// SPDX-License-Identifier: GPL-2.0 /* planner.c * * code that allows us to plan future dives * * (c) Dirk Hohndel 2013 */ #include #include #include #include #include "dive.h" #include "deco.h" #include "divelist.h" #include "planner.h" #include "gettext.h" #include "libdivecomputer/parser.h" #include "qthelperfromc.h" #include "version.h" #define TIMESTEP 2 /* second */ int decostoplevels_metric[] = { 0, 3000, 6000, 9000, 12000, 15000, 18000, 21000, 24000, 27000, 30000, 33000, 36000, 39000, 42000, 45000, 48000, 51000, 54000, 57000, 60000, 63000, 66000, 69000, 72000, 75000, 78000, 81000, 84000, 87000, 90000, 100000, 110000, 120000, 130000, 140000, 150000, 160000, 170000, 180000, 190000, 200000, 220000, 240000, 260000, 280000, 300000, 320000, 340000, 360000, 380000 }; int decostoplevels_imperial[] = { 0, 3048, 6096, 9144, 12192, 15240, 18288, 21336, 24384, 27432, 30480, 33528, 36576, 39624, 42672, 45720, 48768, 51816, 54864, 57912, 60960, 64008, 67056, 70104, 73152, 76200, 79248, 82296, 85344, 88392, 91440, 101600, 111760, 121920, 132080, 142240, 152400, 162560, 172720, 182880, 193040, 203200, 223520, 243840, 264160, 284480, 304800, 325120, 345440, 365760, 386080 }; double plangflow, plangfhigh; extern double regressiona(); extern double regressionb(); extern void reset_regression(); char *disclaimer; int plot_depth = 0; #if DEBUG_PLAN void dump_plan(struct diveplan *diveplan) { struct divedatapoint *dp; struct tm tm; if (!diveplan) { printf("Diveplan NULL\n"); return; } utc_mkdate(diveplan->when, &tm); printf("\nDiveplan @ %04d-%02d-%02d %02d:%02d:%02d (surfpres %dmbar):\n", tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, diveplan->surface_pressure); dp = diveplan->dp; while (dp) { printf("\t%3u:%02u: %6dmm cylid: %2d setpoint: %d\n", FRACTION(dp->time, 60), dp->depth, dp->cylinderid, dp->setpoint); dp = dp->next; } } #endif bool diveplan_empty(struct diveplan *diveplan) { struct divedatapoint *dp; if (!diveplan || !diveplan->dp) return true; dp = diveplan->dp; while (dp) { if (dp->time) return false; dp = dp->next; } return true; } /* get the gas at a certain time during the dive */ void get_gas_at_time(struct dive *dive, struct divecomputer *dc, duration_t time, struct gasmix *gas) { // we always start with the first gas, so that's our gas // unless an event tells us otherwise struct event *event = dc->events; *gas = dive->cylinder[0].gasmix; while (event && event->time.seconds <= time.seconds) { if (!strcmp(event->name, "gaschange")) { int cylinder_idx = get_cylinder_index(dive, event); *gas = dive->cylinder[cylinder_idx].gasmix; } event = event->next; } } /* get the cylinder index at a certain time during the dive */ int get_cylinderid_at_time(struct dive *dive, struct divecomputer *dc, duration_t time) { // we start with the first cylinder unless an event tells us otherwise int cylinder_idx = 0; struct event *event = dc->events; while (event && event->time.seconds <= time.seconds) { if (!strcmp(event->name, "gaschange")) cylinder_idx = get_cylinder_index(dive, event); event = event->next; } return cylinder_idx; } int get_gasidx(struct dive *dive, struct gasmix *mix) { return find_best_gasmix_match(mix, dive->cylinder, 0); } void interpolate_transition(struct deco_state *ds, struct dive *dive, duration_t t0, duration_t t1, depth_t d0, depth_t d1, const struct gasmix *gasmix, o2pressure_t po2) { uint32_t j; for (j = t0.seconds; j < t1.seconds; j++) { int depth = interpolate(d0.mm, d1.mm, j - t0.seconds, t1.seconds - t0.seconds); add_segment(ds, depth_to_bar(depth, dive), gasmix, 1, po2.mbar, dive, prefs.bottomsac); } if (d1.mm > d0.mm) calc_crushing_pressure(ds, depth_to_bar(d1.mm, &displayed_dive)); } /* returns the tissue tolerance at the end of this (partial) dive */ int tissue_at_end(struct deco_state *ds, struct dive *dive, struct deco_state **cached_datap) { struct divecomputer *dc; struct sample *sample, *psample; int i; depth_t lastdepth = {}; duration_t t0 = {}, t1 = {}; struct gasmix gas; int surface_interval = 0; if (!dive) return 0; if (*cached_datap) { restore_deco_state(*cached_datap, ds, true); } else { surface_interval = init_decompression(ds, dive); cache_deco_state(ds, cached_datap); } dc = &dive->dc; if (!dc->samples) return 0; psample = sample = dc->sample; for (i = 0; i < dc->samples; i++, sample++) { o2pressure_t setpoint; if (i) setpoint = sample[-1].setpoint; else setpoint = sample[0].setpoint; t1 = sample->time; get_gas_at_time(dive, dc, t0, &gas); if (i > 0) lastdepth = psample->depth; /* The ceiling in the deeper portion of a multilevel dive is sometimes critical for the VPM-B * Boyle's law compensation. We should check the ceiling prior to ascending during the bottom * portion of the dive. The maximum ceiling might be reached while ascending, but testing indicates * that it is only marginally deeper than the ceiling at the start of ascent. * Do not set the first_ceiling_pressure variable (used for the Boyle's law compensation calculation) * at this stage, because it would interfere with calculating the ceiling at the end of the bottom * portion of the dive. * Remember the value for later. */ if ((decoMode() == VPMB) && (lastdepth.mm > sample->depth.mm)) { pressure_t ceiling_pressure; nuclear_regeneration(ds, t0.seconds); vpmb_start_gradient(ds); ceiling_pressure.mbar = depth_to_mbar(deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(lastdepth.mm, dive)), dive->surface_pressure.mbar / 1000.0, dive, 1), dive); if (ceiling_pressure.mbar > ds->max_bottom_ceiling_pressure.mbar) ds->max_bottom_ceiling_pressure.mbar = ceiling_pressure.mbar; } interpolate_transition(ds, dive, t0, t1, lastdepth, sample->depth, &gas, setpoint); psample = sample; t0 = t1; } return surface_interval; } /* if a default cylinder is set, use that */ void fill_default_cylinder(cylinder_t *cyl) { const char *cyl_name = prefs.default_cylinder; struct tank_info_t *ti = tank_info; pressure_t pO2 = {.mbar = 1600}; if (!cyl_name) return; while (ti->name != NULL) { if (strcmp(ti->name, cyl_name) == 0) break; ti++; } if (ti->name == NULL) /* didn't find it */ return; cyl->type.description = strdup(ti->name); if (ti->ml) { cyl->type.size.mliter = ti->ml; cyl->type.workingpressure.mbar = ti->bar * 1000; } else { cyl->type.workingpressure.mbar = psi_to_mbar(ti->psi); if (ti->psi) cyl->type.size.mliter = lrint(cuft_to_l(ti->cuft) * 1000 / bar_to_atm(psi_to_bar(ti->psi))); } // MOD of air cyl->depth = gas_mod(&cyl->gasmix, pO2, &displayed_dive, 1); } /* calculate the new end pressure of the cylinder, based on its current end pressure and the * latest segment. */ static void update_cylinder_pressure(struct dive *d, int old_depth, int new_depth, int duration, int sac, cylinder_t *cyl, bool in_deco) { volume_t gas_used; pressure_t delta_p; depth_t mean_depth; int factor = 1000; if (d->dc.divemode == PSCR) factor = prefs.pscr_ratio; if (!cyl) return; mean_depth.mm = (old_depth + new_depth) / 2; gas_used.mliter = lrint(depth_to_atm(mean_depth.mm, d) * sac / 60 * duration * factor / 1000); cyl->gas_used.mliter += gas_used.mliter; if (in_deco) cyl->deco_gas_used.mliter += gas_used.mliter; if (cyl->type.size.mliter) { delta_p.mbar = lrint(gas_used.mliter * 1000.0 / cyl->type.size.mliter * gas_compressibility_factor(&cyl->gasmix, cyl->end.mbar / 1000.0)); cyl->end.mbar -= delta_p.mbar; } } /* simply overwrite the data in the displayed_dive * return false if something goes wrong */ static void create_dive_from_plan(struct diveplan *diveplan, struct dive *dive, bool track_gas) { struct divedatapoint *dp; struct divecomputer *dc; struct sample *sample; struct event *ev; cylinder_t *cyl; int oldpo2 = 0; int lasttime = 0; depth_t lastdepth = {.mm = 0}; int lastcylid; enum dive_comp_type type = dive->dc.divemode; if (!diveplan || !diveplan->dp) return; #if DEBUG_PLAN & 4 printf("in create_dive_from_plan\n"); dump_plan(diveplan); #endif dive->salinity = diveplan->salinity; // reset the cylinders and clear out the samples and events of the // displayed dive so we can restart reset_cylinders(dive, track_gas); dc = &dive->dc; dc->when = dive->when = diveplan->when; dc->surface_pressure.mbar = diveplan->surface_pressure; dc->salinity = diveplan->salinity; free(dc->sample); dc->sample = NULL; dc->samples = 0; dc->alloc_samples = 0; while ((ev = dc->events)) { dc->events = dc->events->next; free(ev); } dp = diveplan->dp; /* Create first sample at time = 0, not based on dp because * there is no real dp for time = 0, set first cylinder to 0 * O2 setpoint for this sample will be filled later from next dp */ cyl = &dive->cylinder[0]; sample = prepare_sample(dc); sample->sac.mliter = prefs.bottomsac; if (track_gas && cyl->type.workingpressure.mbar) sample->pressure[0].mbar = cyl->end.mbar; sample->manually_entered = true; finish_sample(dc); lastcylid = 0; while (dp) { int po2 = dp->setpoint; if (dp->setpoint) type = CCR; int time = dp->time; depth_t depth = dp->depth; if (time == 0) { /* special entries that just inform the algorithm about * additional gases that are available */ dp = dp->next; continue; } /* Check for SetPoint change */ if (oldpo2 != po2) { /* this is a bad idea - we should get a different SAMPLE_EVENT type * reserved for this in libdivecomputer... overloading SMAPLE_EVENT_PO2 * with a different meaning will only cause confusion elsewhere in the code */ add_event(dc, lasttime, SAMPLE_EVENT_PO2, 0, po2, QT_TRANSLATE_NOOP("gettextFromC", "SP change")); oldpo2 = po2; } /* Make sure we have the new gas, and create a gas change event */ if (dp->cylinderid != lastcylid) { /* need to insert a first sample for the new gas */ add_gas_switch_event(dive, dc, lasttime + 1, dp->cylinderid); cyl = &dive->cylinder[dp->cylinderid]; sample = prepare_sample(dc); sample[-1].setpoint.mbar = po2; sample->time.seconds = lasttime + 1; sample->depth = lastdepth; sample->manually_entered = dp->entered; sample->sac.mliter = dp->entered ? prefs.bottomsac : prefs.decosac; finish_sample(dc); lastcylid = dp->cylinderid; } /* Create sample */ sample = prepare_sample(dc); /* set po2 at beginning of this segment */ /* and keep it valid for last sample - where it likely doesn't matter */ sample[-1].setpoint.mbar = po2; sample->setpoint.mbar = po2; sample->time.seconds = lasttime = time; sample->depth = lastdepth = depth; sample->manually_entered = dp->entered; sample->sac.mliter = dp->entered ? prefs.bottomsac : prefs.decosac; if (track_gas && !sample[-1].setpoint.mbar) { /* Don't track gas usage for CCR legs of dive */ update_cylinder_pressure(dive, sample[-1].depth.mm, depth.mm, time - sample[-1].time.seconds, dp->entered ? diveplan->bottomsac : diveplan->decosac, cyl, !dp->entered); if (cyl->type.workingpressure.mbar) sample->pressure[0].mbar = cyl->end.mbar; } finish_sample(dc); dp = dp->next; } dc->divemode = type; #if DEBUG_PLAN & 32 save_dive(stdout, &displayed_dive); #endif return; } void free_dps(struct diveplan *diveplan) { if (!diveplan) return; struct divedatapoint *dp = diveplan->dp; while (dp) { struct divedatapoint *ndp = dp->next; free(dp); dp = ndp; } diveplan->dp = NULL; } struct divedatapoint *create_dp(int time_incr, int depth, int cylinderid, int po2) { struct divedatapoint *dp; dp = malloc(sizeof(struct divedatapoint)); dp->time = time_incr; dp->depth.mm = depth; dp->cylinderid = cylinderid; dp->minimum_gas.mbar = 0; dp->setpoint = po2; dp->entered = false; dp->next = NULL; return dp; } void add_to_end_of_diveplan(struct diveplan *diveplan, struct divedatapoint *dp) { struct divedatapoint **lastdp = &diveplan->dp; struct divedatapoint *ldp = *lastdp; int lasttime = 0; while (*lastdp) { ldp = *lastdp; if (ldp->time > lasttime) lasttime = ldp->time; lastdp = &(*lastdp)->next; } *lastdp = dp; if (ldp && dp->time != 0) dp->time += lasttime; } struct divedatapoint *plan_add_segment(struct diveplan *diveplan, int duration, int depth, int cylinderid, int po2, bool entered) { struct divedatapoint *dp = create_dp(duration, depth, cylinderid, po2); dp->entered = entered; add_to_end_of_diveplan(diveplan, dp); return dp; } struct gaschanges { int depth; int gasidx; }; static struct gaschanges *analyze_gaslist(struct diveplan *diveplan, int *gaschangenr, int depth, int *asc_cylinder) { int nr = 0; struct gaschanges *gaschanges = NULL; struct divedatapoint *dp = diveplan->dp; int best_depth = displayed_dive.cylinder[*asc_cylinder].depth.mm; bool total_time_zero = true; while (dp) { if (dp->time == 0 && total_time_zero) { if (dp->depth.mm <= depth) { int i = 0; nr++; gaschanges = realloc(gaschanges, nr * sizeof(struct gaschanges)); while (i < nr - 1) { if (dp->depth.mm < gaschanges[i].depth) { memmove(gaschanges + i + 1, gaschanges + i, (nr - i - 1) * sizeof(struct gaschanges)); break; } i++; } gaschanges[i].depth = dp->depth.mm; gaschanges[i].gasidx = dp->cylinderid; assert(gaschanges[i].gasidx != -1); } else { /* is there a better mix to start deco? */ if (dp->depth.mm < best_depth) { best_depth = dp->depth.mm; *asc_cylinder = dp->cylinderid; } } } else { total_time_zero = false; } dp = dp->next; } *gaschangenr = nr; #if DEBUG_PLAN & 16 for (nr = 0; nr < *gaschangenr; nr++) { int idx = gaschanges[nr].gasidx; printf("gaschange nr %d: @ %5.2lfm gasidx %d (%s)\n", nr, gaschanges[nr].depth / 1000.0, idx, gasname(&displayed_dive.cylinder[idx].gasmix)); } #endif return gaschanges; } /* sort all the stops into one ordered list */ static int *sort_stops(int *dstops, int dnr, struct gaschanges *gstops, int gnr) { int i, gi, di; int total = dnr + gnr; int *stoplevels = malloc(total * sizeof(int)); /* no gaschanges */ if (gnr == 0) { memcpy(stoplevels, dstops, dnr * sizeof(int)); return stoplevels; } i = total - 1; gi = gnr - 1; di = dnr - 1; while (i >= 0) { if (dstops[di] > gstops[gi].depth) { stoplevels[i] = dstops[di]; di--; } else if (dstops[di] == gstops[gi].depth) { stoplevels[i] = dstops[di]; di--; gi--; } else { stoplevels[i] = gstops[gi].depth; gi--; } i--; if (di < 0) { while (gi >= 0) stoplevels[i--] = gstops[gi--].depth; break; } if (gi < 0) { while (di >= 0) stoplevels[i--] = dstops[di--]; break; } } while (i >= 0) stoplevels[i--] = 0; #if DEBUG_PLAN & 16 int k; for (k = gnr + dnr - 1; k >= 0; k--) { printf("stoplevel[%d]: %5.2lfm\n", k, stoplevels[k] / 1000.0); if (stoplevels[k] == 0) break; } #endif return stoplevels; } int ascent_velocity(int depth, int avg_depth, int bottom_time) { (void) bottom_time; /* We need to make this configurable */ /* As an example (and possibly reasonable default) this is the Tech 1 provedure according * to http://www.globalunderwaterexplorers.org/files/Standards_and_Procedures/SOP_Manual_Ver2.0.2.pdf */ if (depth * 4 > avg_depth * 3) { return prefs.ascrate75; } else { if (depth * 2 > avg_depth) { return prefs.ascrate50; } else { if (depth > 6000) return prefs.ascratestops; else return prefs.ascratelast6m; } } } void track_ascent_gas(int depth, cylinder_t *cylinder, int avg_depth, int bottom_time, bool safety_stop) { while (depth > 0) { int deltad = ascent_velocity(depth, avg_depth, bottom_time) * TIMESTEP; if (deltad > depth) deltad = depth; update_cylinder_pressure(&displayed_dive, depth, depth - deltad, TIMESTEP, prefs.decosac, cylinder, true); if (depth <= 5000 && depth >= (5000 - deltad) && safety_stop) { update_cylinder_pressure(&displayed_dive, 5000, 5000, 180, prefs.decosac, cylinder, true); safety_stop = false; } depth -= deltad; } } // Determine whether ascending to the next stop will break the ceiling. Return true if the ascent is ok, false if it isn't. bool trial_ascent(struct deco_state *ds, int wait_time, int trial_depth, int stoplevel, int avg_depth, int bottom_time, struct gasmix *gasmix, int po2, double surface_pressure, struct dive *dive) { bool clear_to_ascend = true; struct deco_state *trial_cache = NULL; // For consistency with other VPM-B implementations, we should not start the ascent while the ceiling is // deeper than the next stop (thus the offgasing during the ascent is ignored). // However, we still need to make sure we don't break the ceiling due to on-gassing during ascent. cache_deco_state(ds, &trial_cache); if (wait_time) add_segment(ds, depth_to_bar(trial_depth, dive), gasmix, wait_time, po2, dive, prefs.decosac); if (decoMode() == VPMB && (deco_allowed_depth(tissue_tolerance_calc(ds, dive,depth_to_bar(stoplevel, dive)), surface_pressure, dive, 1) > stoplevel)) { restore_deco_state(trial_cache, ds, false); free(trial_cache); return false; } while (trial_depth > stoplevel) { int deltad = ascent_velocity(trial_depth, avg_depth, bottom_time) * TIMESTEP; if (deltad > trial_depth) /* don't test against depth above surface */ deltad = trial_depth; add_segment(ds, depth_to_bar(trial_depth, dive), gasmix, TIMESTEP, po2, dive, prefs.decosac); if (deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(trial_depth, dive)), surface_pressure, dive, 1) > trial_depth - deltad) { /* We should have stopped */ clear_to_ascend = false; break; } trial_depth -= deltad; } restore_deco_state(trial_cache, ds, false); free(trial_cache); return clear_to_ascend; } /* Determine if there is enough gas for the dive. Return true if there is enough. * Also return true if this cannot be calculated because the cylinder doesn't have * size or a starting pressure. */ bool enough_gas(int current_cylinder) { cylinder_t *cyl; cyl = &displayed_dive.cylinder[current_cylinder]; if (!cyl->start.mbar) return true; if (cyl->type.size.mliter) return (float)(cyl->end.mbar - prefs.reserve_gas) * cyl->type.size.mliter / 1000.0 > (float) cyl->deco_gas_used.mliter; else return true; } /* Do a binary search for the time the ceiling is clear to ascent to target_depth. * Minimal solution is min + 1, and the solution should be an integer multiple of stepsize. * leap is a guess for the maximum but there is no guarantee that leap is an upper limit. * So we always test at the upper bundary, not in the middle! */ int wait_until(struct deco_state *ds, struct dive *dive, int clock, int min, int leap, int stepsize, int depth, int target_depth, int avg_depth, int bottom_time, struct gasmix *gasmix, int po2, double surface_pressure) { // When a deco stop exceeds two days, there is something wrong... if (min >= 48 * 3600) return 50 * 3600; // Round min + leap up to the next multiple of stepsize int upper = min + leap + stepsize - 1 - (min + leap - 1) % stepsize; // Is the upper boundary too small? if (!trial_ascent(ds, upper - clock, depth, target_depth, avg_depth, bottom_time, gasmix, po2, surface_pressure, dive)) return wait_until(ds, dive, clock, upper, leap, stepsize, depth, target_depth, avg_depth, bottom_time, gasmix, po2, surface_pressure); if (upper - min <= stepsize) return upper; return wait_until(ds, dive, clock, min, leap / 2, stepsize, depth, target_depth, avg_depth, bottom_time, gasmix, po2, surface_pressure); } // Work