeof(sp2Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 3 rc = hw_ostc3_device_config_write(device, OSTC3_SP3, sp3Data, sizeof(sp3Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 4 rc = hw_ostc3_device_config_write(device, OSTC3_SP4, sp4Data, sizeof(sp4Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 5 rc = hw_ostc3_device_config_write(device, OSTC3_SP5, sp5Data, sizeof(sp5Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //write dil values unsigned char dil1Data[4] = { m_deviceDetails->dil1.oxygen, m_deviceDetails->dil1.helium, m_deviceDetails->dil1.type, m_deviceDetails->dil1.depth }; unsigned char dil2Data[4] = { m_deviceDetails->dil2.oxygen, m_deviceDetails->dil2.helium, m_deviceDetails->dil2.type, m_deviceDetails->dil2.depth }; unsigned char dil3Data[4] = { m_deviceDetails->dil3.oxygen, m_deviceDetails->dil3.helium, m_deviceDetails->dil3.type, m_deviceDetails->dil3.depth }; unsigned char dil4Data[4] = { m_deviceDetails->dil4.oxygen, m_deviceDetails->dil4.helium, m_deviceDetails->dil4.type, m_deviceDetails->dil4.depth }; unsigned char dil5Data[4] = { m_deviceDetails->dil5.oxygen, m_deviceDetails->dil5.helium, m_deviceDetails->dil5.type, m_deviceDetails->dil5.depth }; //dil 1 rc = hw_ostc3_device_config_write(device, OSTC3_DIL1, dil1Data, sizeof(gas1Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 2 rc = hw_ostc3_device_config_write(device, OSTC3_DIL2, dil2Data, sizeof(dil2Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 3 rc = hw_ostc3_device_config_write(device, OSTC3_DIL3, dil3Data, sizeof(dil3Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 4 rc = hw_ostc3_device_config_write(device, OSTC3_DIL4, dil4Data, sizeof(dil4Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 5 rc = hw_ostc3_device_config_write(device, OSTC3_DIL5, dil5Data, sizeof(dil5Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //write general settings //custom text rc = hw_ostc3_device_customtext(device, m_deviceDetails->customText.toUtf8().data()); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); unsigned char data[4] = { 0 }; #define WRITE_SETTING(_OSTC4_SETTING, _DEVICE_DETAIL) \ do { \ data[0] = m_deviceDetails->_DEVICE_DETAIL; \ rc = hw_ostc3_device_config_write(device, _OSTC4_SETTING, data, sizeof(data)); \ if (rc != DC_STATUS_SUCCESS) \ return rc; \ EMIT_PROGRESS(); \ } while (0) WRITE_SETTING(OSTC3_DIVE_MODE, diveMode); WRITE_SETTING(OSTC3_LAST_DECO, lastDeco); WRITE_SETTING(OSTC3_BRIGHTNESS, brightness); WRITE_SETTING(OSTC3_UNITS, units); WRITE_SETTING(OSTC3_SALINITY, salinity); WRITE_SETTING(OSTC3_DIVEMODE_COLOR, diveModeColor); WRITE_SETTING(OSTC3_LANGUAGE, language); WRITE_SETTING(OSTC3_DATE_FORMAT, dateFormat); WRITE_SETTING(OSTC3_SAFETY_STOP, safetyStop); WRITE_SETTING(OSTC3_GF_HIGH, gfHigh); WRITE_SETTING(OSTC3_GF_LOW, gfLow); WRITE_SETTING(OSTC3_PPO2_MIN, ppO2Min); WRITE_SETTING(OSTC3_PPO2_MAX, ppO2Max); WRITE_SETTING(OSTC3_FUTURE_TTS, futureTTS); WRITE_SETTING(OSTC3_CCR_MODE, ccrMode); WRITE_SETTING(OSTC3_DECO_TYPE, decoType); WRITE_SETTING(OSTC3_AGF_HIGH, aGFHigh); WRITE_SETTING(OSTC3_AGF_LOW, aGFLow); WRITE_SETTING(OSTC4_VPM_CONSERVATISM, vpmConservatism); WRITE_SETTING(OSTC3_SETPOINT_FALLBACK, setPointFallback); WRITE_SETTING(OSTC4_BUTTON_SENSIVITY, buttonSensitivity); WRITE_SETTING(OSTC3_BOTTOM_GAS_CONSUMPTION, bottomGasConsumption); WRITE_SETTING(OSTC3_DECO_GAS_CONSUMPTION, decoGasConsumption); WRITE_SETTING(OSTC4_TRAVEL_GAS_CONSUMPTION, travelGasConsumption); WRITE_SETTING(OSTC3_ALWAYS_SHOW_PPO2, alwaysShowppO2); WRITE_SETTING(OSTC3_SAFETY_STOP_LENGTH, safetyStopLength); WRITE_SETTING(OSTC3_SAFETY_STOP_START_DEPTH, safetyStopStartDepth); /* * Settings not yet implemented * * logbook offset 0x47 0..9000 low byte 0..9000 high byte * Extra display 0x71 0=0ff, 1=BigFont * Custom View Center 0x72 0..8 (..9 Bonex Version) * CV Center Fallback 0x73 0..20 sec * Custom View Corner 0x74 1..7 * CV Corner Fallback 0x75 0..20 sec */ #undef WRITE_SETTING // OSTC3 stores the pressureSensorOffset in two-complement data[0] = (unsigned char)m_deviceDetails->pressureSensorOffset; rc = hw_ostc3_device_config_write(device, OSTC3_PRESSURE_SENSOR_OFFSET, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); // OSTC3 stores the tempSensorOffset in two-complement data[0] = (unsigned char)m_deviceDetails->tempSensorOffset; rc = hw_ostc3_device_config_write(device, OSTC3_TEMP_SENSOR_OFFSET, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sync date and time if (m_deviceDetails->syncTime) { dc_datetime_t now; dc_datetime_localtime(&now, dc_datetime_now()); rc = dc_device_timesync(device, &now); } EMIT_PROGRESS(); return rc; } #if DC_VERSION_CHECK(0, 5, 0) static dc_status_t read_ostc3_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { dc_status_t rc; dc_event_progress_t progress; progress.current = 0; progress.maximum = 57; unsigned char hardware[1]; //Read hardware type rc = hw_ostc3_device_hardware (device, hardware, sizeof (hardware)); if (rc != DC_STATUS_SUCCESS) return rc; dc_descriptor_t *desc = get_descriptor(DC_FAMILY_HW_OSTC3, hardware[0]); if (desc) { m_deviceDetails->model = dc_descriptor_get_product(desc); dc_descriptor_free(desc); } else { return DC_STATUS_UNSUPPORTED; } if (m_deviceDetails->model == "OSTC 4") return read_ostc4_settings(device, m_deviceDetails, progress_cb, userdata); EMIT_PROGRESS(); //Read gas mixes gas gas1; gas gas2; gas gas3; gas gas4; gas gas5; unsigned char gasData[4] = { 0, 0, 0, 0 }; rc = hw_ostc3_device_config_read(device, OSTC3_GAS1, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas1.oxygen = gasData[0]; gas1.helium = gasData[1]; gas1.type = gasData[2]; gas1.