// SPDX-License-Identifier: GPL-2.0 /* dive.c */ /* maintains the internal dive list structure */ #include #include #include #include #include "gettext.h" #include "dive.h" #include "libdivecomputer.h" #include "device.h" #include "divelist.h" #include "qthelperfromc.h" /* one could argue about the best place to have this variable - * it's used in the UI, but it seems to make the most sense to have it * here */ struct dive displayed_dive; struct dive_site displayed_dive_site; struct tag_entry *g_tag_list = NULL; static const char *default_tags[] = { QT_TRANSLATE_NOOP("gettextFromC", "boat"), QT_TRANSLATE_NOOP("gettextFromC", "shore"), QT_TRANSLATE_NOOP("gettextFromC", "drift"), QT_TRANSLATE_NOOP("gettextFromC", "deep"), QT_TRANSLATE_NOOP("gettextFromC", "cavern"), QT_TRANSLATE_NOOP("gettextFromC", "ice"), QT_TRANSLATE_NOOP("gettextFromC", "wreck"), QT_TRANSLATE_NOOP("gettextFromC", "cave"), QT_TRANSLATE_NOOP("gettextFromC", "altitude"), QT_TRANSLATE_NOOP("gettextFromC", "pool"), QT_TRANSLATE_NOOP("gettextFromC", "lake"), QT_TRANSLATE_NOOP("gettextFromC", "river"), QT_TRANSLATE_NOOP("gettextFromC", "night"), QT_TRANSLATE_NOOP("gettextFromC", "fresh"), QT_TRANSLATE_NOOP("gettextFromC", "student"), QT_TRANSLATE_NOOP("gettextFromC", "instructor"), QT_TRANSLATE_NOOP("gettextFromC", "photo"), QT_TRANSLATE_NOOP("gettextFromC", "video"), QT_TRANSLATE_NOOP("gettextFromC", "deco") }; const char *cylinderuse_text[] = { QT_TRANSLATE_NOOP("gettextFromC", "OC-gas"), QT_TRANSLATE_NOOP("gettextFromC", "diluent"), QT_TRANSLATE_NOOP("gettextFromC", "oxygen"), QT_TRANSLATE_NOOP("gettextFromC", "not used") }; const char *divemode_text[] = { "OC", "CCR", "PSCR", "Freedive" }; /* * Adding a cylinder pressure sample field is not quite as trivial as it * perhaps should be. * * We try to keep the same sensor index for the same sensor, so that even * if the dive computer doesn't give pressure information for every sample, * we don't move pressure information around between the different sensor * indexes. * * The "prepare_sample()" function will always copy the sensor indices * from the previous sample, so the indexes are pre-populated (but the * pressures obviously are not) */ void add_sample_pressure(struct sample *sample, int sensor, int mbar) { int idx; if (!mbar) return; /* Do we already have a slot for this sensor */ for (idx = 0; idx < MAX_SENSORS; idx++) { if (sensor != sample->sensor[idx]) continue; sample->pressure[idx].mbar = mbar; return; } /* Pick the first unused index if we couldn't reuse one */ for (idx = 0; idx < MAX_SENSORS; idx++) { if (sample->pressure[idx].mbar) continue; sample->sensor[idx] = sensor; sample->pressure[idx].mbar = mbar; return; } /* We do not have enough slots for the pressure samples. */ /* Should we warn the user about dropping pressure data? */ } /* * The legacy format for sample pressures has a single pressure * for each sample that can have any sensor, plus a possible * "o2pressure" that is fixed to the Oxygen sensor for a CCR dive. * * For more complex pressure data, we have to use explicit * cylinder indexes for each sample. * * This function returns a negative number for "no legacy mode", * or a non-negative number that indicates the o2 sensor index. */ int legacy_format_o2pressures(struct dive *dive, struct divecomputer *dc) { int i, o2sensor; o2sensor = (dc->divemode == CCR) ? get_cylinder_idx_by_use(dive, OXYGEN) : -1; for (i = 0; i < dc->samples; i++) { struct sample *s = dc->sample + i; int seen_pressure = 0, idx; for (idx = 0; idx < MAX_SENSORS; idx++) { int sensor = s->sensor[idx]; pressure_t p = s->pressure[idx]; if (!p.mbar) continue; if (sensor == o2sensor) continue; if (seen_pressure) return -1; seen_pressure = 1; } } /* * Use legacy mode: if we have no O2 sensor we return a * positive sensor index that is guaranmteed to not match * any sensor (we encode it as 8 bits). */ return o2sensor < 0 ? 256 : o2sensor; } int event_is_gaschange(struct event *ev) { return ev->type == SAMPLE_EVENT_GASCHANGE || ev->type == SAMPLE_EVENT_GASCHANGE2; } struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const char *name) { int gas_index = -1; struct event *ev, **p; unsigned int size, len = strlen(name); size = sizeof(*ev) + len + 1; ev = malloc(size); if (!ev) return NULL; memset(ev, 0, size); memcpy(ev->name, name, len); ev->time.seconds = time; ev->type = type; ev->flags = flags; ev->value = value; /* * Expand the events into a sane format. Currently * just gas switches */ switch (type) { case SAMPLE_EVENT_GASCHANGE2: /* High 16 bits are He percentage */ ev->gas.mix.he.permille = (value >> 16) * 10; /* Extension to the GASCHANGE2 format: cylinder index in 'flags' */ if (flags > 0 && flags <= MAX_CYLINDERS) gas_index = flags-1; /* Fallthrough */ case SAMPLE_EVENT_GASCHANGE: /* Low 16 bits are O2 percentage */ ev->gas.mix.o2.permille = (value & 0xffff) * 10; ev->gas.index = gas_index; break; } p = &dc->events; /* insert in the sorted list of events */ while (*p && (*p)->time.seconds <= time) p = &(*p)->next; ev->next = *p; *p = ev; remember_event(name); return ev; } static int same_event(struct event *a, struct event *b) { if (a->time.seconds != b->time.seconds) return 0; if (a->type != b->type) return 0; if (a->flags != b->flags) return 0; if (a->value != b->value) return 0; return !strcmp(a->name, b->name); } void remove_event(struct event *event) { struct event **ep = ¤t_dc->events; while (ep && !same_event(*ep, event)) ep = &(*ep)->next; if (ep) { /* we can't link directly with event->next * because 'event' can be a copy from another * dive (for instance the displayed_dive * that we use on the interface to show things). */ struct event *temp = (*ep)->next; free(*ep); *ep = temp; } } /* since the name is an array as part of the structure (how silly is that?) we * have to actually remove the existing event and replace it with a new one. * WARNING, WARNING... this may end up freeing event in case that event is indeed * WARNING, WARNING... part of this divecomputer on this dive! */ void update_event_name(struct dive *d, struct event *event, char *name) { if (!d || !event) return; struct divecomputer *dc = get_dive_dc(d, dc_number); if (!dc) return; struct event **removep = &dc->events; struct event *remove; while ((*removep)->next && !same_event(*removep, event)) removep = &(*removep)->next; if (!same_event(*removep, event)) return; remove = *removep; *removep = (*removep)->next; add_event(dc, event->time.seconds, event->type, event->flags, event->value, name); free(remove); invalidate_dive_cache(d); } void add_extra_data(struct divecomputer *dc, const char *key, const char *value) { struct extra_data **ed = &dc->extra_data; while (*ed) ed = &(*ed)->next; *ed = malloc(sizeof(struct extra_data)); if (*ed) { (*ed)->key = strdup(key); (*ed)->value = strdup(value); (*ed)->next = NULL; } } /* this returns a pointer to static variable - so use it right away after calling */ struct gasmix *get_gasmix_from_event(struct dive *dive, struct event *ev) { static struct gasmix dummy; if (ev && event_is_gaschange(ev)) { int index = ev->gas.index; if (index >= 0 && index <= MAX_CYLINDERS) return &dive->cylinder[index].gasmix; return &ev->gas.mix; } return &dummy; } int get_pressure_units(int mb, const char **units) { int pressure; const char *unit; struct units *units_p = get_units(); switch (units_p->pressure) { case PASCAL: pressure = mb * 100; unit = translate("gettextFromC", "pascal"); break; case BAR: default: pressure = (mb + 500) / 1000; unit = translate("gettextFromC", "bar"); break; case PSI: pressure = mbar_to_PSI(mb); unit = translate("gettextFromC", "psi"); break; } if (units) *units = unit; return pressure; } double get_temp_units(unsigned int mk, const char **units) { double deg; const char *unit; struct units *units_p = get_units(); if (units_p->temperature == FAHRENHEIT) { deg = mkelvin_to_F(mk); unit = UTF8_DEGREE "F"; } else { deg = mkelvin_to_C(mk); unit = UTF8_DEGREE "C"; } if (units) *units = unit; return deg; } double get_volume_units(unsigned int ml, int *frac, const char **units) { int decimals; double vol; const char *unit; struct units *units_p = get_units(); switch (units_p->volume) { case LITER: default: vol = ml / 1000.0; unit = translate("gettextFromC", "ℓ"); decimals = 1; break; case CUFT: vol = ml_to_cuft(ml); unit = translate("gettextFromC", "cuft"); decimals = 2; break; } if (frac) *frac = decimals; if (units) *units = unit; return vol; } int units_to_sac(double volume) { if (get_units()->volume == CUFT) return lrint(cuft_to_l(volume) * 1000.0); else return lrint(volume * 1000); } depth_t units_to_depth(double depth) { depth_t internaldepth; if (get_units()->length == METERS) { internaldepth.mm = lrint(depth * 1000); } else { internaldepth.mm = feet_to_mm(depth); } return internaldepth; } double get_depth_units(int mm, int *frac, const char **units) { int decimals; double d; const char *unit; struct units *units_p = get_units(); switch (units_p->length) { case METERS: default: d = mm / 1000.0; unit = translate("gettextFromC", "m"); decimals = d < 20; break; case FEET: d = mm_to_feet(mm); unit = translate("gettextFromC", "ft"); decimals = 0; break; } if (frac) *frac = decimals; if (units) *units = unit; return d; } double get_vertical_speed_units(unsigned int mms, int *frac, const char **units) { double d; const char *unit; const struct units *units_p = get_units(); const double time_factor = units_p->vertical_speed_time == MINUTES ? 60.0 : 1.0; switch (units_p->length) { case METERS: default: d = mms / 1000.0 * time_factor; if (units_p->vertical_speed_time == MINUTES) unit = translate("gettextFromC", "m/min"); else unit = translate("gettextFromC", "m/s"); break; case FEET: d = mm_to_feet(mms) * time_factor; if (units_p->vertical_speed_time == MINUTES) unit = translate("gettextFromC", "ft/min"); else unit = translate("gettextFromC", "ft/s"); break; } if (frac) *frac = d < 10; if (units) *units = unit; return d; } double get_weight_units(unsigned int grams, int *frac, const char **units) { int decimals; double value; const char *unit; struct units *units_p = get_units(); if (units_p->weight == LBS) { value = grams_to_lbs(grams); unit = translate("gettextFromC", "lbs"); decimals = 0; } else { value = grams / 1000.0; unit = translate("gettextFromC", "kg"); decimals = 1; } if (frac) *frac = decimals; if (units) *units = unit; return value; } bool has_hr_data(struct divecomputer *dc) { int i; struct sample *sample; if (!dc) return false; sample = dc->sample; for (i = 0; i < dc->samples; i++) if (sample[i].heartbeat) return true; return false; } struct dive *alloc_dive(void) { struct dive *dive; dive = malloc(sizeof(*dive)); if (!dive) exit(1); memset(dive, 0, sizeof(*dive)); dive->id = dive_getUniqID(dive); return dive; } static void free_dc(struct divecomputer *dc); static void free_dc_contents(struct divecomputer *dc); static void free_pic(struct picture *picture); /* this is very different from the copy_divecomputer later in this file; * this function actually makes full copies of the content */ static void copy_dc(struct divecomputer *sdc, struct divecomputer *ddc) { *ddc = *sdc; ddc->model = copy_string(sdc->model); copy_samples(sdc, ddc); copy_events(sdc, ddc); } /* copy an element in a list of pictures */ static void copy_pl(struct picture *sp, struct picture *dp) { *dp = *sp; dp->filename = copy_string(sp->filename); dp->hash = copy_string(sp->hash); } /* copy an element in a list of tags */ static void copy_tl(struct tag_entry *st, struct tag_entry *dt) { dt->tag = malloc(sizeof(struct divetag)); dt->tag->name = copy_string(st->tag->name); dt->tag->source = copy_string(st->tag->source); } /* Clear everything but the first element; * this works for taglist, picturelist, even dive computers */ #define STRUCTURED_LIST_FREE(_type, _start, _free) \ { \ _type *_ptr = _start; \ while (_ptr) { \ _type *_next = _ptr->next; \ _free(_ptr); \ _ptr = _next; \ } \ } #define STRUCTURED_LIST_COPY(_type, _first, _dest, _cpy) \ { \ _type *_sptr = _first; \ _type **_dptr = &_dest; \ while (_sptr) { \ *_dptr = malloc(sizeof(_type)); \ _cpy(_sptr, *_dptr); \ _sptr = _sptr->next; \ _dptr = &(*_dptr)->next; \ } \ *_dptr = 0; \ } /* copy_dive makes duplicates of many components of a dive; * in order not to leak memory, we need to free those . * copy_dive doesn't play with the divetrip and forward/backward pointers * so we can ignore those */ void clear_dive(struct dive *d) { if (!d) return; /* free the strings */ free(d->buddy); free(d->divemaster); free(d->notes); free(d->suit); /* free tags, additional dive computers, and pictures */ taglist_free(d->tag_list); free_dc_contents(&d->dc); STRUCTURED_LIST_FREE(struct divecomputer, d->dc.next, free_dc); STRUCTURED_LIST_FREE(struct picture, d->picture_list, free_pic); for (int i = 0; i < MAX_CYLINDERS; i++) free((void *)d->cylinder[i].type.description); for (int i = 0; i < MAX_WEIGHTSYSTEMS; i++) free((void *)d->weightsystem[i].description); memset(d, 0, sizeof(struct dive)); } /* make a true copy that is independent of the source dive; * all data structures are duplicated, so the copy can be modified without * any impact on the source */ void copy_dive(struct dive *s, struct dive *d) { clear_dive(d); /* simply copy things over, but then make actual copies of the * relevant components that are referenced through pointers, * so all the strings and the structured lists */ *d = *s; invalidate_dive_cache(d); d->buddy = copy_string(s->buddy); d->divemaster = copy_string(s->divemaster); d->notes = copy_string(s->notes); d->suit = copy_string(s->suit); for (int i = 0; i < MAX_CYLINDERS; i++) d->cylinder[i].type.description = copy_string(s->cylinder[i].type.description); for (int i = 0; i < MAX_WEIGHTSYSTEMS; i++) d->weightsystem[i].description = copy_string(s->weightsystem[i].description); STRUCTURED_LIST_COPY(struct picture, s->picture_list, d->picture_list, copy_pl); STRUCTURED_LIST_COPY(struct tag_entry, s->tag_list, d->tag_list, copy_tl); // Copy the first dc explicitly, then the list of subsequent dc's copy_dc(&s->dc, &d->dc); STRUCTURED_LIST_COPY(struct divecomputer, s->dc.next, d->dc.next, copy_dc); } /* make a clone of the source dive and clean out the source dive; * this is specifically so we can create a dive in the displayed_dive and then * add it to the divelist. * Note the difference to copy_dive() / clean_dive() */ struct dive *clone_dive(struct dive *s) { struct dive *dive = alloc_dive(); *dive = *s; // so all the pointers in dive point to the things s pointed to memset(s, 0, sizeof(struct dive)); // and now the pointers in s are gone return dive; } #define CONDITIONAL_COPY_STRING(_component) \ if (what._component) \ d->_component = copy_string(s->_component) // copy elements, depending on bits in what that are set void selective_copy_dive(struct dive *s, struct dive *d, struct dive_components what, bool clear) { if (clear) clear_dive(d); CONDITIONAL_COPY_STRING(notes); CONDITIONAL_COPY_STRING(divemaster); CONDITIONAL_COPY_STRING(buddy); CONDITIONAL_COPY_STRING(suit); if (what.rating) d->rating = s->rating; if (what.visibility) d->visibility = s->visibility; if (what.divesite) d->dive_site_uuid = s->dive_site_uuid; if (what.tags) STRUCTURED_LIST_COPY(struct tag_entry, s->tag_list, d->tag_list, copy_tl); if (what.cylinders) copy_cylinders(s, d, false); if (what.weights) for (int i = 0; i < MAX_WEIGHTSYSTEMS; i++) { free((void *)d->weightsystem[i].description); d->weightsystem[i] = s->weightsystem[i]; d->weightsystem[i].description = copy_string(s->weightsystem[i].description); } } #undef CONDITIONAL_COPY_STRING struct event *clone_event(const struct event *src_ev) { struct event *ev; if (!src_ev) return NULL; size_t size = sizeof(*src_ev) + strlen(src_ev->name) + 1; ev = (struct event*) malloc(size); if (!ev) exit(1); memcpy(ev, src_ev, size); ev->next = NULL; return ev; } /* copies all events in this dive computer */ void copy_events(struct divecomputer *s, struct divecomputer *d) { struct event *ev, **pev; if (!s || !d) return; ev = s->events; pev = &d->events; while (ev != NULL) { struct event *new_ev = clone_event(ev); *pev = new_ev; pev = &new_ev->next; ev = ev->next; } *pev = NULL; } int nr_cylinders(struct dive *dive) { int nr; for (nr = MAX_CYLINDERS; nr; --nr) { cylinder_t *cylinder = dive->cylinder + nr - 1; if (!cylinder_nodata(cylinder)) break; } return nr; } int nr_weightsystems(struct dive *dive) { int nr; for (nr = MAX_WEIGHTSYSTEMS; nr; --nr) { weightsystem_t *ws = dive->weightsystem + nr - 1; if (!weightsystem_none(ws)) break; } return nr; } /* copy the equipment data part of the cylinders */ void copy_cylinders(struct dive *s, struct dive *d, bool used_only) { int i,j; cylinder_t t[MAX_CYLINDERS]; if (!s || !d) return; for (i = 0; i < MAX_CYLINDERS; i++) { // Store the original start and end pressures t[i].start.mbar = d->cylinder[i].start.mbar; t[i].end.mbar = d->cylinder[i].end.mbar; t[i].sample_start.mbar = d->cylinder[i].sample_start.mbar; t[i].sample_end.mbar = d->cylinder[i].sample_end.mbar; free((void *)d->cylinder[i].type.description); memset(&d->cylinder[i], 0, sizeof(cylinder_t)); } for (i = j = 0; i < MAX_CYLINDERS; i++) { if (!used_only || is_cylinder_used(s, i) || s->cylinder[i].cylinder_use == NOT_USED) { d->cylinder[j].type = s->cylinder[i].type; d->cylinder[j].type.description = copy_string(s->cylinder[i].type.description); d->cylinder[j].gasmix = s->cylinder[i].gasmix; d->cylinder[j].depth = s->cylinder[i].depth; d->cylinder[j].cylinder_use = s->cylinder[i].cylinder_use; d->cylinder[j].manually_added = true; // Restore the start and end pressures from original cylinder d->cylinder[i].start.mbar = t[i].start.mbar; d->cylinder[i].end.mbar = t[i].end.mbar; d->cylinder[i].sample_start.mbar = t[i].sample_start.mbar; d->cylinder[i].sample_end.mbar = t[i].sample_end.mbar; j++; } } } int cylinderuse_from_text(const char *text) { for (enum cylinderuse i = 0; i < NUM_GAS_USE; i++) { if (same_string(text, cylinderuse_text[i]) || same_string(text, translate("gettextFromC", cylinderuse_text[i]))) return i; } return -1; } void copy_samples(struct divecomputer *s, struct divecomputer *d) { /* instead of carefully copying them one by one and calling add_sample * over and over again, let's just copy the whole blob */ if (!s || !d) return; int nr = s->samples; d->samples = nr; d->alloc_samples = nr; // We expect to be able to read the memory in the other end of the pointer // if its a valid pointer, so don't expect malloc() to return NULL for // zero-sized malloc, do it ourselves. d->sample = NULL; if(!nr) return; d->sample = malloc(nr * sizeof(struct sample)); if (d->sample) memcpy(d->sample, s->sample, nr * sizeof(struct sample)); } struct sample *prepare_sample(struct divecomputer *dc) { if (dc) { int nr = dc->samples; int alloc_samples = dc->alloc_samples; struct sample *sample; if (nr >= alloc_samples) { struct sample *newsamples; alloc_samples = (alloc_samples * 3) / 2 + 10; newsamples = realloc(dc->sample, alloc_samples * sizeof(struct sample)); if (!newsamples) return NULL; dc->alloc_samples = alloc_samples; dc->sample = newsamples; } sample = dc->sample + nr; memset(sample, 0, sizeof(*sample)); // Copy the sensor numbers - but not the pressure values // from the previous sample if any. if (nr) { sample->sensor[0] = sample[-1].sensor[0]; sample->sensor[1] = sample[-1].sensor[1]; } // Init some values with -1 sample->bearing.degrees = -1; sample->ndl.seconds = -1; return sample; } return NULL; } void finish_sample(struct divecomputer *dc) { dc->samples++; } /* * So when we re-calculate maxdepth and meandepth, we will * not override the old numbers if they are close to the * new ones. * * Why? Because a dive computer may well actually track the * max. depth and mean depth at finer granularity than the * samples it stores. So it's possible that the max and mean * have been reported more correctly originally. * * Only if the values calculated from the samples are clearly * different do we override the normal depth values. * * This considers 1m to be "clearly different". That's * a totally random number. */ static void update_depth(depth_t *depth, int new) { if (new) { int old = depth->mm; if (abs(old - new) > 1000) depth->mm = new; } } static void update_temperature(temperature_t *temperature, int new) { if (new) { int old = temperature->mkelvin; if (abs(old - new) > 1000) temperature->mkelvin = new; } } /* * Calculate how long we were actually under water, and the average * depth while under water. * * This ignores any surface time in the middle of the dive. */ void fixup_dc_duration(struct divecomputer *dc) { int duration, i; int lasttime, lastdepth, depthtime; duration = 0; lasttime = 0; lastdepth = 0; depthtime = 0; for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; int time = sample->time.seconds; int depth = sample->depth.mm; /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration += time - lasttime; depthtime += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; } if (duration) { dc->duration.seconds = duration; dc->meandepth.mm = (depthtime + duration / 2) / duration; } } /* Which cylinders had gas used? */ #define SOME_GAS 5000 static unsigned int get_cylinder_used(struct dive *dive) { int i; unsigned int mask = 0; for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; int start_mbar, end_mbar; if (cylinder_nodata(cyl)) continue; start_mbar = cyl->start.mbar ?: cyl->sample_start.mbar; end_mbar = cyl->end.mbar ?: cyl->sample_end.mbar; // More than 5 bar used? This matches statistics.c // heuristics if (start_mbar > end_mbar + SOME_GAS) mask |= 1 << i; } return mask; } /* Which cylinders do we know usage about? */ static unsigned int get_cylinder_known(struct dive *dive, struct divecomputer *dc) { unsigned int mask = 0; struct event *ev; /* We know about using the O2 cylinder in a CCR dive */ if (dc->divemode == CCR) { int o2_cyl = get_cylinder_idx_by_use(dive, OXYGEN); if (o2_cyl >= 0) mask |= 1 << o2_cyl; } /* We know about the explicit first cylinder (or first) */ mask |= 1 << explicit_first_cylinder(dive, dc); /* And we have possible switches to other gases */ ev = get_next_event(dc->events, "gaschange"); while (ev) { int i = get_cylinder_index(dive, ev); if (i >= 0) mask |= 1 << i; ev = get_next_event(ev->next, "gaschange"); } return mask; } void per_cylinder_mean_depth(struct dive *dive, struct divecomputer *dc, int *mean, int *duration) { int i; int depthtime[MAX_CYLINDERS] = { 0, }; uint32_t lasttime = 0; int lastdepth = 0; int idx = 0; unsigned int used_mask, known_mask; for (i = 0; i < MAX_CYLINDERS; i++) mean[i] = duration[i] = 0; if (!dc) return; /* * There is no point in doing per-cylinder information * if we don't actually know about the usage of all the * used cylinders. */ used_mask = get_cylinder_used(dive); known_mask = get_cylinder_known(dive, dc); if (used_mask & ~known_mask) { /* * If we had more than one used cylinder, but * do not know usage of them, we simply cannot * account mean depth to them. * * The "x & (x-1)" test shows if it's not a pure * power of two. */ if (used_mask & (used_mask-1)) return; /* * For a single cylinder, use the overall mean * and duration */ for (i = 0; i < MAX_CYLINDERS; i++) { if (used_mask & (1 << i)) { mean[i] = dc->meandepth.mm; duration[i] = dc->duration.seconds; } } return; } if (!dc->samples) dc = fake_dc(dc, false); struct event *ev = get_next_event(dc->events, "gaschange"); for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; uint32_t time = sample->time.seconds; int depth = sample->depth.mm; /* Make sure to move the event past 'lasttime' */ while (ev && lasttime >= ev->time.seconds) { idx = get_cylinder_index(dive, ev); ev = get_next_event(ev->next, "gaschange"); } /* Do we need to fake a midway sample at an event? */ if (ev && time > ev->time.seconds) { int newtime = ev->time.seconds; int newdepth = interpolate(lastdepth, depth, newtime - lasttime, time - lasttime); time = newtime; depth = newdepth; i--; } /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration[idx] += time - lasttime; depthtime[idx] += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; } for (i = 0; i < MAX_CYLINDERS; i++) { if (duration[i]) mean[i] = (depthtime[i] + duration[i] / 