// SPDX-License-Identifier: GPL-2.0 #ifdef __clang__ // Clang has a bug on zero-initialization of C structs. #pragma clang diagnostic ignored "-Wmissing-field-initializers" #endif #include "dive.h" #include "parse.h" #include "divelist.h" #include "device.h" #include "membuffer.h" extern int dm4_events(void *handle, int columns, char **data, char **column) { (void) handle; (void) columns; (void) column; event_start(); if (data[1]) cur_event.time.seconds = atoi(data[1]); if (data[2]) { switch (atoi(data[2])) { case 1: /* 1 Mandatory Safety Stop */ strcpy(cur_event.name, "safety stop (mandatory)"); break; case 3: /* 3 Deco */ /* What is Subsurface's term for going to * deco? */ strcpy(cur_event.name, "deco"); break; case 4: /* 4 Ascent warning */ strcpy(cur_event.name, "ascent"); break; case 5: /* 5 Ceiling broken */ strcpy(cur_event.name, "violation"); break; case 6: /* 6 Mandatory safety stop ceiling error */ strcpy(cur_event.name, "violation"); break; case 7: /* 7 Below deco floor */ strcpy(cur_event.name, "below floor"); break; case 8: /* 8 Dive time alarm */ strcpy(cur_event.name, "divetime"); break; case 9: /* 9 Depth alarm */ strcpy(cur_event.name, "maxdepth"); break; case 10: /* 10 OLF 80% */ case 11: /* 11 OLF 100% */ strcpy(cur_event.name, "OLF"); break; case 12: /* 12 High pO₂ */ strcpy(cur_event.name, "PO2"); break; case 13: /* 13 Air time */ strcpy(cur_event.name, "airtime"); break; case 17: /* 17 Ascent warning */ strcpy(cur_event.name, "ascent"); break; case 18: /* 18 Ceiling error */ strcpy(cur_event.name, "ceiling"); break; case 19: /* 19 Surfaced */ strcpy(cur_event.name, "surface"); break; case 20: /* 20 Deco */ strcpy(cur_event.name, "deco"); break; case 22: case 32: /* 22 Mandatory safety stop violation */ /* 32 Deep stop violation */ strcpy(cur_event.name, "violation"); break; case 30: /* Tissue level warning */ strcpy(cur_event.name, "tissue warning"); break; case 37: /* Tank pressure alarm */ strcpy(cur_event.name, "tank pressure"); break; case 257: /* 257 Dive active */ /* This seems to be given after surface when * descending again. */ strcpy(cur_event.name, "surface"); break; case 258: /* 258 Bookmark */ if (data[3]) { strcpy(cur_event.name, "heading"); cur_event.value = atoi(data[3]); } else { strcpy(cur_event.name, "bookmark"); } break; case 259: /* Deep stop */ strcpy(cur_event.name, "Deep stop"); break; case 260: /* Deep stop */ strcpy(cur_event.name, "Deep stop cleared"); break; case 266: /* Mandatory safety stop activated */ strcpy(cur_event.name, "safety stop (mandatory)"); break; case 267: /* Mandatory safety stop deactivated */ /* DM5 shows this only on event list, not on the * profile so skipping as well for now */ break; default: strcpy(cur_event.name, "unknown"); cur_event.value = atoi(data[2]); break; } } event_end(); return 0; } extern int dm5_cylinders(void *handle, int columns, char **data, char **column) { (void) handle; (void) columns; (void) column; cylinder_start(); if (data[7] && atoi(data[7]) > 0 && atoi(data[7]) < 350000) cur_dive->cylinder[cur_cylinder_index].start.mbar = atoi(data[7]); if (data[8] && atoi(data[8]) > 0 && atoi(data[8]) < 350000) cur_dive->cylinder[cur_cylinder_index].end.mbar = (atoi(data[8])); if (data[6]) { /* DM5 shows tank size of 12 liters when the actual * value is 0 (and using metric units). So we just use * the same 12 liters when size is not