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS2, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas2.oxygen = gasData[0]; gas2.helium = gasData[1]; gas2.type = gasData[2]; gas2.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS3, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas3.oxygen = gasData[0]; gas3.helium = gasData[1]; gas3.type = gasData[2]; gas3.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS4, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas4.oxygen = gasData[0]; gas4.helium = gasData[1]; gas4.type = gasData[2]; gas4.depth = gasData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_GAS5, gasData, sizeof(gasData)); if (rc != DC_STATUS_SUCCESS) return rc; gas5.oxygen = gasData[0]; gas5.helium = gasData[1]; gas5.type = gasData[2]; gas5.depth = gasData[3]; EMIT_PROGRESS(); m_deviceDetails->gas1 = gas1; m_deviceDetails->gas2 = gas2; m_deviceDetails->gas3 = gas3; m_deviceDetails->gas4 = gas4; m_deviceDetails->gas5 = gas5; EMIT_PROGRESS(); //Read Dil Values gas dil1; gas dil2; gas dil3; gas dil4; gas dil5; unsigned char dilData[4] = { 0, 0, 0, 0 }; rc = hw_ostc3_device_config_read(device, OSTC3_DIL1, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil1.oxygen = dilData[0]; dil1.helium = dilData[1]; dil1.type = dilData[2]; dil1.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL2, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil2.oxygen = dilData[0]; dil2.helium = dilData[1]; dil2.type = dilData[2]; dil2.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL3, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil3.oxygen = dilData[0]; dil3.helium = dilData[1]; dil3.type = dilData[2]; dil3.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL4, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil4.oxygen = dilData[0]; dil4.helium = dilData[1]; dil4.type = dilData[2]; dil4.depth = dilData[3]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_DIL5, dilData, sizeof(dilData)); if (rc != DC_STATUS_SUCCESS) return rc; dil5.oxygen = dilData[0]; dil5.helium = dilData[1]; dil5.type = dilData[2]; dil5.depth = dilData[3]; EMIT_PROGRESS(); m_deviceDetails->dil1 = dil1; m_deviceDetails->dil2 = dil2; m_deviceDetails->dil3 = dil3; m_deviceDetails->dil4 = dil4; m_deviceDetails->dil5 = dil5; //Read setpoint Values setpoint sp1; setpoint sp2; setpoint sp3; setpoint sp4; setpoint sp5; unsigned char spData[2] = { 0, 0 }; rc = hw_ostc3_device_config_read(device, OSTC3_SP1, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp1.sp = spData[0]; sp1.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP2, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp2.sp = spData[0]; sp2.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP3, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp3.sp = spData[0]; sp3.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP4, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp4.sp = spData[0]; sp4.depth = spData[1]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_SP5, spData, sizeof(spData)); if (rc != DC_STATUS_SUCCESS) return rc; sp5.sp = spData[0]; sp5.depth = spData[1]; EMIT_PROGRESS(); m_deviceDetails->sp1 = sp1; m_deviceDetails->sp2 = sp2; m_deviceDetails->sp3 = sp3; m_deviceDetails->sp4 = sp4; m_deviceDetails->sp5 = sp5; //Read other settings unsigned char uData[1] = { 0 }; #define READ_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \ do { \ rc = hw_ostc3_device_config_read(device, _OSTC3_SETTING, uData, sizeof(uData)); \ if (rc != DC_STATUS_SUCCESS) \ return rc; \ m_deviceDetails->_DEVICE_DETAIL = uData[0]; \ EMIT_PROGRESS(); \ } while (0) READ_SETTING(OSTC3_DIVE_MODE, diveMode); READ_SETTING(OSTC3_SATURATION, saturation); READ_SETTING(OSTC3_DESATURATION, desaturation); READ_SETTING(OSTC3_LAST_DECO, lastDeco); READ_SETTING(OSTC3_BRIGHTNESS, brightness); READ_SETTING(OSTC3_UNITS, units); READ_SETTING(OSTC3_SAMPLING_RATE, samplingRate); READ_SETTING(OSTC3_SALINITY, salinity); READ_SETTING(OSTC3_DIVEMODE_COLOR, diveModeColor); READ_SETTING(OSTC3_LANGUAGE, language); READ_SETTING(OSTC3_DATE_FORMAT, dateFormat); READ_SETTING(OSTC3_COMPASS_GAIN, compassGain); READ_SETTING(OSTC3_SAFETY_STOP, safetyStop); READ_SETTING(OSTC3_GF_HIGH, gfHigh); READ_SETTING(OSTC3_GF_LOW, gfLow); READ_SETTING(OSTC3_PPO2_MIN, ppO2Min); READ_SETTING(OSTC3_PPO2_MAX, ppO2Max); READ_SETTING(OSTC3_FUTURE_TTS, futureTTS); READ_SETTING(OSTC3_CCR_MODE, ccrMode); READ_SETTING(OSTC3_DECO_TYPE, decoType); READ_SETTING(OSTC3_AGF_SELECTABLE, aGFSelectable); READ_SETTING(OSTC3_AGF_HIGH, aGFHigh); READ_SETTING(OSTC3_AGF_LOW, aGFLow); READ_SETTING(OSTC3_CALIBRATION_GAS_O2, calibrationGas); READ_SETTING(OSTC3_FLIP_SCREEN, flipScreen); READ_SETTING(OSTC3_SETPOINT_FALLBACK, setPointFallback); READ_SETTING(OSTC3_LEFT_BUTTON_SENSIVITY, leftButtonSensitivity); READ_SETTING(OSTC3_RIGHT_BUTTON_SENSIVITY, rightButtonSensitivity); READ_SETTING(OSTC3_BOTTOM_GAS_CONSUMPTION, bottomGasConsumption); READ_SETTING(OSTC3_DECO_GAS_CONSUMPTION, decoGasConsumption); READ_SETTING(OSTC3_MOD_WARNING, modWarning); READ_SETTING(OSTC3_DYNAMIC_ASCEND_RATE, dynamicAscendRate); READ_SETTING(OSTC3_GRAPHICAL_SPEED_INDICATOR, graphicalSpeedIndicator); READ_SETTING(OSTC3_ALWAYS_SHOW_PPO2, alwaysShowppO2); READ_SETTING(OSTC3_SAFETY_STOP_LENGTH, safetyStopLength); READ_SETTING(OSTC3_SAFETY_STOP_START_DEPTH, safetyStopStartDepth); READ_SETTING(OSTC3_SAFETY_STOP_END_DEPTH, safetyStopEndDepth); READ_SETTING(OSTC3_SAFETY_STOP_RESET_DEPTH, safetyStopResetDepth); #undef