2) / duration[i]; } } static void update_min_max_temperatures(struct dive *dive, temperature_t temperature) { if (temperature.mkelvin) { if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin) dive->maxtemp = temperature; if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin) dive->mintemp = temperature; } } int gas_volume(cylinder_t *cyl, pressure_t p) { double bar = p.mbar / 1000.0; double z_factor = gas_compressibility_factor(&cyl->gasmix, bar); return lrint(cyl->type.size.mliter * bar_to_atm(bar) / z_factor); } /* * If the cylinder tank pressures are within half a bar * (about 8 PSI) of the sample pressures, we consider it * to be a rounding error, and throw them away as redundant. */ static int same_rounded_pressure(pressure_t a, pressure_t b) { return abs(a.mbar - b.mbar) <= 500; } /* Some dive computers (Cobalt) don't start the dive with cylinder 0 but explicitly * tell us what the first gas is with a gas change event in the first sample. * Sneakily we'll use a return value of 0 (or FALSE) when there is no explicit * first cylinder - in which case cylinder 0 is indeed the first cylinder */ int explicit_first_cylinder(struct dive *dive, struct divecomputer *dc) { if (dc) { struct event *ev = get_next_event(dc->events, "gaschange"); if (ev && ((dc->sample && ev->time.seconds == dc->sample[0].time.seconds) || ev->time.seconds <= 1)) return get_cylinder_index(dive, ev); else if (dc->divemode == CCR) return MAX(get_cylinder_idx_by_use(dive, DILUENT), 0); } return 0; } /* this gets called when the dive mode has changed (so OC vs. CC) * there are two places we might have setpoints... events or in the samples */ void update_setpoint_events(struct dive *dive, struct divecomputer *dc) { struct event *ev; int new_setpoint = 0; if (dc->divemode == CCR) new_setpoint = prefs.defaultsetpoint; if (dc->divemode == OC && (same_string(dc->model, "Shearwater Predator") || same_string(dc->model, "Shearwater Petrel") || same_string(dc->model, "Shearwater Nerd"))) { // make sure there's no setpoint in the samples // this is an irreversible change - so switching a dive to OC // by mistake when it's actually CCR is _bad_ // So we make sure, this comes from a Predator or Petrel and we only remove // pO2 values we would have computed anyway. struct event *ev = get_next_event(dc->events, "gaschange"); struct gasmix *gasmix = get_gasmix_from_event(dive, ev); struct event *next = get_next_event(ev, "gaschange"); for (int i = 0; i < dc->samples; i++) { struct gas_pressures pressures; if (next && dc->sample[i].time.seconds >= next->time.seconds) { ev = next; gasmix = get_gasmix_from_event(dive, ev); next = get_next_event(ev, "gaschange"); } fill_pressures(&pressures, calculate_depth_to_mbar(dc->sample[i].depth.mm, dc->surface_pressure, 0), gasmix ,0, OC); if (abs(dc->sample[i].setpoint.mbar - (int)(1000 * pressures.o2)) <= 50) dc->sample[i].setpoint.mbar = 0; } } // an "SP change" event at t=0 is currently our marker for OC vs CCR // this will need to change to a saner setup, but for now we can just // check if such an event is there and adjust it, or add that event ev = get_next_event(dc->events, "SP change"); if (ev && ev->time.seconds == 0) { ev->value = new_setpoint; } else { if (!add_event(dc, 0, SAMPLE_EVENT_PO2, 0, new_setpoint, "SP change")) fprintf(stderr, "Could not add setpoint change event\n"); } } void sanitize_gasmix(struct gasmix *mix) { unsigned int o2, he; o2 = mix->o2.permille; he = mix->he.permille; /* Regular air: leave empty */ if (!he) { if (!o2) return; /* 20.8% to 21% O2 is just air */ if (gasmix_is_air(mix)) { mix->o2.permille = 0; return; } } /* Sane mix? */ if (o2 <= 1000 && he <= 1000 && o2 + he <= 1000) return; fprintf(stderr, "Odd gasmix: %u O2 %u He\n", o2, he); memset(mix, 0, sizeof(*mix)); } /* * See if the size/workingpressure looks like some standard cylinder * size, eg "AL80". * * NOTE! We don't take compressibility into account when naming * cylinders. That makes a certain amount of sense, since the * cylinder name is independent from the gasmix, and different * gasmixes have different compressibility. */ static void match_standard_cylinder(cylinder_type_t *type) { double cuft, bar; int psi, len; const char *fmt; char buffer[40], *p; /* Do we already have a cylinder description? */ if (type->description) return; bar = type->workingpressure.mbar / 1000.0; cuft = ml_to_cuft(type->size.mliter); cuft *= bar_to_atm(bar); psi = to_PSI(type->workingpressure); switch (psi) { case 2300 ... 2500: /* 2400 psi: LP tank */ fmt = "LP%d"; break; case 2600 ... 2700: /* 2640 psi: LP+10% */ fmt = "LP%d"; break; case 2900 ... 3100: /* 3000 psi: ALx tank */ fmt = "AL%d"; break; case 3400 ... 3500: /* 3442 psi: HP tank */ fmt = "HP%d"; break; case 3700 ... 3850: /* HP+10% */ fmt = "HP%d+"; break; default: return; } len = snprintf(buffer, sizeof(buffer), fmt, (int)lrint(cuft)); p = malloc(len + 1); if (!p) return; memcpy(p, buffer, len + 1); type->description = p; } /* * There are two ways to give cylinder size information: * - total amount of gas in cuft (depends on working pressure and physical size) * - physical size * * where "physical size" is the one that actually matters and is sane. * * We internally use physical size only. But we save the workingpressure * so that we can do the conversion if required. */ static void sanitize_cylinder_type(cylinder_type_t *type) { double volume_of_air, volume; /* If we have no working pressure, it had *better* be just a physical size! */ if (!type->workingpressure.mbar) return; /* No size either? Nothing to go on */ if (!type->size.mliter) return; if (xml_parsing_units.volume == CUFT) { double bar = type->workingpressure.mbar / 1000.0; /* confusing - we don't really start from ml but millicuft !*/ volume_of_air = cuft_to_l(type->size.mliter); /* milliliters at 1 atm: not corrected for compressibility! */ volume = volume_of_air / bar_to_atm(bar); type->size.mliter = lrint(volume); } /* Ok, we have both size and pressure: try to match a description */ match_standard_cylinder(type); } static void sanitize_cylinder_info(struct dive *dive) { int i; for (i = 0; i < MAX_CYLINDERS; i++) { sanitize_gasmix(&dive->cylinder[i].gasmix); sanitize_cylinder_type(&dive->cylinder[i].type); } } /* some events should never be thrown away */ static bool is_potentially_redundant(struct event *event) { if (!strcmp(event->name, "gaschange")) return false; if (!strcmp(event->name, "bookmark")) return false; if (!strcmp(event->name, "heading")) return false; return true; } /* match just by name - we compare the details in the code that uses this helper */ static struct event *find_previous_event(struct divecomputer *dc, struct event *event) { struct event *ev = dc->events; struct event *previous = NULL; if (same_string(event->name, "")) return NULL; while (ev && ev != event) { if (same_string(ev->name, event->name)) previous = ev; ev = ev->next; } return previous; } static void fixup_surface_pressure(struct dive *dive) { struct divecomputer *dc; int sum = 0, nr = 0; for_each_dc (dive, dc) { if (dc->surface_pressure.mbar) { sum += dc->surface_pressure.mbar; nr++; } } if (nr) dive->surface_pressure.mbar = (sum + nr / 2) / nr; } static void fixup_water_salinity(struct dive *dive) { struct divecomputer *dc; int sum = 0, nr = 0; for_each_dc (dive, dc) { if (dc->salinity) { if (dc->salinity < 500) dc->salinity += FRESHWATER_SALINITY; sum += dc->salinity; nr++; } } if (nr) dive->salinity = (sum + nr / 2) / nr; } static void fixup_meandepth(struct dive *dive) { struct divecomputer *dc; int sum = 0, nr = 0; for_each_dc (dive, dc) { if (dc->meandepth.mm) { sum += dc->meandepth.mm; nr++; } } if (nr) dive->meandepth.mm = (sum + nr / 2) / nr; } static void fixup_duration(struct dive *dive) { struct divecomputer *dc; duration_t duration = { }; for_each_dc (dive, dc) duration.seconds = MAX(duration.seconds, dc->duration.seconds); dive->duration.seconds = duration.seconds; } /* * What do the dive computers say the water temperature is? * (not in the samples, but as dc property for dcs that support that) */ unsigned int dc_watertemp(struct divecomputer *dc) { int sum = 0, nr = 0; do { if (dc->watertemp.mkelvin) { sum += dc->watertemp.mkelvin; nr++; } } while ((dc = dc->next) != NULL); if (!nr) return 0; return (sum + nr / 2) / nr; } static void fixup_watertemp(struct dive *dive) { if (!dive->watertemp.mkelvin) dive->watertemp.mkelvin = dc_watertemp(&dive->dc); } /* * What do the dive computers say the air temperature is? */ unsigned int dc_airtemp(struct divecomputer *dc) { int sum = 0, nr = 0; do { if (dc->airtemp.mkelvin) { sum += dc->airtemp.mkelvin; nr++; } } while ((dc = dc->next) != NULL); if (!nr) return 0; return (sum + nr / 2) / nr; } static void fixup_airtemp(struct dive *dive) { if (!dive->airtemp.mkelvin) dive->airtemp.mkelvin = dc_airtemp(&dive->dc); } /* zero out the airtemp in the dive structure if it was just created by * running fixup on the dive. keep it if it had been edited by hand */ static void un_fixup_airtemp(struct dive *a) { if (a->airtemp.mkelvin && a->airtemp.mkelvin == dc_airtemp(&a->dc)) a->airtemp.mkelvin = 0; } /* * events are stored as a linked list, so the concept of * "consecutive, identical events" is somewhat hard to * implement correctly (especially given that on some dive * computers events are asynchronous, so they can come in * between what would be the non-constant sample rate). * * So what we do is that we throw away clearly redundant * events that are fewer than 61 seconds apart (assuming there * is no dive computer with a sample rate of more than 60 * seconds... that would be pretty pointless to plot the * profile with) * * We first only mark the events for deletion so that we * still know when the previous event happened. */ static void fixup_dc_events(struct divecomputer *dc) { struct event *event; event = dc->events; while (event) { struct event *prev; if (is_potentially_redundant(event)) { prev = find_previous_event(dc, event); if (prev && prev->value == event->value && prev->flags == event->flags && event->time.seconds - prev->time.seconds < 61) event->deleted = true; } event = event->next; } event = dc->events; while (event) { if (event->next && event->next->deleted) { struct event *nextnext = event->next->next; free(event->next); event->next = nextnext; } else { event = event->next; } } } static int interpolate_depth(struct divecomputer *dc, int idx, int lastdepth, int lasttime, int now) { int i; int nextdepth = lastdepth; int nexttime = now; for (i = idx+1; i < dc->samples; i++) { struct sample *sample = dc->sample + i; if (sample->depth.mm < 0) continue; nextdepth = sample->depth.mm; nexttime = sample->time.seconds; break; } return interpolate(lastdepth, nextdepth, now-lasttime, nexttime-lasttime); } static void fixup_dc_depths(struct dive *dive, struct divecomputer *dc) { int i; int maxdepth = dc->maxdepth.mm; int lasttime = 0, lastdepth = 0; for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; int time = sample->time.seconds; int depth = sample->depth.mm; if (depth < 0) { depth = interpolate_depth(dc, i, lastdepth, lasttime, time); sample->depth.mm = depth; } if (depth > SURFACE_THRESHOLD) { if (depth > maxdepth) maxdepth = depth; } lastdepth = depth; lasttime = time; if (sample->cns > dive->maxcns) dive->maxcns = sample->cns; } update_depth(&dc->maxdepth, maxdepth); if (maxdepth > dive->maxdepth.mm) dive->maxdepth.mm = maxdepth; } static void fixup_dc_ndl(struct dive *dive, struct divecomputer *dc) { int i; for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; if (sample->ndl.seconds != 0) break; if (sample->ndl.seconds == 0) sample->ndl.seconds = -1; } } static void fixup_dc_temp(struct dive *dive, struct divecomputer *dc) { int i; int mintemp = 0, lasttemp = 0; for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; int temp = sample->temperature.mkelvin; if (temp) { /* * If we have consecutive identical * temperature readings, throw away * the redundant ones. */ if (lasttemp == temp) sample->temperature.mkelvin = 0; else lasttemp = temp; if (!mintemp || temp < mintemp) mintemp = temp; } update_min_max_temperatures(dive, sample->temperature); } update_temperature(&dc->watertemp, mintemp); update_min_max_temperatures(dive, dc->watertemp); } /* Remove redundant pressure information */ static void simplify_dc_pressures(struct divecomputer *dc) { int i; int lastindex[2] = { -1, -1 }; int lastpressure[2] = { 0 }; for (i = 0; i < dc->samples; i++) { int j; struct sample *sample = dc->sample + i; for (j = 0; j < 2; j++) { int pressure = sample->pressure[j].mbar; int index = sample->sensor[j]; if (index == lastindex[j]) { /* Remove duplicate redundant pressure information */ if (pressure == lastpressure[j]) sample->pressure[j].mbar = 0; } lastindex[j] = index; lastpressure[j] = pressure; } } } /* FIXME! sensor -> cylinder mapping? */ static void fixup_start_pressure(struct dive *dive, int idx, pressure_t p) { if (idx >= 0 && idx < MAX_CYLINDERS) { cylinder_t *cyl = dive->cylinder + idx; if (p.mbar && !cyl->sample_start.mbar) cyl->sample_start = p; } } static void fixup_end_pressure(struct dive *dive, int idx, pressure_t p) { if (idx >= 0 && idx < MAX_CYLINDERS) { cylinder_t *cyl = dive->cylinder + idx; if (p.mbar && !cyl->sample_end.mbar) cyl->sample_end = p; } } /* * Check the cylinder pressure sample information and fill in the * overall cylinder pressures from those. * * We ignore surface samples for tank pressure information. * * At the beginning of the dive, let the cylinder cool down * if the diver starts off at the surface. And at the end * of the dive, there may be surface pressures where the * diver has already turned off the air supply (especially * for computers like the Uemis Zurich that end up saving * quite a bit of samples after the dive has ended). */ static void fixup_dive_pressures(struct dive *dive, struct divecomputer *dc) { int i; /* Walk the samples from the beginning to find starting pressures.. */ for (i = 0; i < dc->samples; i++) { int idx; struct sample *sample = dc->sample + i; if (sample->depth.mm < SURFACE_THRESHOLD) continue; for (idx = 0; idx < MAX_SENSORS; idx++) fixup_start_pressure(dive, sample->sensor[idx], sample->pressure[idx]); } /* ..and from the end for ending pressures */ for (i = dc->samples; --i >= 0; ) { int idx; struct sample *sample = dc->sample + i; if (sample->depth.mm < SURFACE_THRESHOLD) continue; for (idx = 0; idx < MAX_SENSORS; idx++) fixup_end_pressure(dive, sample->sensor[idx], sample->pressure[idx]); } simplify_dc_pressures(dc); } int find_best_gasmix_match(struct gasmix *mix, cylinder_t array[], unsigned int used) { int i; int best = -1, score = INT_MAX; for (i = 0; i < MAX_CYLINDERS; i++) { const cylinder_t *match; int distance; if (used & (1 << i)) continue; match = array + i; if (cylinder_nodata(match)) continue; distance = gasmix_distance(mix, &match->gasmix); if (distance >= score) continue; best = i; score = distance; } return best; } /* * Match a gas change event against the cylinders we have */ static bool validate_gaschange(struct dive *dive, struct event *event) { int index; int o2, he, value; /* We'll get rid of the per-event gasmix, but for now sanitize it */ if (gasmix_is_air(&event->gas.mix)) event->gas.mix.o2.permille = 0; /* Do we already have a cylinder index for this gasmix? */ if (event->gas.index >= 0) return true; index = find_best_gasmix_match(&event->gas.mix, dive->cylinder, 0); if (index < 0) return false; /* Fix up the event to have the right information */ event->gas.index = index; event->gas.mix = dive->cylinder[index].gasmix; /* Convert to odd libdivecomputer format */ o2 = get_o2(&event->gas.mix); he = get_he(&event->gas.mix); o2 = (o2 + 5) / 10; he = (he + 5) / 10; value = o2 + (he << 16); event->value = value; if (he) event->type = SAMPLE_EVENT_GASCHANGE2; return true; } /* Clean up event, return true if event is ok, false if it should be dropped as bogus */ static bool validate_event(struct dive *dive, struct event *event) { if (event_is_gaschange(event)) return validate_gaschange(dive, event); return true; } static void fixup_dc_gasswitch(struct dive *dive, struct divecomputer *dc) { struct event **evp, *event; evp = &dc->events; while ((event = *evp) != NULL) { if (validate_event(dive, event)) { evp = &event->next; continue; } /* Delete this event and try the next one */ *evp = event->next; } } static void fixup_dive_dc(struct dive *dive, struct divecomputer *dc) { /* Add device information to table */ if (dc->deviceid && (dc->serial || dc->fw_version)) create_device_node(dc->model, dc->deviceid, dc->serial, dc->fw_version, ""); /* Fixup duration and mean depth */ fixup_dc_duration(dc); /* Fix up sample depth data */ fixup_dc_depths(dive, dc); /* Fix up first sample ndl data */ fixup_dc_ndl(dive, dc); /* Fix up dive temperatures based on dive computer samples */ fixup_dc_temp(dive, dc); /* Fix up gas switch events */ fixup_dc_gasswitch(dive, dc); /* Fix up cylinder pressures based on DC info */ fixup_dive_pressures(dive, dc); fixup_dc_events(dc); } struct dive *fixup_dive(struct dive *dive) { int i; struct divecomputer *dc; sanitize_cylinder_info(dive); dive->maxcns = dive->cns; /* * Use the dive's temperatures for minimum and maximum in case * we do not have temperatures recorded by DC. */ update_min_max_temperatures(dive, dive->watertemp); for_each_dc (dive, dc) fixup_dive_dc(dive, dc); fixup_water_salinity(dive); fixup_surface_pressure(dive); fixup_meandepth(dive); fixup_duration(dive); fixup_watertemp(dive); fixup_airtemp(dive); for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; add_cylinder_description(&cyl->type); if (same_rounded_pressure(cyl->sample_start, cyl->start)) cyl->start.mbar = 0; if (same_rounded_pressure(cyl->sample_end, cyl->end)) cyl->end.mbar = 0; } update_cylinder_related_info(dive); for (i = 0; i < MAX_WEIGHTSYSTEMS; i++) { weightsystem_t *ws = dive->weightsystem + i; add_weightsystem_description(ws); } /* we should always have a uniq ID as that gets assigned during alloc_dive(), * but we want to make sure... */ if (!dive->id) dive->id = dive_getUniqID(dive); return dive; } /* Don't pick a zero for MERGE_MIN() */ #define MERGE_MAX(res, a, b, n) res->n = MAX(a->n, b->n) #define MERGE_MIN(res, a, b, n) res->n = (a->n) ? (b->n) ? MIN(a->n, b->n) : (a->n) : (b->n) #define MERGE_TXT(res, a, b, n) res->n = merge_text(a->n, b->n) #define MERGE_NONZERO(res, a, b, n) res->n = a->n ? a->n : b->n struct sample *add_sample(struct sample *sample, int time, struct divecomputer *dc) { struct sample *p = prepare_sample(dc); if (p) { *p = *sample; p->time.seconds = time; finish_sample(dc); } return p; } /* * This is like add_sample(), but if the distance from the last sample * is excessive, we add two surface samples in between. * * This is so that if you merge two non-overlapping dives, we make sure * that the time in between the dives is at the surface, not some "last * sample that happened to be at a depth of 1.2m". */ static void merge_one_sample(struct sample *sample, int time, struct divecomputer *dc) { int last = dc->samples - 1; if (last >= 0) { static struct sample surface = { .bearing.degrees = -1, .ndl.seconds = -1 }; struct sample *prev = dc->sample + last; int last_time = prev->time.seconds; int last_depth = prev->depth.mm; /* * Only do surface events if the samples are more than * a minute apart, and shallower than 5m */ if (time > last_time + 60 && last_depth < 5000) { add_sample(&surface, last_time + 20, dc); add_sample(&surface, time - 20, dc); } } add_sample(sample, time, dc); } /* * Merge samples. Dive 'a' is "offset" seconds before Dive 'b' */ static void merge_samples(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int offset) { int asamples = a->samples; int bsamples = b->samples; struct sample *as = a->sample; struct sample *bs = b->sample; /* * We want a positive sample offset, so that sample * times are always positive. So if the samples for * 'b' are before the samples for 'a' (so the offset * is negative), we switch a and b around, and use * the reverse offset. */ if (offset < 0) { offset = -offset; asamples = bsamples; bsamples = a->samples; as = bs; bs = a->sample; } for (;;) { int at, bt; struct sample sample = { .bearing.degrees = -1, .ndl.seconds = -1 }; if (!res) return; at = asamples ? as->time.seconds : -1; bt = bsamples ? bs->time.seconds + offset : -1; /* No samples? All done! */ if (at < 0 && bt < 0) return; /* Only samples from a? */ if (bt < 0) { add_sample_a: merge_one_sample(as, at, res); as++; asamples--; continue; } /* Only samples from b? */ if (at < 0) { add_sample_b: merge_one_sample(bs, bt, res); bs++; bsamples--; continue; } if (at < bt) goto add_sample_a; if (at > bt) goto add_sample_b; /* same-time sample: add a merged sample. Take the non-zero ones */ sample = *bs; if (as->depth.mm) sample.depth = as->depth; if (as->temperature.mkelvin) sample.temperature = as->temperature; if (as->pressure[0].mbar) sample.pressure[0] = as->pressure[0]; if (as->sensor[0]) sample.sensor[0] = as->sensor[0]; if (as->pressure[1].mbar) sample.pressure[1] = as->pressure[1]; if (as->sensor[1]) sample.sensor[1] = as->sensor[1]; if (as->cns) sample.cns = as->cns; if (as->setpoint.mbar) sample.setpoint = as->setpoint; if (as->ndl.seconds) sample.ndl = as->ndl; if (as->stoptime.seconds) sample.stoptime = as->stoptime; if (as->stopdepth.mm) sample.stopdepth = as->stopdepth; if (as->in_deco) sample.in_deco = true; merge_one_sample(&sample, at, res); as++; bs++; asamples--; bsamples--; } } static char *merge_text(const char *a, const char *b) { char *res; if (!a && !b) return NULL; if (!a || !*a) return copy_string(b); if (!b || !*b) return strdup(a); if (!strcmp(a, b)) return copy_string(a); res = malloc(strlen(a) + strlen(b) + 32); if (!res) return (char *)a; sprintf(res, translate("gettextFromC", "(%s) or (%s)"), a, b); return res; } #define SORT(a, b, field) \ if (a->field != b->field) \ return a->field < b->field ? -1 : 1 static int sort_event(struct event *a, struct event *b) { SORT(a, b, time.seconds); SORT(a, b, type); SORT(a, b, flags); SORT(a, b, value); return strcmp(a->name, b->name); } static int same_gas(struct event *a, struct event *b) { if (a->type == b->type && a->flags == b->flags && a->value == b->value && !strcmp(a->name, b->name) && same_gasmix(&a->gas.mix, &b->gas.mix)) { return true; } return false; } static void merge_events(struct divecomputer *res, struct divecomputer *src1, struct divecomputer *src2, int offset) { struct event *a, *b; struct event **p = &res->events; struct event *last_gas = NULL; /* Always use positive offsets */ if (offset < 0) { struct divecomputer *tmp; offset = -offset; tmp = src1; src1 = src2; src2 = tmp; } a = src1->events; b = src2->events; while (b) { b->time.seconds += offset; b = b->next; } b = src2->events; while (a || b) { int s; struct event *pick; if (!b) { *p = a; break; } if (!a) { *p = b; break; } s = sort_event(a, b); /* Identical events? Just skip one of them (we pick a) */ if (!s) { a = a->next; continue; } /* Otherwise, pick the one that sorts first */ if (s < 0) { pick = a; a = a->next; } else { pick = b; b = b->next; } /* * If that's a gas-change that matches the previous * gas change, we'll just skip it */ if (event_is_gaschange(pick)) { if (last_gas && same_gas(pick, last_gas)) continue; last_gas = pick; } /* Add it to the target list */ *p = pick; p = &pick->next; } } static void merge_weightsystem_info(weightsystem_t *res, weightsystem_t *a, weightsystem_t *b) { if (!a->weight.grams) a = b; *res = *a; } /* get_cylinder_idx_by_use(): Find the index of the first cylinder with a particular CCR use type. * The index returned corresponds to that of the first cylinder with a cylinder_use that * equals the appropriate enum value [oxygen, diluent, bailout] given by cylinder_use_type. * A negative number returned indicates that a match could not be found. * Call parameters: dive = the dive being processed * cylinder_use_type = an enum, one of {oxygen, diluent, bailout} */ extern int get_cylinder_idx_by_use(struct dive *dive, enum cylinderuse cylinder_use_type) { int cylinder_index; for (cylinder_index = 0; cylinder_index < MAX_CYLINDERS; cylinder_index++) { if (dive->cylinder[cylinder_index].cylinder_use == cylinder_use_type) return cylinder_index; // return the index of the cylinder with that cylinder use type } return -1; // negative number means cylinder_use_type not found in list of cylinders } int gasmix_distance(const struct gasmix *a, const struct gasmix *b) { int a_o2 = get_o2(a), b_o2 = get_o2(b); int a_he = get_he(a), b_he = get_he(b); int delta_o2 = a_o2 - b_o2, delta_he = a_he - b_he; delta_he = delta_he * delta_he; delta_o2 = delta_o2 * delta_o2; return delta_he + delta_o2; } /* fill_pressures(): Compute partial gas pressures in bar from gasmix and ambient pressures, possibly for OC or CCR, to be * extended to PSCT. This function does the calculations of gas pressures applicable to a single point on the dive profile. * The structure "pressures" is used to return calculated gas pressures to the calling software. * Call parameters: po2 = po2 value applicable to the record in calling function * amb_pressure = ambient pressure applicable to the record in calling function * *pressures = structure for communicating o2 sensor values from and gas pressures to the calling function. * *mix = structure containing cylinder gas mixture information. * This function called by: calculate_gas_information_new() in profile.c; add_segment() in deco.c. */ extern void fill_pressures(struct gas_pressures *pressures, const double amb_pressure, const struct gasmix *mix, double po2, enum dive_comp_type divemode) { if (po2) { // This is probably a CCR dive where pressures->o2 is defined if (po2 >= amb_pressure) { pressures->o2 = amb_pressure; pressures->n2 = pressures->he = 0.0; } else { pressures->o2 = po2; if (get_o2(mix) == 1000) { pressures->he = pressures->n2 = 0; } else { pressures->he = (amb_pressure - pressures->o2) * (double)get_he(mix) / (1000 - get_o2(mix)); pressures->n2 = amb_pressure - pressures->o2 - pressures->he; } } } else { if (divemode == PSCR) { /* The steady state approximation should be good enough */ pressures->o2 = get_o2(mix) / 1000.0 * amb_pressure - (1.0 - get_o2(mix) / 1000.0) * prefs.o2consumption / (prefs.bottomsac * prefs.pscr_ratio / 1000.0); if (pressures->o2 < 0) // He's dead, Jim. pressures->o2 = 0; if (get_o2(mix) != 1000) { pressures->he = (amb_pressure - pressures->o2) * get_he(mix) / (1000.0 - get_o2(mix)); pressures->n2 = (amb_pressure - pressures->o2) * (1000 - get_o2(mix) - get_he(mix)) / (1000.0 - get_o2(mix)); } else { pressures->he = pressures->n2 = 0; } } else { // Open circuit dives: no gas pressure values available, they need to be calculated pressures->o2 = get_o2(mix) / 1000.0 * amb_pressure; // These calculations are also used if the CCR calculation above.. pressures->he = get_he(mix) / 1000.0 * amb_pressure; // ..returned a po2 of zero (i.e. o2 sensor data not resolvable) pressures->n2 = (1000 - get_o2(mix) - get_he(mix)) / 1000.0 * amb_pressure; } } } /* Force an initial gaschange event to the (old) gas #0 */ static void add_initial_gaschange(struct dive *dive, struct divecomputer *dc) { struct event *ev = get_next_event(dc->events, "gaschange"); if (ev && ev->time.seconds < 30) return; /* Old starting gas mix */ add_gas_switch_event(dive, dc, 0, 0); } static void dc_cylinder_renumber(struct dive *dive, struct divecomputer *dc, int mapping[]) { int i; struct event *ev; /* Did the first gas get remapped? Add gas switch event */ if (mapping[0] > 0) add_initial_gaschange(dive, dc); /* Remap the sensor indexes */ for (i = 0; i < dc->samples; i++) { struct sample *s = dc->sample + i; int j; for (j = 0; j < 2; j++) { int sensor; sensor = mapping[s->sensor[j]]; if (sensor >= 0) s->sensor[j] = sensor; } } /* Remap the gas change indexes */ for (ev = dc->events; ev; ev = ev->next) { if (!event_is_gaschange(ev)) continue; if (ev->gas.index < 0) continue; ev->gas.index = mapping[ev->gas.index]; } } /* * If the cylinder indexes change (due to merging dives or deleting * cylinders in the middle), we need to change the indexes in the * dive computer data for this dive. * * Also note that we assume that the initial cylinder is cylinder 0, * so if that got renamed, we need to create a fake gas change event */ void cylinder_renumber(struct dive *dive, int mapping[]) { struct divecomputer *dc; for_each_dc (dive, dc) dc_cylinder_renumber(dive, dc, mapping); } int same_gasmix(struct gasmix *a, struct gasmix *b) { if (gasmix_is_air(a) && gasmix_is_air(b)) return 1; return a->o2.permille == b->o2.permille && a->he.permille == b->he.permille; } int same_gasmix_cylinder(cylinder_t *cyl, int cylid, struct dive *dive, bool check_unused) { struct gasmix *mygas = &cyl->gasmix; for (int i = 0; i < MAX_CYLINDERS; i++) { if (i == cylid || cylinder_none(&dive->cylinder[i])) continue; struct gasmix *gas2 = &dive->cylinder[i].gasmix; if (gasmix_distance(mygas, gas2) == 0 && (is_cylinder_used(dive, i) || check_unused)) return i; } return -1; } static int pdiff(pressure_t a, pressure_t b) { return a.mbar && b.mbar && a.mbar != b.mbar; } static int different_manual_pressures(cylinder_t *a, cylinder_t *b) { return pdiff(a->start, b->start) || pdiff(a->end, b->end); } /* * Can we find an exact match for a cylinder in another dive? * Take the "already matched" map into account, so that we * don't match multiple similar cylinders to one target. * * To match, the cylinders have to have the same gasmix and the * same cylinder use (ie OC/Diluent/Oxygen), and if pressures * have been added manually they need to match. */ static int match_cylinder(cylinder_t *cyl, struct dive *dive, unsigned int available) { int i; for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *target; if (!(available & (1u << i))) continue; target = dive->cylinder + i; if (!same_gasmix(&cyl->gasmix, &target->gasmix)) continue; if (cyl->cylinder_use != target->cylinder_use) continue; if (different_manual_pressures(cyl, target)) continue; /* FIXME! Should we check sizes too? */ return i; } return -1; } /* * Note: we only allocate from the end, not in holes in the middle. * So we don't look for empty bits, we look for "no more bits set". * We could use some "find last bit set" math function, but let's * not be fancy. */ static int find_unused_cylinder(unsigned int used_map) { int i; for (i = 0; i < MAX_CYLINDERS; i++) { if (!used_map) return i; used_map >>= 1; } return -1; } /* * We matched things up so that they have the same gasmix and * use, but we might want to fill in any missing cylinder details * in 'a' if we had it from 'b'. */ static void merge_one_cylinder(cylinder_t *a, cylinder_t *b) { if (!a->type.size.mliter) a->type.size.mliter = b->type.size.mliter; if (!a->type.workingpressure.mbar) a->type.workingpressure.mbar = b->type.workingpressure.mbar; if (!a->type.description && b->type.description) a->type.description = strdup(b->type.description); if (!a->start.mbar) a->start.mbar = b->start.mbar; if (!a->end.mbar) a->end.mbar = b->end.mbar; if (a->sample_start.mbar && b->sample_start.mbar) a->sample_start.mbar = a->sample_start.mbar > b->sample_start.mbar ? a->sample_start.mbar : b->sample_start.mbar; if (a->sample_end.mbar && b->sample_end.mbar) a->sample_end.mbar = a->sample_end.mbar < b->sample_end.mbar ? a->sample_end.mbar : b->sample_end.mbar; } /* * Merging cylinder information is non-trivial, because the two dive computers * may have different ideas of what the different cylinder indexing is. * * Logic: take all the cylinder information from the preferred dive ('a'), and * then try to match each of the cylinders in the other dive by the gasmix that * is the best match and hasn't been used yet. */ static void merge_cylinders(struct dive *res, struct dive *a, struct dive *b) { int i, renumber = 0; int mapping[MAX_CYLINDERS]; unsigned int used_in_a = 0, used_in_b = 0, matched = 0; /* Calculate usage map of cylinders */ for (i = 0; i < MAX_CYLINDERS; i++) { if (!cylinder_none(a->cylinder+i) || is_cylinder_used(a, i)) used_in_a |= 1u << i; if (!cylinder_none(b->cylinder+i) || is_cylinder_used(b, i)) used_in_b |= 1u << i; } /* For each cylinder in 'b', try to match up things */ for (i = 0; i < MAX_CYLINDERS; i++) { int j; mapping[i] = -1; if (!(used_in_b & (1u << i))) continue; j = match_cylinder(b->cylinder+i, a, used_in_a & ~matched); if (j < 0) continue; /* * If we had a successful match, we: * * - try to merge individual cylinder data from both cases * * - save that in the mapping table * * - mark it as matched so that another cylinder in 'b' * will no longer match * * - mark 'b' as needing renumbering if the index changed */ merge_one_cylinder(a->cylinder + j, b->cylinder + i); mapping[i] = j; matched |= 1u << j; if (j != i) renumber = 1; } /* * Consider all the cylinders we matched as used, whether they * originally were or not (either in 'a' or 'b'). */ used_in_a |= matched; /* Now copy all the cylinder info raw from 'a' (whether used/matched or not) */ memcpy(res->cylinder, a->cylinder, sizeof(res->cylinder)); memset(a->cylinder, 0, sizeof(a->cylinder)); /* * Go back to 'b' and remap any remaining cylinders that didn't * match completely. */ for (i = 0; i < MAX_CYLINDERS; i++) { int j; /* Already remapped, or not interesting? */ if (mapping[i] >= 0) continue; if (!(used_in_b & (1u << i))) continue; j = find_unused_cylinder(used_in_a); if (j < 0) continue; res->cylinder[j] = b->cylinder[i]; memset(b->cylinder+i, 0, sizeof(cylinder_t)); mapping[i] = j; used_in_a |= 1u << j; if (i != j) renumber = 1; } if (renumber) cylinder_renumber(b, mapping); } static void merge_equipment(struct dive *res, struct dive *a, struct dive *b) { int i; merge_cylinders(res, a, b); for (i = 0; i < MAX_WEIGHTSYSTEMS; i++) merge_weightsystem_info(res->weightsystem + i, a->weightsystem + i, b->weightsystem + i); } static void merge_temperatures(struct dive *res, struct dive *a, struct dive *b) { un_fixup_airtemp(a); un_fixup_airtemp(b); MERGE_NONZERO(res, a, b, airtemp.mkelvin); MERGE_NONZERO(res, a, b, watertemp.mkelvin); } /* * When merging two dives, this picks the trip from one, and removes it * from the other. * * The 'next' dive is not involved in the dive merging, but is the dive * that will be the next dive after the merged dive. */ static void pick_trip(struct dive *res, struct dive *pick) { tripflag_t tripflag = pick->tripflag; dive_trip_t *trip = pick->divetrip; res->tripflag = tripflag; add_dive_to_trip(res, trip); } /* * Pick a trip for a dive */ static void merge_trip(struct dive *res, struct dive *a, struct dive *b) { dive_trip_t *atrip, *btrip; /* * The larger tripflag is more relevant: we prefer * take manually assigned trips over auto-generated * ones. */ if (a->tripflag > b->tripflag) goto pick_a; if (a->tripflag < b->tripflag) goto pick_b; /* Otherwise, look at the trip data and pick the "better" one */ atrip = a->divetrip; btrip = b->divetrip; if (!atrip) goto pick_b; if (!btrip) goto pick_a; if (!atrip->location) goto pick_b; if (!btrip->location) goto pick_a; if (!atrip->notes) goto pick_b; if (!btrip->notes) goto pick_a; /* * Ok, so both have location and notes. * Pick the earlier one. */ if (a->when < b->when) goto pick_a; goto pick_b; pick_a: b = a; pick_b: pick_trip(res, b); } #if CURRENTLY_NOT_USED /* * Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'. * * If 's' and 'a' are at the same time, offset is 0, and b is NULL. */ static int compare_sample(struct sample *s, struct sample *a, struct sample *b, int offset) { unsigned int depth = a->depth.mm; int diff; if (offset) { unsigned int interval = b->time.seconds - a->time.seconds; unsigned int depth_a = a->depth.mm; unsigned int depth_b = b->depth.mm; if (offset > interval) return -1; /* pick the average depth, scaled by the offset from 'b' */ depth = (depth_a * offset) + (depth_b * (interval - offset)); depth /= interval; } diff = s->depth.mm - depth; if (diff < 0) diff = -diff; /* cut off at one meter difference */ if (diff > 1000) diff = 1000; return diff * diff; } /* * Calculate a "difference" in samples between the two dives, given * the offset in seconds between them. Use this to find the best * match of samples between two different dive computers. */ static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset) { int asamples = a->samples; int bsamples = b->samples; struct sample *as = a->sample; struct sample *bs = b->sample; unsigned long error = 0; int start = -1; if (!asamples || !bsamples) return 0; /* * skip the first sample - this way we know can always look at * as/bs[-1] to look at the samples around it in the loop. */ as++; bs++; asamples--; bsamples--; for (;;) { int at, bt, diff; /* If we run out of samples, punt */ if (!asamples) return INT_MAX; if (!bsamples) return INT_MAX; at = as->time.seconds; bt = bs->time.seconds + offset; /* b hasn't started yet? Ignore it */ if (bt < 0) { bs++; bsamples--; continue; } if (at < bt) { diff = compare_sample(as, bs - 1, bs, bt - at); as++; asamples--; } else if (at > bt) { diff = compare_sample(bs, as - 1, as, at - bt); bs++; bsamples--; } else { diff = compare_sample(as, bs, NULL, 0); as++; bs++; asamples--; bsamples--; } /* Invalid comparison point? */ if (diff < 0) continue; if (start < 0) start = at; error += diff; if (at - start > 120) break; } return error; } /* * Dive 'a' is 'offset' seconds before dive 'b' * * This is *not* because the dive computers clocks aren't in sync, * it is because the dive computers may "start" the dive at different * points in the dive, so the sample at time X in dive 'a' is the * same as the sample at time X+offset in dive 'b'. * * For example, some dive computers take longer to "wake up" when * they sense that you are under water (ie Uemis Zurich if it was off * when the dive started). And other dive computers have different * depths that they activate at, etc etc. * * If we cannot find a shared offset, don't try to merge. */ static int find_sample_offset(struct divecomputer *a, struct divecomputer *b) { int offset, best; unsigned long max; /* No samples? Merge at any time (0 offset) */ if (!a->samples) return 0; if (!b->samples) return 0; /* * Common special-case: merging a dive that came from * the same dive computer, so the samples are identical. * Check this first, without wasting time trying to find * some minimal offset case. */ best = 0; max = sample_difference(a, b, 0); if (!max) return 0; /* * Otherwise, look if we can find anything better within * a thirty second window.. */ for (offset = -30; offset <= 30; offset++) { unsigned long diff; diff = sample_difference(a, b, offset); if (diff > max) continue; best = offset; max = diff; } return best; } #endif /* * Are a and b "similar" values, when given a reasonable lower end expected * difference? * * So for example, we'd expect different dive computers to give different * max. depth readings. You might have them on different arms, and they * have different pressure sensors and possibly different ideas about * water salinity etc. * * So have an expected minimum difference, but also allow a larger relative * error value. */ static int similar(unsigned long a, unsigned long b, unsigned long expected) { if (!a && !b) return 1; if (a && b) { unsigned long min, max, diff; min = a; max = b; if (a > b) { min = b; max = a; } diff = max - min; /* Smaller than expected difference? */ if (diff < expected) return 1; /* Error less than 10% or the maximum */ if (diff * 10 < max) return 1; } return 0; } /* * Match two dive computer entries against each other, and * tell if it's the same dive. Return 0 if "don't know", * positive for "same dive" and negative for "definitely * not the same dive" */ int match_one_dc(struct divecomputer *a, struct divecomputer *b) { /* Not same model? Don't know if matching.. */ if (!a->model || !b->model) return 0; if (strcasecmp(a->model, b->model)) return 0; /* Different device ID's? Don't know */ if (a->deviceid != b->deviceid) return 0; /* Do we have dive IDs? */ if (!a->diveid || !b->diveid) return 0; /* * If they have different dive ID's on the same * dive computer, that's a definite "same or not" */ return a->diveid == b->diveid ? 1 : -1; } /* * Match every dive computer against each other to see if * we have a matching dive. * * Return values: * -1 for "is definitely *NOT* the same dive" * 0 for "don't know" * 1 for "is definitely the same dive" */ static int match_dc_dive(struct divecomputer *a, struct divecomputer *b) { do { struct divecomputer *tmp = b; do { int match = match_one_dc(a, tmp); if (match) return match; tmp = tmp->next; } while (tmp); a = a->next; } while (a); return 0; } static bool new_without_trip(struct dive *a) { return a->downloaded && !a->divetrip; } /* * Do we want to automatically try to merge two dives that * look like they are the same dive? * * This happens quite commonly because you download a dive * that you already had, or perhaps because you maintained * multiple dive logs and want to load them all together * (possibly one of them was imported from another dive log * application entirely). * * NOTE! We mainly look at the dive time, but it can differ * between two dives due to a few issues: * * - rounding the dive date to the nearest minute in other dive * applications * * - dive computers with "relative datestamps" (ie the dive * computer doesn't actually record an absolute date at all, * but instead at download-time synchronizes its internal * time with real-time on the downloading computer) * * - using multiple dive computers with different real time on * the same dive * * We do not merge dives that look radically different, and if * the dates are *too* far off the user will have to join two * dives together manually. But this tries to handle the sane * cases. */ static int likely_same_dive(struct dive *a, struct dive *b) { int match, fuzz = 20 * 60; /* don't merge manually added dives with anything */ if (same_string(a->dc.model, "manually added dive") || same_string(b->dc.model, "manually added dive")) return 0; /* Don't try to merge dives with different trip information */ if (a->divetrip != b->divetrip) { /* * Exception: if the dive is downloaded without any * explicit trip information, we do want to merge it * with existing old dives even if they have trips. */ if (!new_without_trip(a) && !new_without_trip(b)) return 0; } /* * Do some basic sanity testing of the values we * have filled in during 'fixup_dive()' */ if (!similar(a->maxdepth.mm, b->maxdepth.mm, 1000) || (a->meandepth.mm && b->meandepth.mm && !similar(a->meandepth.mm, b->meandepth.mm, 1000)) || !a->duration.seconds || !b->duration.seconds || !similar(a->duration.seconds, b->duration.seconds, 5 * 60)) return 0; /* See if we can get an exact match on the dive computer */ match = match_dc_dive(&a->dc, &b->dc); if (match) return match > 0; /* * Allow a time difference due to dive computer time * setting etc. Check if they overlap. */ fuzz = MAX(a->duration.seconds, b->duration.seconds) / 2; if (fuzz < 60) fuzz = 60; return ((a->when <= b->when + fuzz) && (a->when >= b->when - fuzz)); } /* * This could do a lot more merging. Right now it really only * merges almost exact duplicates - something that happens easily * with overlapping dive downloads. */ struct dive *try_to_merge(struct dive *a, struct dive *b, bool prefer_downloaded) { if (likely_same_dive(a, b)) return merge_dives(a, b, 0, prefer_downloaded); return NULL; } void free_events(struct event *ev) { while (ev) { struct event *next = ev->next; free(ev); ev = next; } } static void free_dc_contents(struct divecomputer *dc) { free(dc->sample); free((void *)dc->model); free_events(dc->events); } static void free_dc(struct divecomputer *dc) { free_dc_contents(dc); free(dc); } static void free_pic(struct picture *picture) { if (picture) { free(picture->filename); free(picture); } } static int same_sample(struct sample *a, struct sample *b) { if (a->time.seconds != b->time.seconds) return 0; if (a->depth.mm != b->depth.mm) return 0; if (a->temperature.mkelvin != b->temperature.mkelvin) return 0; if (a->pressure[0].mbar != b->pressure[0].mbar) return 0; return a->sensor[0] == b->sensor[0]; } static int same_dc(struct divecomputer *a, struct divecomputer *b) { int i; struct event *eva, *evb; i = match_one_dc(a, b); if (i) return i > 0; if (a->when && b->when && a->when != b->when) return 0; if (a->samples != b->samples) return 0; for (i = 0; i < a->samples; i++) if (!same_sample(a->sample + i, b->sample + i)) return 0; eva = a->events; evb = b->events; while (eva && evb) { if (!same_event(eva, evb)) return 0; eva = eva->next; evb = evb->next; } return eva == evb; } static int might_be_same_device(struct divecomputer *a, struct divecomputer *b) { /* No dive computer model? That matches anything */ if (!a->model || !b->model) return 1; /* Otherwise at least the model names have to match */ if (strcasecmp(a->model, b->model)) return 0; /* No device ID? Match */ if (!a->deviceid || !b->deviceid) return 1; return a->deviceid == b->deviceid; } static void remove_redundant_dc(struct divecomputer *dc, int prefer_downloaded) { do { struct divecomputer **p = &dc->next; /* Check this dc against all the following ones.. */ while (*p) { struct divecomputer *check = *p; if (same_dc(dc, check) || (prefer_downloaded && might_be_same_device(dc, check))) { *p = check->next; check->next = NULL; free_dc(check); continue; } p = &check->next; } /* .. and then continue down the chain, but we */ prefer_downloaded = 0; dc = dc->next; } while (dc); } static void clear_dc(struct divecomputer *dc) { memset(dc, 0, sizeof(*dc)); } static struct divecomputer *find_matching_computer(struct divecomputer *match, struct divecomputer *list) { struct divecomputer *p; while ((p = list) != NULL) { list = list->next; if (might_be_same_device(match, p)) break; } return p; } static void copy_dive_computer(struct divecomputer *res, struct divecomputer *a) { *res = *a; res->model = copy_string(a->model); res->samples = res->alloc_samples = 0; res->sample = NULL; res->events = NULL; res->next = NULL; } /* * Join dive computers with a specific time offset between * them. * * Use the dive computer ID's (or names, if ID's are missing) * to match them up. If we find a matching dive computer, we * merge them. If not, we just take the data from 'a'. */ static void interleave_dive_computers(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int offset) { do { struct divecomputer *match; copy_dive_computer(res, a); match = find_matching_computer(a, b); if (match) { merge_events(res, a, match, offset); merge_samples(res, a, match, offset); /* Use the diveid of the later dive! */ if (offset > 0) res->diveid = match->diveid; } else { res->sample = a->sample; res->samples = a->samples; res->events = a->events; a->sample = NULL; a->samples = 0; a->events = NULL; } a = a->next; if (!a) break; res->next = calloc(1, sizeof(struct divecomputer)); res = res->next; } while (res); } /* * Join dive computer information. * * If we have old-style dive computer information (no model * name etc), we will prefer a new-style one and just throw * away the old. We're assuming it's a re-download. * * Otherwise, we'll just try to keep all the information, * unless the user has specified that they prefer the * downloaded computer, in which case we'll aggressively * try to throw out old information that *might* be from * that one. */ static void join_dive_computers(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int prefer_downloaded) { struct divecomputer *tmp; if (a->model && !b->model) { *res = *a; clear_dc(a); return; } if (b->model && !a->model) { *res = *b; clear_dc(b); return; } *res = *a; clear_dc(a); tmp = res; while (tmp->next) tmp = tmp->next; tmp->next = calloc(1, sizeof(*tmp)); *tmp->next = *b; clear_dc(b); remove_redundant_dc(res, prefer_downloaded); } static bool tag_seen_before(struct tag_entry *start, struct tag_entry *before) { while (start && start != before) { if (same_string(start->tag->name, before->tag->name)) return true; start = start->next; } return false; } /* remove duplicates and empty nodes */ void taglist_cleanup(struct tag_entry **tag_list) { struct tag_entry **tl = tag_list; while (*tl) { /* skip tags that are empty or that we have seen before */ if (same_string((*tl)->tag->name, "") || tag_seen_before(*tag_list, *tl)) { *tl = (*tl)->next; continue; } tl = &(*tl)->next; } } int taglist_get_tagstring(struct tag_entry *tag_list, char *buffer, int len) { int i = 0; struct tag_entry *tmp; tmp = tag_list; memset(buffer, 0, len); while (tmp != NULL) { int newlength = strlen(tmp->tag->name); if (i > 0) newlength += 2; if ((i + newlength) < len) { if (i > 0) { strcpy(buffer + i, ", "); strcpy(buffer + i + 2, tmp->tag->name); } else { strcpy(buffer, tmp->tag->name); } } else { return i; } i += newlength; tmp = tmp->next; } return i; } static inline void taglist_free_divetag(struct divetag *tag) { if (tag->name != NULL) free(tag->name); if (tag->source != NULL) free(tag->source); free(tag); } /* Add a tag to the tag_list, keep the list sorted */ static struct divetag *taglist_add_divetag(struct tag_entry **tag_list, struct divetag *tag) { struct tag_entry *next, *entry; while ((next = *tag_list) != NULL) { int cmp = strcmp(next->tag->name, tag->name); /* Already have it? */ if (!cmp) return next->tag; /* Is the entry larger? If so, insert here */ if (cmp > 0) break; /* Continue traversing the list */ tag_list = &next->next; } /* Insert in front of it */ entry = malloc(sizeof(struct tag_entry)); entry->next = next; entry->tag = tag; *tag_list = entry; return tag; } struct divetag *taglist_add_tag(struct tag_entry **tag_list, const char *tag) { size_t i = 0; int is_default_tag = 0; struct divetag *ret_tag, *new_tag; const char *translation; new_tag = malloc(sizeof(struct divetag)); for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++) { if (strcmp(default_tags[i], tag) == 0) { is_default_tag = 1; break; } } /* Only translate default tags */ if (is_default_tag) { translation = translate("gettextFromC", tag); new_tag->name = malloc(strlen(translation) + 1); memcpy(new_tag->name, translation, strlen(translation) + 1); new_tag->source = malloc(strlen(tag) + 1); memcpy(new_tag->source, tag, strlen(tag) + 1); } else { new_tag->source = NULL; new_tag->name = malloc(strlen(tag) + 1); memcpy(new_tag->name, tag, strlen(tag) + 1); } /* Try to insert new_tag into g_tag_list if we are not operating on it */ if (tag_list != &g_tag_list) { ret_tag = taglist_add_divetag(&g_tag_list, new_tag); /* g_tag_list already contains new_tag, free the duplicate */ if (ret_tag != new_tag) taglist_free_divetag(new_tag); ret_tag = taglist_add_divetag(tag_list, ret_tag); } else { ret_tag = taglist_add_divetag(tag_list, new_tag); if (ret_tag != new_tag) taglist_free_divetag(new_tag); } return ret_tag; } void taglist_free(struct tag_entry *entry) { STRUCTURED_LIST_FREE(struct tag_entry, entry, free) } /* Merge src1 and src2, write to *dst */ static void taglist_merge(struct tag_entry **dst, struct tag_entry *src1, struct tag_entry *src2) { struct tag_entry *entry; for (entry = src1; entry; entry = entry->next) taglist_add_divetag(dst, entry->tag); for (entry = src2; entry; entry = entry->next) taglist_add_divetag(dst, entry->tag); } void taglist_init_global() { size_t i; for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++) taglist_add_tag(&g_tag_list, default_tags[i]); } bool taglist_contains(struct tag_entry *tag_list, const char *tag) { while (tag_list) { if (same_string(tag_list->tag->name, tag)) return true; tag_list = tag_list->next; } return false; } // check if all tags in subtl are included in supertl (so subtl is a subset of supertl) static bool taglist_contains_all(struct tag_entry *subtl, struct tag_entry *supertl) { while (subtl) { if (!taglist_contains(supertl, subtl->tag->name)) return false; subtl = subtl->next; } return true; } struct tag_entry *taglist_added(struct tag_entry *original_list, struct tag_entry *new_list) { struct tag_entry *added_list = NULL; while (new_list) { if (!taglist_contains(original_list, new_list->tag->name)) taglist_add_tag(&added_list, new_list->tag->name); new_list = new_list->next; } return added_list; } void dump_taglist(const char *intro, struct tag_entry *tl) { char *comma = ""; fprintf(stderr, "%s", intro); while(tl) { fprintf(stderr, "%s %s", comma, tl->tag->name); comma = ","; tl = tl->next; } fprintf(stderr, "\n"); } // if tl1 is both a subset and superset of tl2 they must be the same bool taglist_equal(struct tag_entry *tl1, struct tag_entry *tl2) { return taglist_contains_all(tl1, tl2) && taglist_contains_all(tl2, tl1); } // count the dives where the tag list contains the given tag int count_dives_with_tag(const char *tag) { int i, counter = 0; struct dive *d; for_each_dive (i, d) { if (same_string(tag, "")) { // count dives with no tags if (d->tag_list == NULL) counter++; } else if (taglist_contains(d->tag_list, tag)) { counter++; } } return counter; } extern bool string_sequence_contains(const char *string_sequence, const char *text); // count the dives where the person is included in the comma separated string sequences of buddies or divemasters int count_dives_with_person(const char *person) { int i, counter = 0; struct dive *d; for_each_dive (i, d) { if (same_string(person, "")) { // solo dive if (same_string(d->buddy, "") && same_string(d->divemaster, "")) counter++; } else if (string_sequence_contains(d->buddy, person) || string_sequence_contains(d->divemaster, person)) { counter++; } } return counter; } // count the dives with exactly the location int count_dives_with_location(const char *location) { int i, counter = 0; struct dive *d; for_each_dive (i, d) { if (same_string(get_dive_location(d), location)) counter++; } return counter; } // count the dives with exactly the suit int count_dives_with_suit(const char *suit) { int i, counter = 0; struct dive *d; for_each_dive (i, d) { if (same_string(d->suit, suit)) counter++; } return counter; } /* * Merging two dives can be subtle, because there's two different ways * of merging: * * (a) two distinctly _different_ dives that have the same dive computer * are merged into one longer dive, because the user asked for it * in the divelist. * * Because this case is with the same dive computer, we *know* the * two must have a different start time, and "offset" is the relative * time difference between the two. * * (a) two different dive computers that we might want to merge into * one single dive with multiple dive computers. * * This is the "try_to_merge()" case, which will have offset == 0, * even if the dive times might be different. */ struct dive *merge_dives(struct dive *a, struct dive *b, int offset, bool prefer_downloaded) { struct dive *res = alloc_dive(); struct dive *dl = NULL; if (offset) { /* * If "likely_same_dive()" returns true, that means that * it is *not* the same dive computer, and we do not want * to try to turn it into a single longer dive. So we'd * join them as two separate dive computers at zero offset. */ if (likely_same_dive(a, b)) offset = 0; } else { /* Aim for newly downloaded dives to be 'b' (keep old dive data first) */ if (a->downloaded && !b->downloaded) { struct dive *tmp = a; a = b; b = tmp; } if (prefer_downloaded && b->downloaded) dl = b; } if (same_string(a->dc.model, "planned dive")) { struct dive *tmp = a; a = b; b = tmp; } res->when = dl ? dl->when : a->when; res->selected = a->selected || b->selected; merge_trip(res, a, b); MERGE_TXT(res, a, b, notes); MERGE_TXT(res, a, b, buddy); MERGE_TXT(res, a, b, divemaster); MERGE_MAX(res, a, b, rating); MERGE_TXT(res, a, b, suit); MERGE_MAX(res, a, b, number); MERGE_NONZERO(res, a, b, cns); MERGE_NONZERO(res, a, b, visibility); MERGE_NONZERO(res, a, b, picture_list); taglist_merge(&res->tag_list, a->tag_list, b->tag_list); merge_equipment(res, a, b); merge_temperatures(res, a, b); if (dl) { /* If we prefer downloaded, do those first, and get rid of "might be same" computers */ join_dive_computers(&res->dc, &dl->dc, &a->dc, 1); } else if (offset && might_be_same_device(&a->dc, &b->dc)) interleave_dive_computers(&res->dc, &a->dc, &b->dc, offset); else join_dive_computers(&res->dc, &a->dc, &b->dc, 0); /* we take the first dive site, unless it's empty */ if (a->dive_site_uuid && !dive_site_is_empty(get_dive_site_by_uuid(a->dive_site_uuid))) res->dive_site_uuid = a->dive_site_uuid; else res->dive_site_uuid = b->dive_site_uuid; fixup_dive(res); return res; } // copy_dive(), but retaining the new ID for the copied dive static struct dive *create_new_copy(struct dive *from) { struct dive *to = alloc_dive(); int id; // alloc_dive() gave us a new ID, we just need to // make sure it's not overwritten. id = to->id; copy_dive(from, to); to->id = id; return to; } static void force_fixup_dive(struct dive *d) { struct divecomputer *dc = &d->dc; int old_temp = dc->watertemp.mkelvin; int old_mintemp = d->mintemp.mkelvin; int old_maxtemp = d->maxtemp.mkelvin; duration_t old_duration = d->duration; d->maxdepth.mm = 0; dc->maxdepth.mm = 0; d->watertemp.mkelvin = 0; dc->watertemp.mkelvin = 0; d->duration.seconds = 0; d->maxtemp.mkelvin = 0; d->mintemp.mkelvin = 0; fixup_dive(d); if (!d->watertemp.mkelvin) d->watertemp.mkelvin = old_temp; if (!dc->watertemp.mkelvin) dc->watertemp.mkelvin = old_temp; if (!d->maxtemp.mkelvin) d->maxtemp.mkelvin = old_maxtemp; if (!d->mintemp.mkelvin) d->mintemp.mkelvin = old_mintemp; if (!d->duration.seconds) d->duration = old_duration; } /* * Split a dive that has a surface interval from samples 'a' to 'b' * into two dives. */ static int split_dive_at(struct dive *dive, int a, int b) { int i, nr; uint32_t t; struct dive *d1, *d2; struct divecomputer *dc1, *dc2; struct event *event, **evp; /* if we can't find the dive in the dive list, don't bother */ if ((nr = get_divenr(dive)) < 0) return 0; /* We're not trying to be efficient here.. */ d1 = create_new_copy(dive); d2 = create_new_copy(dive); /* now unselect the first first segment so we don't keep all * dives selected by mistake. But do keep the second one selected * so the algorithm keeps splitting the dive further */ d1->selected = false; dc1 = &d1->dc; dc2 = &d2->dc; /* * Cut off the samples of d1 at the beginning * of the interval. */ dc1->samples = a; /* And get rid of the 'b' first samples of d2 */ dc2->samples -= b; memmove(dc2->sample, dc2->sample+b, dc2->samples * sizeof(struct sample)); /* * This is where we cut off events from d1, * and shift everything in d2 */ t = dc2->sample[0].time.seconds; d2->when += t; for (i = 0; i < dc2->samples; i++) dc2->sample[i].time.seconds -= t; /* Remove the events past 't' from d1 */ evp = &dc1->events; while ((event = *evp) != NULL && event->time.seconds < t) evp = &event->next; *evp = NULL; while (event) { struct event *next = event->next; free(event); event = next; } /* Remove the events before 't' from d2, and shift the rest */ evp = &dc2->events; while ((event = *evp) != NULL) { if (event->time.seconds < t) { *evp = event->next; free(event); } else { event->time.seconds -= t; } } force_fixup_dive(d1); force_fixup_dive(d2); if (dive->divetrip) { d1->divetrip = d2->divetrip = 0; add_dive_to_trip(d1, dive->divetrip); add_dive_to_trip(d2, dive->divetrip); } delete_single_dive(nr); add_single_dive(nr, d1); /* * Was the dive numbered? If it was the last dive, then we'll * increment the dive number for the tail part that we split off. * Otherwise the tail is unnumbered. */ if (d2->number) { if (dive_table.nr == nr + 1) d2->number++; else d2->number = 0; } add_single_dive(nr + 1, d2); mark_divelist_changed(true); return 1; } /* in freedive mode we split for as little as 10 seconds on the surface, * otherwise we use a minute */ static bool should_split(struct divecomputer *dc, int t1, int t2) { int threshold = dc->divemode == FREEDIVE ? 