available */ if (strtod_flags(data[6], NULL, 0) == 0.0 && cur_dive->cylinder[cur_cylinder_index].start.mbar) cur_dive->cylinder[cur_cylinder_index].type.size.mliter = 12000; else cur_dive->cylinder[cur_cylinder_index].type.size.mliter = lrint((strtod_flags(data[6], NULL, 0)) * 1000); } if (data[2]) cur_dive->cylinder[cur_cylinder_index].gasmix.o2.permille = atoi(data[2]) * 10; if (data[3]) cur_dive->cylinder[cur_cylinder_index].gasmix.he.permille = atoi(data[3]) * 10; cylinder_end(); return 0; } extern int dm5_gaschange(void *handle, int columns, char **data, char **column) { (void) handle; (void) columns; (void) column; event_start(); if (data[0]) cur_event.time.seconds = atoi(data[0]); if (data[1]) { strcpy(cur_event.name, "gaschange"); cur_event.value = lrint(strtod_flags(data[1], NULL, 0)); } /* He part of the mix */ if (data[2]) cur_event.value += lrint(strtod_flags(data[2], NULL, 0)) << 16; event_end(); return 0; } extern int dm4_tags(void *handle, int columns, char **data, char **column) { (void) handle; (void) columns; (void) column; if (data[0]) taglist_add_tag(&cur_dive->tag_list, data[0]); return 0; } extern int dm4_dive(void *param, int columns, char **data, char **column) { (void) columns; (void) column; unsigned int i; int interval, retval = 0; sqlite3 *handle = (sqlite3 *)param; float *profileBlob; unsigned char *tempBlob; int *pressureBlob; char *err = NULL; char get_events_template[] = "select * from Mark where DiveId = %d"; char get_tags_template[] = "select Text from DiveTag where DiveId = %d"; char get_events[64]; dive_start(); cur_dive->number = atoi(data[0]); cur_dive->when = (time_t)(atol(data[1])); if (data[2]) utf8_string(data[2], &cur_dive->notes); /* * DM4 stores Duration and DiveTime. It looks like DiveTime is * 10 to 60 seconds shorter than Duration. However, I have no * idea what is the difference and which one should be used. * Duration = data[3] * DiveTime = data[15] */ if (data[3]) cur_dive->duration.seconds = atoi(data[3]); if (data[15]) cur_dive->dc.duration.seconds = atoi(data[15]); /* * TODO: the deviceid hash should be calculated here. */ settings_start(); dc_settings_start(); if (data[4]) utf8_string(data[4], &cur_settings.dc.serial_nr); if (data[5]) utf8_string(data[5], &cur_settings.dc.model); cur_settings.dc.deviceid = 0xffffffff; dc_settings_end(); settings_end(); if (data[6]) cur_dive->dc.maxdepth.mm = lrint(strtod_flags(data[6], NULL, 0) * 1000); if (data[8]) cur_dive->dc.airtemp.mkelvin = C_to_mkelvin(atoi(data[8])); if (data[9]) cur_dive->dc.watertemp.mkelvin = C_to_mkelvin(atoi(data[9])); /* * TODO: handle multiple cylinders */ cylinder_start(); if (data[22] && atoi(data[22]) > 0) cur_dive->cylinder[cur_cylinder_index].start.mbar = atoi(data[22]); else if (data[10] && atoi(data[10]) > 0) cur_dive->cylinder[cur_cylinder_index].start.mbar = atoi(data[10]); if (data[23] && atoi(data[23]) > 0) cur_dive->cylinder[cur_cylinder_index].end.mbar = (atoi(data[23])); if (data[11] && atoi(data[11]) > 0) cur_dive->cylinder[cur_cylinder_index].end.mbar = (atoi(data[11])); if (data[12]) cur_dive->cylinder[cur_cylinder_index].type.size.mliter = lrint((strtod_flags(data[12], NULL, 0)) * 1000); if (data[13]) cur_dive->cylinder[cur_cylinder_index].type.workingpressure.mbar = (atoi(data[13])); if (data[20]) cur_dive->cylinder[cur_cylinder_index].gasmix.o2.permille = atoi(data[20]) * 10; if (data[21]) cur_dive->cylinder[cur_cylinder_index].gasmix.he.permille = atoi(data[21]) * 10; cylinder_end(); if (data[14]) cur_dive->dc.surface_pressure.mbar = (atoi(data[14]) * 1000); interval = data[16] ? atoi(data[16]) : 0; profileBlob = (float *)data[17]; tempBlob = (unsigned char *)data[18]; pressureBlob = (int *)data[19]; for (i = 0; interval && i * interval < cur_dive->duration.seconds; i++) { sample_start(); cur_sample->time.seconds = i * interval; if (profileBlob) cur_sample->depth.mm = lrintf(profileBlob[i] * 1000.0f); else cur_sample->depth.mm = cur_dive->dc.maxdepth.mm; if (data[18] && data[18][0]) cur_sample->temperature.mkelvin = C_to_mkelvin(tempBlob[i]); if (data[19] && data[19][0]) cur_sample->pressure[0].mbar = pressureBlob[i]; sample_end(); } snprintf(get_events, sizeof(get_events) - 1, get_events_template, cur_dive->number); retval = sqlite3_exec(handle, get_events, &dm4_events, 0, &err); if (retval != SQLITE_OK) { fprintf(stderr, "%s", "Database query dm4_events failed.\n"); return 1; } snprintf(get_events, sizeof(get_events) - 1, get_tags_template, cur_dive->number); retval = sqlite3_exec(handle, get_events, &dm4_tags, 0, &err); if (retval != SQLITE_OK) { fprintf(stderr, "%s", "Database query dm4_tags failed.\n"); return 1; } dive_end(); /* for (i=0; inumber = atoi(data[0]); cur_dive->when = (time_t)(atol(data[1])); if (data[2]) utf8_string(data[2], &cur_dive->notes); if (data[3]) cur_dive->duration.seconds = atoi(data[3]); if (data[15]) cur_dive->dc.duration.seconds = atoi(data[15]); /* * TODO: the deviceid hash should be calculated here. */ settings_start(); dc_settings_start(); if (data[4]) { utf8_string(data[4], &cur_settings.dc.serial_nr); cur_settings.dc.deviceid = atoi(data[4]); } if (data[5]) utf8_string(data[5], &cur_settings.dc.model); dc_settings_end(); settings_end(); if (data[6]) cur_dive->dc.maxdepth.mm = lrint(strtod_flags(data[6], NULL, 0) * 1000); if (data[8]) cur_dive->dc.airtemp.mkelvin = C_to_mkelvin(atoi(data[8])); if (data[9]) cur_dive->dc.watertemp.mkelvin = C_to_mkelvin(atoi(data[9])); if (data[4]) { cur_dive->dc.deviceid = atoi(data[4]); } if (data[5]) utf8_string(data[5], &cur_dive->dc.model); snprintf(get_events, sizeof(get_events) - 1, get_cylinders_template, cur_dive->number); retval = sqlite3_exec(handle, get_events, &dm5_cylinders, 0, &err); if (retval != SQLITE_OK) { fprintf(stderr, "%s", "Database query dm5_cylinders failed.\n"); return 1; } if (data[14]) cur_dive->dc.surface_pressure.mbar = (atoi(data[14]) / 100); interval = data[16] ? atoi(data[16]) : 0; sampleBlob = (unsigned const char *)data[24]; if (sampleBlob) { switch (sampleBlob[0]) { case 2: block_size = 19; break; case 3: block_size = 23; break; case 4: block_size = 26; break; default: block_size = 16; break; } } for (i = 0; interval && sampleBlob && i * interval < cur_dive->duration.seconds; i++) { float *depth = (float *)&sampleBlob[i * block_size + 3]; int32_t temp = (sampleBlob[i * block_size + 10] << 8) + sampleBlob[i * block_size + 11]; int32_t pressure = (sampleBlob[i * block_size + 9] << 16) + (sampleBlob[i * block_size + 8] << 8) + sampleBlob[i * block_size + 7]; sample_start(); cur_sample->time.seconds = i * interval; cur_sample->depth.mm = lrintf(depth[0] * 1000.0f); /* * Limit temperatures and cylinder pressures to somewhat * sensible values */ if (temp >= -10 && temp < 50) cur_sample->temperature.mkelvin = C_to_mkelvin(temp); if (pressure >= 0 && pressure < 350000) cur_sample->pressure[0].mbar = pressure; sample_end(); } /* * Log was converted from DM4, thus we need to parse the profile * from DM4 format */ if (i == 0) { float *profileBlob; unsigned char *tempBlob; int *pressureBlob; profileBlob = (float *)data[17]; tempBlob = (unsigned char *)data[18]; pressureBlob = (int *)data[19]; for (i = 0; interval && i * interval < cur_dive->duration.seconds; i++) { sample_start(); cur_sample->time.seconds = i * interval; if (profileBlob) cur_sample->depth.mm = lrintf(profileBlob[i] * 1000.0f); else cur_sample->depth.mm = cur_dive->dc.maxdepth.mm; if (data[18] && data[18][0]) cur_sample->temperature.mkelvin = C_to_mkelvin(tempBlob[i]); if (data[19] && data[19][0]) cur_sample->pressure[0].mbar = pressureBlob[i]; sample_end(); } } snprintf(get_events, sizeof(get_events) - 1, get_gaschange_template, cur_dive->number); retval = sqlite3_exec(handle, get_events, &dm5_gaschange, 0, &err); if (retval != SQLITE_OK) { fprintf(stderr, "%s", "Database query dm5_gaschange failed.\n"); return 1; } snprintf(get_events, sizeof(get_events) - 1, get_events_template, cur_dive->number); retval = sqlite3_exec(handle, get_events, &dm4_events, 0, &err); if (retval != SQLITE_OK) { fprintf(stderr, "%s", "Database query dm4_events failed.\n"); return 1; } snprintf(get_events, sizeof(get_events) - 1, get_tags_template, cur_dive->number); retval = sqlite3_exec(handle, get_events, &dm4_tags, 0, &err); if (retval != SQLITE_OK) { fprintf(stderr, "%s", "Database query dm4_tags failed.\n"); return 1; } dive_end(); return SQLITE_OK; } int parse_dm4_buffer(sqlite3 *handle, const char *url, const char *buffer, int size, struct dive_table *table) { (void) buffer; (void) size; int retval; char *err = NULL; target_table = table; /* StartTime is converted from Suunto's nano seconds to standard * time. We also need epoch, not seconds since year 1. */ char get_dives[] = "select D.DiveId,StartTime/10000000-62135596800,Note,Duration,SourceSerialNumber,Source,MaxDepth,SampleInterval,StartTemperature,BottomTemperature,D.StartPressure,D.EndPressure,Size,CylinderWorkPressure,SurfacePressure,DiveTime,SampleInterval,ProfileBlob,TemperatureBlob,PressureBlob,Oxygen,Helium,MIX.StartPressure,MIX.EndPressure FROM Dive AS D JOIN DiveMixture AS MIX ON D.DiveId=MIX.DiveId"; retval = sqlite3_exec(handle, get_dives, &dm4_dive, handle, &err); if (retval != SQLITE_OK) { fprintf(stderr, "Database query failed '%s'.\n", url); return 1; } return 0; } int parse_dm5_buffer(sqlite3 *handle, const char *url, const char *buffer, int size, struct dive_table *table) { (void) buffer; (void) size; int retval; char *err = NULL; target_table = table; /* StartTime is converted from Suunto's nano seconds to standard * time. We also need epoch, not seconds since year 1. */ char get_dives[] = "select DiveId,StartTime/10000000-62135596800,Note,Duration,coalesce(SourceSerialNumber,SerialNumber),Source,MaxDepth,SampleInterval,StartTemperature,BottomTemperature,StartPressure,EndPressure,'','',SurfacePressure,DiveTime,SampleInterval,ProfileBlob,TemperatureBlob,PressureBlob,'','','','',SampleBlob FROM Dive where Deleted is null"; retval = sqlite3_exec(handle, get_dives, &dm5_dive, handle, &err); if (retval != SQLITE_OK) { fprintf(stderr, "Database query failed '%s'.\n", url); return 1; } return 0; }