READ_SETTING rc = hw_ostc3_device_config_read(device, OSTC3_PRESSURE_SENSOR_OFFSET, uData, sizeof(uData)); if (rc != DC_STATUS_SUCCESS) return rc; // OSTC3 stores the pressureSensorOffset in two-complement m_deviceDetails->pressureSensorOffset = (signed char)uData[0]; EMIT_PROGRESS(); rc = hw_ostc3_device_config_read(device, OSTC3_TEMP_SENSOR_OFFSET, uData, sizeof(uData)); if (rc != DC_STATUS_SUCCESS) return rc; // OSTC3 stores the tempSensorOffset in two-complement m_deviceDetails->tempSensorOffset = (signed char)uData[0]; EMIT_PROGRESS(); //read firmware settings unsigned char fData[64] = { 0 }; rc = hw_ostc3_device_version(device, fData, sizeof(fData)); if (rc != DC_STATUS_SUCCESS) return rc; int serial = fData[0] + (fData[1] << 8); m_deviceDetails->serialNo = QString::number(serial); m_deviceDetails->firmwareVersion = QString::number(fData[2]) + "." + QString::number(fData[3]); QByteArray ar((char *)fData + 4, 60); m_deviceDetails->customText = ar.trimmed(); EMIT_PROGRESS(); return rc; } static dc_status_t write_ostc3_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { dc_status_t rc; dc_event_progress_t progress; progress.current = 0; progress.maximum = 56; //write gas values unsigned char gas1Data[4] = { m_deviceDetails->gas1.oxygen, m_deviceDetails->gas1.helium, m_deviceDetails->gas1.type, m_deviceDetails->gas1.depth }; unsigned char gas2Data[4] = { m_deviceDetails->gas2.oxygen, m_deviceDetails->gas2.helium, m_deviceDetails->gas2.type, m_deviceDetails->gas2.depth }; unsigned char gas3Data[4] = { m_deviceDetails->gas3.oxygen, m_deviceDetails->gas3.helium, m_deviceDetails->gas3.type, m_deviceDetails->gas3.depth }; unsigned char gas4Data[4] = { m_deviceDetails->gas4.oxygen, m_deviceDetails->gas4.helium, m_deviceDetails->gas4.type, m_deviceDetails->gas4.depth }; unsigned char gas5Data[4] = { m_deviceDetails->gas5.oxygen, m_deviceDetails->gas5.helium, m_deviceDetails->gas5.type, m_deviceDetails->gas5.depth }; //gas 1 rc = hw_ostc3_device_config_write(device, OSTC3_GAS1, gas1Data, sizeof(gas1Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 2 rc = hw_ostc3_device_config_write(device, OSTC3_GAS2, gas2Data, sizeof(gas2Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 3 rc = hw_ostc3_device_config_write(device, OSTC3_GAS3, gas3Data, sizeof(gas3Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 4 rc = hw_ostc3_device_config_write(device, OSTC3_GAS4, gas4Data, sizeof(gas4Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //gas 5 rc = hw_ostc3_device_config_write(device, OSTC3_GAS5, gas5Data, sizeof(gas5Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //write setpoint values unsigned char sp1Data[2] = { m_deviceDetails->sp1.sp, m_deviceDetails->sp1.depth }; unsigned char sp2Data[2] = { m_deviceDetails->sp2.sp, m_deviceDetails->sp2.depth }; unsigned char sp3Data[2] = { m_deviceDetails->sp3.sp, m_deviceDetails->sp3.depth }; unsigned char sp4Data[2] = { m_deviceDetails->sp4.sp, m_deviceDetails->sp4.depth }; unsigned char sp5Data[2] = { m_deviceDetails->sp5.sp, m_deviceDetails->sp5.depth }; //sp 1 rc = hw_ostc3_device_config_write(device, OSTC3_SP1, sp1Data, sizeof(sp1Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 2 rc = hw_ostc3_device_config_write(device, OSTC3_SP2, sp2Data, sizeof(sp2Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 3 rc = hw_ostc3_device_config_write(device, OSTC3_SP3, sp3Data, sizeof(sp3Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 4 rc = hw_ostc3_device_config_write(device, OSTC3_SP4, sp4Data, sizeof(sp4Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sp 5 rc = hw_ostc3_device_config_write(device, OSTC3_SP5, sp5Data, sizeof(sp5Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //write dil values unsigned char dil1Data[4] = { m_deviceDetails->dil1.oxygen, m_deviceDetails->dil1.helium, m_deviceDetails->dil1.type, m_deviceDetails->dil1.depth }; unsigned char dil2Data[4] = { m_deviceDetails->dil2.oxygen, m_deviceDetails->dil2.helium, m_deviceDetails->dil2.type, m_deviceDetails->dil2.depth }; unsigned char dil3Data[4] = { m_deviceDetails->dil3.oxygen, m_deviceDetails->dil3.helium, m_deviceDetails->dil3.type, m_deviceDetails->dil3.depth }; unsigned char dil4Data[4] = { m_deviceDetails->dil4.oxygen, m_deviceDetails->dil4.helium, m_deviceDetails->dil4.type, m_deviceDetails->dil4.depth }; unsigned char dil5Data[4] = { m_deviceDetails->dil5.oxygen, m_deviceDetails->dil5.helium, m_deviceDetails->dil5.type, m_deviceDetails->dil5.depth }; //dil 1 rc = hw_ostc3_device_config_write(device, OSTC3_DIL1, dil1Data, sizeof(gas1Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 2 rc = hw_ostc3_device_config_write(device, OSTC3_DIL2, dil2Data, sizeof(dil2Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 3 rc = hw_ostc3_device_config_write(device, OSTC3_DIL3, dil3Data, sizeof(dil3Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 4 rc = hw_ostc3_device_config_write(device, OSTC3_DIL4, dil4Data, sizeof(dil4Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //dil 5 rc = hw_ostc3_device_config_write(device, OSTC3_DIL5, dil5Data, sizeof(dil5Data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //write general settings //custom text rc = hw_ostc3_device_customtext(device, m_deviceDetails->customText.toUtf8().data()); if (rc != DC_STATUS_SUCCESS) return rc; unsigned char data[1] = { 0 }; #define WRITE_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \ do { \ data[0] = m_deviceDetails->_DEVICE_DETAIL; \ rc = hw_ostc3_device_config_write(device, _OSTC3_SETTING, data, sizeof(data)); \ if (rc != DC_STATUS_SUCCESS) \ return rc; \ EMIT_PROGRESS(); \ } while (0) WRITE_SETTING(OSTC3_DIVE_MODE, diveMode); WRITE_SETTING(OSTC3_SATURATION, saturation); WRITE_SETTING(OSTC3_DESATURATION, desaturation); WRITE_SETTING(OSTC3_LAST_DECO, lastDeco); WRITE_SETTING(OSTC3_BRIGHTNESS, brightness); WRITE_SETTING(OSTC3_UNITS, units); WRITE_SETTING(OSTC3_SAMPLING_RATE, samplingRate); WRITE_SETTING(OSTC3_SALINITY, salinity); WRITE_SETTING(OSTC3_DIVEMODE_COLOR, diveModeColor); WRITE_SETTING(OSTC3_LANGUAGE, language); WRITE_SETTING(OSTC3_DATE_FORMAT, dateFormat); WRITE_SETTING(OSTC3_COMPASS_GAIN, compassGain); WRITE_SETTING(OSTC3_SAFETY_STOP, safetyStop); WRITE_SETTING(OSTC3_GF_HIGH, gfHigh); WRITE_SETTING(OSTC3_GF_LOW, gfLow); WRITE_SETTING(OSTC3_PPO2_MIN, ppO2Min); WRITE_SETTING(OSTC3_PPO2_MAX, ppO2Max); WRITE_SETTING(OSTC3_FUTURE_TTS, futureTTS); WRITE_SETTING(OSTC3_CCR_MODE, ccrMode); WRITE_SETTING(OSTC3_DECO_TYPE, decoType); WRITE_SETTING(OSTC3_AGF_SELECTABLE, aGFSelectable); WRITE_SETTING(OSTC3_AGF_HIGH, aGFHigh); WRITE_SETTING(OSTC3_AGF_LOW, aGFLow); WRITE_SETTING(OSTC3_CALIBRATION_GAS_O2, calibrationGas); WRITE_SETTING(OSTC3_FLIP_SCREEN, flipScreen); WRITE_SETTING(OSTC3_SETPOINT_FALLBACK, setPointFallback); WRITE_SETTING(OSTC3_LEFT_BUTTON_SENSIVITY, leftButtonSensitivity); WRITE_SETTING(OSTC3_RIGHT_BUTTON_SENSIVITY, rightButtonSensitivity); WRITE_SETTING(OSTC3_BOTTOM_GAS_CONSUMPTION, bottomGasConsumption); WRITE_SETTING(OSTC3_DECO_GAS_CONSUMPTION, decoGasConsumption); WRITE_SETTING(OSTC3_MOD_WARNING, modWarning); WRITE_SETTING(OSTC3_DYNAMIC_ASCEND_RATE, dynamicAscendRate); WRITE_SETTING(OSTC3_GRAPHICAL_SPEED_INDICATOR, graphicalSpeedIndicator); WRITE_SETTING(OSTC3_ALWAYS_SHOW_PPO2, alwaysShowppO2); WRITE_SETTING(OSTC3_SAFETY_STOP_LENGTH, safetyStopLength); WRITE_SETTING(OSTC3_SAFETY_STOP_START_DEPTH, safetyStopStartDepth); WRITE_SETTING(OSTC3_SAFETY_STOP_END_DEPTH, safetyStopEndDepth); WRITE_SETTING(OSTC3_SAFETY_STOP_RESET_DEPTH, safetyStopResetDepth); #undef WRITE_SETTING // OSTC3 stores the pressureSensorOffset in two-complement data[0] = (unsigned char)m_deviceDetails->pressureSensorOffset; rc = hw_ostc3_device_config_write(device, OSTC3_PRESSURE_SENSOR_OFFSET, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); // OSTC3 stores the tempSensorOffset in two-complement data[0] = (unsigned char)m_deviceDetails->tempSensorOffset; rc = hw_ostc3_device_config_write(device, OSTC3_TEMP_SENSOR_OFFSET, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sync date and time if (m_deviceDetails->syncTime) { dc_datetime_t now; dc_datetime_localtime(&now, dc_datetime_now()); rc = dc_device_timesync(device, &now); } EMIT_PROGRESS(); return rc; } #endif /* DC_VERSION_CHECK(0, 5, 0) */ static dc_status_t read_ostc_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { dc_status_t rc; dc_event_progress_t progress; progress.current = 0; progress.maximum = 3; unsigned char data[256] = {}; #ifdef DEBUG_OSTC_CF // FIXME: how should we report settings not supported back? unsigned char max_CF = 0; #endif rc = hw_ostc_device_eeprom_read(device, 0, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); m_deviceDetails->serialNo = QString::number(data[1] << 8 ^ data[0]); m_deviceDetails->numberOfDives = data[3] << 8 ^ data[2]; //Byte5-6: //Gas 1 default (%O2=21, %He=0) gas gas1; gas1.oxygen = data[6]; gas1.helium = data[7]; //Byte9-10: //Gas 2 default (%O2=21, %He=0) gas gas2; gas2.oxygen = data[10]; gas2.helium = data[11]; //Byte13-14: //Gas 3 default (%O2=21, %He=0) gas gas3; gas3.oxygen = data[14]; gas3.helium = data[15]; //Byte17-18: //Gas 4 default (%O2=21, %He=0) gas gas4; gas4.oxygen = data[18]; gas4.helium = data[19]; //Byte21-22: //Gas 5 default (%O2=21, %He=0) gas gas5; gas5.oxygen = data[22]; gas5.helium = data[23]; //Byte25-26: //Gas 6 current (%O2, %He) m_deviceDetails->salinity = data[26]; // Active Gas Flag Register gas1.type = data[27] & 0x01; gas2.type = (data[27] & 0x02) >> 1; gas3.type = (data[27] & 0x04) >> 2; gas4.type = (data[27] & 0x08) >> 3; gas5.type = (data[27] & 0x10) >> 4; // Gas switch depths gas1.depth = data[28]; gas2.depth = data[29]; gas3.depth = data[30]; gas4.depth = data[31]; gas5.depth = data[32]; // 33 which gas is Fist gas switch (data[33]) { case 1: gas1.type = 2; break; case 2: gas2.type = 2; break; case 3: gas3.type = 2; break; case 4: gas4.type = 2; break; case 5: gas5.type = 2; break; default: //Error? break; } // Data filled up, set the gases. m_deviceDetails->gas1 = gas1; m_deviceDetails->gas2 = gas2; m_deviceDetails->gas3 = gas3; m_deviceDetails->gas4 = gas4; m_deviceDetails->gas5 = gas5; m_deviceDetails->decoType = data[34]; //Byte36: //Use O2 Sensor Module in CC Modes (0= OFF, 1= ON) (Only available in old OSTC1 - unused for OSTC Mk.2/2N) //m_deviceDetails->ccrMode = data[35]; setpoint sp1; sp1.sp = data[36]; sp1.depth = 0; setpoint sp2; sp2.sp = data[37]; sp2.depth = 0; setpoint sp3; sp3.sp = data[38]; sp3.depth = 0; m_deviceDetails->sp1 = sp1; m_deviceDetails->sp2 = sp2; m_deviceDetails->sp3 = sp3; // Byte41-42: // Lowest Battery voltage seen (in mV) // Byte43: // Lowest Battery voltage seen at (Month) // Byte44: // Lowest Battery voltage seen at (Day) // Byte45: // Lowest Battery voltage seen at (Year) // Byte46-47: // Lowest Battery voltage seen at (Temperature in 0.1 °C) // Byte48: // Last complete charge at (Month) // Byte49: // Last complete charge at (Day) // Byte50: // Last complete charge at (Year) // Byte51-52: // Total charge cycles // Byte53-54: // Total complete charge cycles // Byte55-56: // Temperature Extrema minimum (Temperature in 0.1 °C) // Byte57: // Temperature Extrema minimum at (Month) // Byte58: // Temperature Extrema minimum at (Day) // Byte59: // Temperature Extrema minimum at (Year) // Byte60-61: // Temperature Extrema maximum (Temperature in 0.1 °C) // Byte62: // Temperature Extrema maximum at (Month) // Byte63: // Temperature Extrema maximum at (Day) // Byte64: // Temperature Extrema maximum at (Year) // Byte65: // Custom Text active (=1), Custom Text Disabled (<>1) // Byte66-90: // TO FIX EDITOR SYNTAX/INDENT { // (25Bytes): Custom Text for Surfacemode (Real text must end with "}") // Example: OSTC Dive Computer} (19 Characters incl. "}") Bytes 85-90 will be ignored. if (data[64] == 1) { // Make shure the data is null-terminated data[89] = 0; // Find the internal termination and replace it with 0 char *term = strchr((char *)data + 65, (int)'}'); if (term) *term = 0; m_deviceDetails->customText = (const char *)data + 65; } // Byte91: // Dim OLED in Divemode (>0), Normal mode (=0) // Byte92: // Date format for all outputs: // =0: MM/DD/YY // =1: DD/MM/YY // =2: YY/MM/DD m_deviceDetails->dateFormat = data[91]; // Byte93: // Total number of CF used in installed firmware #ifdef DEBUG_OSTC_CF max_CF = data[92]; #endif // Byte94: // Last selected view for customview area in surface mode // Byte95: // Last selected view for customview area in dive mode // Byte96-97: // Diluent 1 Default (%O2,%He) // Byte98-99: // Diluent 1 Current (%O2,%He) gas dil1(data[97], data[98]); // Byte100-101: // Gasuent 2 Default (%O2,%He) // Byte102-103: // Gasuent 2 Current (%O2,%He) gas dil2(data[101], data[102]); // Byte104-105: // Gasuent 3 Default (%O2,%He) // Byte106-107: // Gasuent 3 Current (%O2,%He) gas dil3(data[105], data[106]); // Byte108-109: // Gasuent 4 Default (%O2,%He) // Byte110-111: // Gasuent 4 Current (%O2,%He) gas dil4(data[109], data[110]); // Byte112-113: // Gasuent 5 Default (%O2,%He) // Byte114-115: // Gasuent 5 Current (%O2,%He) gas dil5(data[113], data[114]); // Byte116: // First Diluent (1-5) switch (data[115]) { case 1: dil1.type = 2; break; case 2: dil2.type = 2; break; case 3: dil3.type = 2; break; case 4: dil4.type = 2; break; case 5: dil5.type = 2; break; default: //Error? break; } m_deviceDetails->dil1 = dil1; m_deviceDetails->dil2 = dil2; m_deviceDetails->dil3 = dil3; m_deviceDetails->dil4 = dil4; m_deviceDetails->dil5 = dil5; // Byte117-128: // not used/reserved // Byte129-256: // 32 custom Functions (CF0-CF31) // Decode the relevant ones // CF11: Factor for saturation processes m_deviceDetails->saturation = read_ostc_cf(data, 11); // CF12: Factor for desaturation processes m_deviceDetails->desaturation = read_ostc_cf(data, 12); // CF17: Lower threshold for ppO2 warning m_deviceDetails->ppO2Min = read_ostc_cf(data, 17); // CF18: Upper threshold for ppO2 warning m_deviceDetails->ppO2Max = read_ostc_cf(data, 18); // CF20: Depth sampling rate for Profile storage m_deviceDetails->samplingRate = read_ostc_cf(data, 20); // CF29: Depth of last decompression stop m_deviceDetails->lastDeco = read_ostc_cf(data, 29); #ifdef DEBUG_OSTC_CF for (int cf = 0; cf <= 31 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif rc = hw_ostc_device_eeprom_read(device, 1, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); // Byte1: // Logbook version indicator (Not writable!) // Byte2-3: // Last Firmware installed, 1st Byte.2nd Byte (e.g. „1.90“) (Not writable!) m_deviceDetails->firmwareVersion = QString::number(data[1]) + "." + QString::number(data[2]); // Byte4: // OLED brightness (=0: Eco, =1 High) (Not writable!) // Byte5-11: // Time/Date vault during firmware updates // Byte12-128 // not used/reserved // Byte129-256: // 32 custom Functions (CF 32-63) // Decode the relevant ones // CF32: Gradient Factor low m_deviceDetails->gfLow = read_ostc_cf(data, 32); // CF33: Gradient Factor high m_deviceDetails->gfHigh = read_ostc_cf(data, 33); // CF56: Bottom gas consumption m_deviceDetails->bottomGasConsumption = read_ostc_cf(data, 56); // CF57: Ascent gas consumption m_deviceDetails->decoGasConsumption = read_ostc_cf(data, 57); // CF58: Future time to surface setFutureTTS m_deviceDetails->futureTTS = read_ostc_cf(data, 58); #ifdef DEBUG_OSTC_CF for (int cf = 32; cf <= 63 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif rc = hw_ostc_device_eeprom_read(device, 2, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); // Byte1-4: // not used/reserved (Not writable!) // Byte5-128: // not used/reserved // Byte129-256: // 32 custom Functions (CF 64-95) // Decode the relevant ones // CF60: Graphic velocity m_deviceDetails->graphicalSpeedIndicator = read_ostc_cf(data, 60); // CF65: Show safety stop m_deviceDetails->safetyStop = read_ostc_cf(data, 65); // CF67: Alternaitve Gradient Factor low m_deviceDetails->aGFLow = read_ostc_cf(data, 67); // CF68: Alternative Gradient Factor high m_deviceDetails->aGFHigh = read_ostc_cf(data, 68); // CF69: Allow Gradient Factor change m_deviceDetails->aGFSelectable = read_ostc_cf(data, 69); // CF70: Safety Stop Duration [s] m_deviceDetails->safetyStopLength = read_ostc_cf(data, 70); // CF71: Safety Stop Start Depth [m] m_deviceDetails->safetyStopStartDepth = read_ostc_cf(data, 71); // CF72: Safety Stop End Depth [m] m_deviceDetails->safetyStopEndDepth = read_ostc_cf(data, 72); // CF73: Safety Stop Reset Depth [m] m_deviceDetails->safetyStopResetDepth = read_ostc_cf(data, 73); // CF74: Battery Timeout [min] #ifdef DEBUG_OSTC_CF for (int cf = 64; cf <= 95 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif return rc; } static dc_status_t write_ostc_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata) { dc_status_t rc; dc_event_progress_t progress; progress.current = 0; progress.maximum = 7; unsigned char data[256] = {}; unsigned char max_CF = 0; // Because we write whole memory blocks, we read all the current // values out and then change then ones we should change. rc = hw_ostc_device_eeprom_read(device, 0, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //Byte5-6: //Gas 1 default (%O2=21, %He=0) gas gas1 = m_deviceDetails->gas1; data[6] = gas1.oxygen; data[7] = gas1.helium; //Byte9-10: //Gas 2 default (%O2=21, %He=0) gas gas2 = m_deviceDetails->gas2; data[10] = gas2.oxygen; data[11] = gas2.helium; //Byte13-14: //Gas 3 default (%O2=21, %He=0) gas gas3 = m_deviceDetails->gas3; data[14] = gas3.oxygen; data[15] = gas3.helium; //Byte17-18: //Gas 4 default (%O2=21, %He=0) gas gas4 = m_deviceDetails->gas4; data[18] = gas4.oxygen; data[19] = gas4.helium; //Byte21-22: //Gas 5 default (%O2=21, %He=0) gas gas5 = m_deviceDetails->gas5; data[22] = gas5.oxygen; data[23] = gas5.helium; //Byte25-26: //Gas 6 current (%O2, %He) data[26] = m_deviceDetails->salinity; // Gas types, 0=Disabled, 1=Active, 2=Fist // Active Gas Flag Register data[27] = 0; if (gas1.type) data[27] ^= 0x01; if (gas2.type) data[27] ^= 0x02; if (gas3.type) data[27] ^= 0x04; if (gas4.type) data[27] ^= 0x08; if (gas5.type) data[27] ^= 0x10; // Gas switch depths data[28] = gas1.depth; data[29] = gas2.depth; data[30] = gas3.depth; data[31] = gas4.depth; data[32] = gas5.depth; // 33 which gas is Fist gas if (gas1.type == 2) data[33] = 1; else if (gas2.type == 2) data[33] = 2; else if (gas3.type == 2) data[33] = 3; else if (gas4.type == 2) data[33] = 4; else if (gas5.type == 2) data[33] = 5; else // FIXME: No gas was First? // Set gas 1 to first data[33] = 1; data[34] = m_deviceDetails->decoType; //Byte36: //Use O2 Sensor Module in CC Modes (0= OFF, 1= ON) (Only available in old OSTC1 - unused for OSTC Mk.2/2N) //m_deviceDetails->ccrMode = data[35]; data[36] = m_deviceDetails->sp1.sp; data[37] = m_deviceDetails->sp2.sp; data[38] = m_deviceDetails->sp3.sp; // Byte41-42: // Lowest Battery voltage seen (in mV) // Byte43: // Lowest Battery voltage seen at (Month) // Byte44: // Lowest Battery voltage seen at (Day) // Byte45: // Lowest Battery voltage seen at (Year) // Byte46-47: // Lowest Battery voltage seen at (Temperature in 0.1 °C) // Byte48: // Last complete charge at (Month) // Byte49: // Last complete charge at (Day) // Byte50: // Last complete charge at (Year) // Byte51-52: // Total charge cycles // Byte53-54: // Total complete charge cycles // Byte55-56: // Temperature Extrema minimum (Temperature in 0.1 °C) // Byte57: // Temperature Extrema minimum at (Month) // Byte58: // Temperature Extrema minimum at (Day) // Byte59: // Temperature Extrema minimum at (Year) // Byte60-61: // Temperature Extrema maximum (Temperature in 0.1 °C) // Byte62: // Temperature Extrema maximum at (Month) // Byte63: // Temperature Extrema maximum at (Day) // Byte64: // Temperature Extrema maximum at (Year) // Byte65: // Custom Text active (=1), Custom Text Disabled (<>1) // Byte66-90: // (25Bytes): Custom Text for Surfacemode (Real text must end with "}") // Example: "OSTC Dive Computer}" (19 Characters incl. "}") Bytes 85-90 will be ignored. if (m_deviceDetails->customText == "") { data[64] = 0; } else { data[64] = 1; // Copy the string to the right place in the