10 : 60; return t2 - t1 >= threshold; } /* * Try to split a dive into multiple dives at a surface interval point. * * NOTE! We will not split dives with multiple dive computers, and * only split when there is at least one surface event that has * non-surface events on both sides. * * In other words, this is a (simplified) reversal of the dive merging. */ int split_dive(struct dive *dive) { int i; int at_surface, surface_start; struct divecomputer *dc; if (!dive || (dc = &dive->dc)->next) return 0; surface_start = 0; at_surface = 1; for (i = 1; i < dc->samples; i++) { struct sample *sample = dc->sample+i; int surface_sample = sample->depth.mm < SURFACE_THRESHOLD; /* * We care about the transition from and to depth 0, * not about the depth staying similar. */ if (at_surface == surface_sample) continue; at_surface = surface_sample; // Did it become surface after having been non-surface? We found the start if (at_surface) { surface_start = i; continue; } // Going down again? We want at least a minute from // the surface start. if (!surface_start) continue; if (!should_split(dc, dc->sample[surface_start].time.seconds, sample[i - 1].time.seconds)) continue; return split_dive_at(dive, surface_start, i-1); } return 0; } /* * "dc_maxtime()" is how much total time this dive computer * has for this dive. Note that it can differ from "duration" * if there are surface events in the middle. * * Still, we do ignore all but the last surface samples from the * end, because some divecomputers just generate lots of them. */ static inline int dc_totaltime(const struct divecomputer *dc) { int time = dc->duration.seconds; int nr = dc->samples; while (nr--) { struct sample *s = dc->sample + nr; time = s->time.seconds; if (s->depth.mm >= SURFACE_THRESHOLD) break; } return time; } /* * The end of a dive is actually not trivial, because "duration" * is not the duration until the end, but the time we spend under * water, which can be very different if there are surface events * during the dive. * * So walk the dive computers, looking for the longest actual * time in the samples (and just default to the dive duration if * there are no samples). */ static inline int dive_totaltime(const struct dive *dive) { int time = dive->duration.seconds; const struct divecomputer *dc; for_each_dc(dive, dc) { int dc_time = dc_totaltime(dc); if (dc_time > time) time = dc_time; } return time; } timestamp_t dive_endtime(const struct dive *dive) { return dive->when + dive_totaltime(dive); } struct dive *find_dive_including(timestamp_t when) { int i; struct dive *dive; /* binary search, anyone? Too lazy for now; * also we always use the duration from the first divecomputer * could this ever be a problem? */ for_each_dive (i, dive) { if (dive->when <= when && when <= dive_endtime(dive)) return dive; } return NULL; } bool time_during_dive_with_offset(struct dive *dive, timestamp_t when, timestamp_t offset) { timestamp_t start = dive->when; timestamp_t end = dive_endtime(dive); return start - offset <= when && when <= end + offset; } bool dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset) { timestamp_t start = dive->when; timestamp_t end = dive_endtime(dive); return when - offset <= start && end <= when + offset; } /* find the n-th dive that is part of a group of dives within the offset around 'when'. * How is that for a vague definition of what this function should do... */ struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset) { int i, j = 0; struct dive *dive; for_each_dive (i, dive) { if (dive_within_time_range(dive, when, offset)) if (++j == n) return dive; } return NULL; } void shift_times(const timestamp_t amount) { int i; struct dive *dive; for_each_dive (i, dive) { if (!dive->selected) continue; dive->when += amount; invalidate_dive_cache(dive); } } timestamp_t get_times() { int i; struct dive *dive; for_each_dive (i, dive) { if (dive->selected) break; } return dive->when; } void set_userid(char *rUserId) { if (prefs.userid) free(prefs.userid); prefs.userid = strdup(rUserId); if (strlen(prefs.userid) > 30) prefs.userid[30]='\0'; } /* this sets a usually unused copy of the preferences with the units * that were active the last time the dive list was saved to git storage * (this isn't used in XML files); storing the unit preferences in the * data file is usually pointless (that's a setting of the software, * not a property of the data), but it's a great hint of what the user * might expect to see when creating a backend service that visualizes * the dive list without Subsurface running - so this is basically a * functionality for the core library that Subsurface itself doesn't * use but that another consumer of the library (like an HTML exporter) * will need */ void set_informational_units(char *units) { if (strstr(units, "METRIC")) { git_prefs.unit_system = METRIC; } else if (strstr(units, "IMPERIAL")) { git_prefs.unit_system = IMPERIAL; } else if (strstr(units, "PERSONALIZE")) { git_prefs.unit_system = PERSONALIZE; if (strstr(units, "METERS")) git_prefs.units.length = METERS; if (strstr(units, "FEET")) git_prefs.units.length = FEET; if (strstr(units, "LITER")) git_prefs.units.volume = LITER; if (strstr(units, "CUFT")) git_prefs.units.volume = CUFT; if (strstr(units, "BAR")) git_prefs.units.pressure = BAR; if (strstr(units, "PSI")) git_prefs.units.pressure = PSI; if (strstr(units, "PASCAL")) git_prefs.units.pressure = PASCAL; if (strstr(units, "CELSIUS")) git_prefs.units.temperature = CELSIUS; if (strstr(units, "FAHRENHEIT")) git_prefs.units.temperature = FAHRENHEIT; if (strstr(units, "KG")) git_prefs.units.weight = KG; if (strstr(units, "LBS")) git_prefs.units.weight = LBS; if (strstr(units, "SECONDS")) git_prefs.units.vertical_speed_time = SECONDS; if (strstr(units, "MINUTES")) git_prefs.units.vertical_speed_time = MINUTES; } } void set_git_prefs(char *prefs) { if (strstr(prefs, "TANKBAR")) git_prefs.tankbar = 1; if (strstr(prefs, "DCCEILING")) git_prefs.dcceiling = 1; if (strstr(prefs, "SHOW_SETPOINT")) git_prefs.show_ccr_setpoint = 1; if (strstr(prefs, "SHOW_SENSORS")) git_prefs.show_ccr_sensors = 1; if (strstr(prefs, "PO2_GRAPH")) git_prefs.pp_graphs.po2 = 1; } void average_max_depth(struct diveplan *dive, int *avg_depth, int *max_depth) { int integral = 0; int last_time = 0; int last_depth = 0; struct divedatapoint *dp = dive->dp; *max_depth = 0; while (dp) { if (dp->time) { /* Ignore gas indication samples */ integral += (dp->depth.mm + last_depth) * (dp->time - last_time) / 2; last_time = dp->time; last_depth = dp->depth.mm; if (dp->depth.mm > *max_depth) *max_depth = dp->depth.mm; } dp = dp->next; } if (last_time) *avg_depth = integral / last_time; else *avg_depth = *max_depth = 0; } struct picture *alloc_picture() { struct picture *pic = malloc(sizeof(struct picture)); if (!pic) exit(1); memset(pic, 0, sizeof(struct picture)); return pic; } static bool new_picture_for_dive(struct dive *d, const char *filename) { FOR_EACH_PICTURE (d) { if (same_string(picture->filename, filename)) return false; } return true; } // only add pictures that have timestamps between 30 minutes before the dive and // 30 minutes after the dive ends #define D30MIN (30 * 60) bool dive_check_picture_time(struct dive *d, int shift_time, timestamp_t timestamp) { offset_t offset; if (timestamp) { offset.seconds = timestamp - d->when + shift_time; if (offset.seconds > -D30MIN && offset.seconds < dive_totaltime(d) + D30MIN) { // this picture belongs to this dive return true; } } return false; } bool picture_check_valid(const char *filename, int shift_time) { int i; struct dive *dive; timestamp_t timestamp = picture_get_timestamp(filename); for_each_dive (i, dive) if (dive->selected && dive_check_picture_time(dive, shift_time, timestamp)) return true; return false; } void dive_create_picture(struct dive *dive, const char *filename, int shift_time, bool match_all) { timestamp_t timestamp = picture_get_timestamp(filename); if (!new_picture_for_dive(dive, filename)) return; if (!match_all && !dive_check_picture_time(dive, shift_time, timestamp)) return; struct picture *picture = alloc_picture(); picture->filename = strdup(filename); picture->offset.seconds = timestamp - dive->when + shift_time; picture_load_exif_data(picture); dive_add_picture(dive, picture); dive_set_geodata_from_picture(dive, picture); invalidate_dive_cache(dive); } void dive_add_picture(struct dive *dive, struct picture *newpic) { struct picture **pic_ptr = &dive->picture_list; /* let's keep the list sorted by time */ while (*pic_ptr && (*pic_ptr)->offset.seconds <= newpic->offset.seconds) pic_ptr = &(*pic_ptr)->next; newpic->next = *pic_ptr; *pic_ptr = newpic; cache_picture(newpic); return; } unsigned int dive_get_picture_count(struct dive *dive) { unsigned int i = 0; FOR_EACH_PICTURE (dive) i++; return i; } void dive_set_geodata_from_picture(struct dive *dive, struct picture *picture) { struct dive_site *ds = get_dive_site_by_uuid(dive->dive_site_uuid); if (!dive_site_has_gps_location(ds) && (picture->latitude.udeg || picture->longitude.udeg)) { if (ds) { ds->latitude = picture->latitude; ds->longitude = picture->longitude; } else { dive->dive_site_uuid = create_dive_site_with_gps("", picture->latitude, picture->longitude, dive->when); invalidate_dive_cache(dive); } } } void picture_free(struct picture *picture) { if (!picture) return; free(picture->filename); free(picture->hash); free(picture); } // When handling pictures in different threads, we need to copy them so we don't // run into problems when the main thread frees the picture. struct picture *clone_picture(struct picture *src) { struct picture *dst; dst = alloc_picture(); copy_pl(src, dst); return dst; } void dive_remove_picture(char *filename) { struct picture **picture = ¤t_dive->picture_list; while (picture && !same_string((*picture)->filename, filename)) picture = &(*picture)->next; if (picture) { struct picture *temp = (*picture)->next; picture_free(*picture); *picture = temp; invalidate_dive_cache(current_dive); } } /* this always acts on the current divecomputer of the current dive */ void make_first_dc() { struct divecomputer *dc = ¤t_dive->dc; struct divecomputer *newdc = malloc(sizeof(*newdc)); struct divecomputer *cur_dc = current_dc; /* needs to be in a local variable so the macro isn't re-executed */ /* skip the current DC in the linked list */ while (dc && dc->next != cur_dc) dc = dc->next; if (!dc) { free(newdc); fprintf(stderr, "data inconsistent: can't find the current DC"); return; } dc->next = cur_dc->next; *newdc = current_dive->dc; current_dive->dc = *cur_dc; current_dive->dc.next = newdc; free(cur_dc); invalidate_dive_cache(current_dive); } /* always acts on the current dive */ unsigned int count_divecomputers(void) { int ret = 1; struct divecomputer *dc = current_dive->dc.next; while (dc) { ret++; dc = dc->next; } return ret; } /* always acts on the current dive */ void delete_current_divecomputer(void) { struct divecomputer *dc = current_dc; if (dc == ¤t_dive->dc) { /* remove the first one, so copy the second one in place of the first and free the second one * be careful about freeing the no longer needed structures - since we copy things around we can't use free_dc()*/ struct divecomputer *fdc = dc->next; free(dc->sample); free((void *)dc->model); free_events(dc->events); memcpy(dc, fdc, sizeof(struct divecomputer)); free(fdc); } else { struct divecomputer *pdc = ¤t_dive->dc; while (pdc->next != dc && pdc->next) pdc = pdc->next; if (pdc->next == dc) { pdc->next = dc->next; free_dc(dc); } } if (dc_number == count_divecomputers()) dc_number--; invalidate_dive_cache(current_dive); } /* helper function to make it easier to work with our structures * we don't interpolate here, just use the value from the last sample up to that time */ int get_depth_at_time(struct divecomputer *dc, unsigned int time) { int depth = 0; if (dc && dc->sample) for (int i = 0; i < dc->samples; i++) { if (dc->sample[i].time.seconds > time) break; depth = dc->sample[i].depth.mm; } return depth; } //Calculate O2 in best mix fraction_t best_o2(depth_t depth, struct dive *dive) { fraction_t fo2; fo2.permille = (prefs.bottompo2 * 100 / depth_to_mbar(depth.mm, dive)) * 10; //use integer arithmetic to round down to nearest percent // Don't permit >100% O2 if (fo2.permille > 1000) fo2.permille = 1000; return fo2; } //Calculate He in best mix. O2 is considered narcopic fraction_t best_he(depth_t depth, struct dive *dive) { fraction_t fhe; int pnarcotic, ambient; pnarcotic = depth_to_mbar(prefs.bestmixend.mm, dive); ambient = depth_to_mbar(depth.mm, dive); fhe.permille = (100 - 100 * pnarcotic / ambient) * 10; //use integer arithmetic to round up to nearest percent if (fhe.permille < 0) fhe.permille = 0; return fhe; }