memory, padded with 0x20 (" ") strncpy((char *)data + 65, QString("%1").arg(m_deviceDetails->customText, -23, QChar(' ')).toUtf8().data(), 23); // And terminate the string. if (m_deviceDetails->customText.length() <= 23) data[65 + m_deviceDetails->customText.length()] = '}'; else data[90] = '}'; } // Byte91: // Dim OLED in Divemode (>0), Normal mode (=0) // Byte92: // Date format for all outputs: // =0: MM/DD/YY // =1: DD/MM/YY // =2: YY/MM/DD data[91] = m_deviceDetails->dateFormat; // Byte93: // Total number of CF used in installed firmware max_CF = data[92]; // Byte94: // Last selected view for customview area in surface mode // Byte95: // Last selected view for customview area in dive mode // Byte96-97: // Diluent 1 Default (%O2,%He) // Byte98-99: // Diluent 1 Current (%O2,%He) gas dil1 = m_deviceDetails->dil1; data[97] = dil1.oxygen; data[98] = dil1.helium; // Byte100-101: // Gasuent 2 Default (%O2,%He) // Byte102-103: // Gasuent 2 Current (%O2,%He) gas dil2 = m_deviceDetails->dil2; data[101] = dil2.oxygen; data[102] = dil2.helium; // Byte104-105: // Gasuent 3 Default (%O2,%He) // Byte106-107: // Gasuent 3 Current (%O2,%He) gas dil3 = m_deviceDetails->dil3; data[105] = dil3.oxygen; data[106] = dil3.helium; // Byte108-109: // Gasuent 4 Default (%O2,%He) // Byte110-111: // Gasuent 4 Current (%O2,%He) gas dil4 = m_deviceDetails->dil4; data[109] = dil4.oxygen; data[110] = dil4.helium; // Byte112-113: // Gasuent 5 Default (%O2,%He) // Byte114-115: // Gasuent 5 Current (%O2,%He) gas dil5 = m_deviceDetails->dil5; data[113] = dil5.oxygen; data[114] = dil5.helium; // Byte116: // First Diluent (1-5) if (dil1.type == 2) data[115] = 1; else if (dil2.type == 2) data[115] = 2; else if (dil3.type == 2) data[115] = 3; else if (dil4.type == 2) data[115] = 4; else if (dil5.type == 2) data[115] = 5; else // FIXME: No first diluent? // Set gas 1 to fist data[115] = 1; // Byte117-128: // not used/reserved // Byte129-256: // 32 custom Functions (CF0-CF31) // Write the relevant ones // CF11: Factor for saturation processes write_ostc_cf(data, 11, max_CF, m_deviceDetails->saturation); // CF12: Factor for desaturation processes write_ostc_cf(data, 12, max_CF, m_deviceDetails->desaturation); // CF17: Lower threshold for ppO2 warning write_ostc_cf(data, 17, max_CF, m_deviceDetails->ppO2Min); // CF18: Upper threshold for ppO2 warning write_ostc_cf(data, 18, max_CF, m_deviceDetails->ppO2Max); // CF20: Depth sampling rate for Profile storage write_ostc_cf(data, 20, max_CF, m_deviceDetails->samplingRate); // CF29: Depth of last decompression stop write_ostc_cf(data, 29, max_CF, m_deviceDetails->lastDeco); #ifdef DEBUG_OSTC_CF for (int cf = 0; cf <= 31 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif rc = hw_ostc_device_eeprom_write(device, 0, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); rc = hw_ostc_device_eeprom_read(device, 1, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); // Byte1: // Logbook version indicator (Not writable!) // Byte2-3: // Last Firmware installed, 1st Byte.2nd Byte (e.g. „1.90“) (Not writable!) // Byte4: // OLED brightness (=0: Eco, =1 High) (Not writable!) // Byte5-11: // Time/Date vault during firmware updates // Byte12-128 // not used/reserved // Byte129-256: // 32 custom Functions (CF 32-63) // Decode the relevant ones // CF32: Gradient Factor low write_ostc_cf(data, 32, max_CF, m_deviceDetails->gfLow); // CF33: Gradient Factor high write_ostc_cf(data, 33, max_CF, m_deviceDetails->gfHigh); // CF56: Bottom gas consumption write_ostc_cf(data, 56, max_CF, m_deviceDetails->bottomGasConsumption); // CF57: Ascent gas consumption write_ostc_cf(data, 57, max_CF, m_deviceDetails->decoGasConsumption); // CF58: Future time to surface setFutureTTS write_ostc_cf(data, 58, max_CF, m_deviceDetails->futureTTS); #ifdef DEBUG_OSTC_CF for (int cf = 32; cf <= 63 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif rc = hw_ostc_device_eeprom_write(device, 1, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); rc = hw_ostc_device_eeprom_read(device, 2, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); // Byte1-4: // not used/reserved (Not writable!) // Byte5-128: // not used/reserved // Byte129-256: // 32 custom Functions (CF 64-95) // Decode the relevant ones // CF60: Graphic velocity write_ostc_cf(data, 60, max_CF, m_deviceDetails->graphicalSpeedIndicator); // CF65: Show safety stop write_ostc_cf(data, 65, max_CF, m_deviceDetails->safetyStop); // CF67: Alternaitve Gradient Factor low write_ostc_cf(data, 67, max_CF, m_deviceDetails->aGFLow); // CF68: Alternative Gradient Factor high write_ostc_cf(data, 68, max_CF, m_deviceDetails->aGFHigh); // CF69: Allow Gradient Factor change write_ostc_cf(data, 69, max_CF, m_deviceDetails->aGFSelectable); // CF70: Safety Stop Duration [s] write_ostc_cf(data, 70, max_CF, m_deviceDetails->safetyStopLength); // CF71: Safety Stop Start Depth [m] write_ostc_cf(data, 71, max_CF, m_deviceDetails->safetyStopStartDepth); // CF72: Safety Stop End Depth [m] write_ostc_cf(data, 72, max_CF, m_deviceDetails->safetyStopEndDepth); // CF73: Safety Stop Reset Depth [m] write_ostc_cf(data, 73, max_CF, m_deviceDetails->safetyStopResetDepth); // CF74: Battery Timeout [min] #ifdef DEBUG_OSTC_CF for (int cf = 64; cf <= 95 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif rc = hw_ostc_device_eeprom_write(device, 2, data, sizeof(data)); if (rc != DC_STATUS_SUCCESS) return rc; EMIT_PROGRESS(); //sync date and time if (m_deviceDetails->syncTime) { QDateTime timeToSet = QDateTime::currentDateTime(); dc_datetime_t time = { 0 }; time.year = timeToSet.date().year(); time.month = timeToSet.date().month(); time.day = timeToSet.date().day(); time.hour = timeToSet.time().hour(); time.minute = timeToSet.time().minute(); time.second = timeToSet.time().second(); time.timezone = DC_TIMEZONE_NONE; rc = dc_device_timesync(device, &time); } EMIT_PROGRESS(); return rc; } #undef EMIT_PROGRESS DeviceThread::DeviceThread(QObject *parent, device_data_t *data) : QThread(parent), m_data(data) { } void DeviceThread::progressCB(int percent) { emit progress(percent); } void DeviceThread::event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata) { Q_UNUSED(device); const dc_event_progress_t *progress = (dc_event_progress_t *) data; DeviceThread *dt = static_cast<DeviceThread*>(userdata); switch (event) { case DC_EVENT_PROGRESS: dt->progressCB(lrint(100.0 * (double)progress->current / (double)progress->maximum)); break; default: emit dt->error("Unexpected event recived"); break; } } ReadSettingsThread::ReadSettingsThread(QObject *parent, device_data_t *data) : DeviceThread(parent, data) { } void ReadSettingsThread::run() { dc_status_t rc; DeviceDetails *m_deviceDetails = new DeviceDetails(0); switch (dc_device_get_type(m_data->device)) { case DC_FAMILY_SUUNTO_VYPER: rc = read_suunto_vyper_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this); if (rc == DC_STATUS_SUCCESS) { emit devicedetails(m_deviceDetails); } else if (rc == DC_STATUS_UNSUPPORTED) { emit error(tr("This feature is not yet available for the selected dive computer.")); } else { emit error("Failed!"); } break; #if DC_VERSION_CHECK(0, 5, 0) case DC_FAMILY_HW_OSTC3: rc = read_ostc3_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this); if (rc == DC_STATUS_SUCCESS) emit devicedetails(m_deviceDetails); else emit error("Failed!"); break; #endif // divecomputer 0.5.0 #ifdef DEBUG_OSTC case DC_FAMILY_NULL: #endif case DC_FAMILY_HW_OSTC: rc = read_ostc_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this); if (rc == DC_STATUS_SUCCESS) emit devicedetails(m_deviceDetails); else emit error("Failed!"); break; default: emit error(tr("This feature is not yet available for the selected dive computer.")); break; } } WriteSettingsThread::WriteSettingsThread(QObject *parent, device_data_t *data) : DeviceThread(parent, data), m_deviceDetails(NULL) { } void WriteSettingsThread::setDeviceDetails(DeviceDetails *details) { m_deviceDetails = details; } void WriteSettingsThread::run() { dc_status_t rc; switch (dc_device_get_type(m_data->device)) { case DC_FAMILY_SUUNTO_VYPER: rc = write_suunto_vyper_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this); if (rc == DC_STATUS_UNSUPPORTED) { emit error(tr("This feature is not yet available for the selected dive computer.")); } else if (rc != DC_STATUS_SUCCESS) { emit error(tr("Failed!")); } break; #if DC_VERSION_CHECK(0, 5, 0) case DC_FAMILY_HW_OSTC3: // FIXME: Is this the best way? if (m_deviceDetails->model == "OSTC 4") rc = write_ostc4_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this); else rc = write_ostc3_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this); if (rc != DC_STATUS_SUCCESS) emit error(tr("Failed!")); break; #endif // divecomputer 0.5.0 #ifdef DEBUG_OSTC case DC_FAMILY_NULL: #endif case DC_FAMILY_HW_OSTC: rc = write_ostc_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this); if (rc != DC_STATUS_SUCCESS) emit error(tr("Failed!")); break; default: emit error(tr("This feature is not yet available for the selected dive computer.")); break; } } FirmwareUpdateThread::FirmwareUpdateThread(QObject *parent, device_data_t *data, QString fileName) : DeviceThread(parent, data), m_fileName(fileName) { } void FirmwareUpdateThread::run() { dc_status_t rc; rc = dc_device_set_events(m_data->device, DC_EVENT_PROGRESS, DeviceThread::event_cb, this); if (rc != DC_STATUS_SUCCESS) { emit error("Error registering the event handler."); return; } switch (dc_device_get_type(m_data->device)) { #if DC_VERSION_CHECK(0, 5, 0) case DC_FAMILY_HW_OSTC3: rc = hw_ostc3_device_fwupdate(m_data->device, m_fileName.toUtf8().data()); break; case DC_FAMILY_HW_OSTC: rc = hw_ostc_device_fwupdate(m_data->device, m_fileName.toUtf8().data()); break; #endif // divecomputer 0.5.0 default: emit error(tr("This feature is not yet available for the selected dive computer.")); return; } if (rc != DC_STATUS_SUCCESS) { emit error(tr("Firmware update failed!")); } } ResetSettingsThread::ResetSettingsThread(QObject *parent, device_data_t *data) : DeviceThread(parent, data) { } void ResetSettingsThread::run() { dc_status_t rc = DC_STATUS_SUCCESS; #if DC_VERSION_CHECK(0, 5, 0) if (dc_device_get_type(m_data->device) == DC_FAMILY_HW_OSTC3) { rc = hw_ostc3_device_config_reset(m_data->device); emit progress(100); } #endif // divecomputer 0.5.0 if (rc != DC_STATUS_SUCCESS) { emit error(tr("Reset settings failed!")); } }