out the stops. Return value is if there were any mandatory stops. void printdecotable(struct decostop *table) { while (table->depth) { printf("depth=%d time=%d\n", table->depth, table->time); ++table; } } bool plan(struct deco_state *ds, struct diveplan *diveplan, struct dive *dive, int timestep, struct decostop *decostoptable, struct deco_state **cached_datap, bool is_planner, bool show_disclaimer) { int bottom_depth; int bottom_gi; int bottom_stopidx; bool is_final_plan = true; int bottom_time; int previous_deco_time; struct deco_state *bottom_cache = NULL; struct sample *sample; int po2; int transitiontime, gi; int current_cylinder, stop_cylinder; int stopidx; int depth; struct gaschanges *gaschanges = NULL; int gaschangenr; int *decostoplevels; int decostoplevelcount; int *stoplevels = NULL; bool stopping = false; bool pendinggaschange = false; int clock, previous_point_time; int avg_depth, max_depth; int last_ascend_rate; int best_first_ascend_cylinder; struct gasmix gas, bottom_gas; bool o2break_next = false; int break_cylinder = -1, breakfrom_cylinder = 0; bool last_segment_min_switch = false; int error = 0; bool decodive = false; int first_stop_depth = 0; int laststoptime = timestep; bool o2breaking = false; int decostopcounter = 0; set_gf(diveplan->gflow, diveplan->gfhigh); lock_planner(); set_vpmb_conservatism(diveplan->vpmb_conservatism); if (!diveplan->surface_pressure) diveplan->surface_pressure = SURFACE_PRESSURE; dive->surface_pressure.mbar = diveplan->surface_pressure; clear_deco(ds, dive->surface_pressure.mbar / 1000.0); ds->max_bottom_ceiling_pressure.mbar = ds->first_ceiling_pressure.mbar = 0; create_dive_from_plan(diveplan, dive, is_planner); // Do we want deco stop array in metres or feet? if (prefs.units.length == METERS ) { decostoplevels = decostoplevels_metric; decostoplevelcount = sizeof(decostoplevels_metric) / sizeof(int); } else { decostoplevels = decostoplevels_imperial; decostoplevelcount = sizeof(decostoplevels_imperial) / sizeof(int); } /* If the user has selected last stop to be at 6m/20', we need to get rid of the 3m/10' stop. * Otherwise reinstate the last stop 3m/10' stop. */ if (prefs.last_stop) *(decostoplevels + 1) = 0; else *(decostoplevels + 1) = M_OR_FT(3,10); /* Let's start at the last 'sample', i.e. the last manually entered waypoint. */ sample = &dive->dc.sample[dive->dc.samples - 1]; /* Keep time during the ascend */ bottom_time = clock = previous_point_time = dive->dc.sample[dive->dc.samples - 1].time.seconds; current_cylinder = get_cylinderid_at_time(dive, &dive->dc, sample->time); gas = dive->cylinder[current_cylinder].gasmix; po2 = sample->setpoint.mbar; depth = dive->dc.sample[dive->dc.samples - 1].depth.mm; average_max_depth(diveplan, &avg_depth, &max_depth); last_ascend_rate = ascent_velocity(depth, avg_depth, bottom_time); /* if all we wanted was the dive just get us back to the surface */ if (!is_planner) { transitiontime = depth / 75; /* this still needs to be made configurable */ plan_add_segment(diveplan, transitiontime, 0, current_cylinder, po2, false); create_dive_from_plan(diveplan, dive, is_planner); unlock_planner(); return false; } #if DEBUG_PLAN & 4 printf("gas %s\n", gasname(&gas)); printf("depth %5.2lfm \n", depth / 1000.0); printf("current_cylinder %i\n", current_cylinder); #endif best_first_ascend_cylinder = current_cylinder; /* Find the gases available for deco */ if (po2) { // Don't change gas in CCR mode gaschanges = NULL; gaschangenr = 0; } else { gaschanges = analyze_gaslist(diveplan, &gaschangenr, depth, &best_first_ascend_cylinder); } /* Find the first potential decostopdepth above current depth */ for (stopidx = 0; stopidx < decostoplevelcount; stopidx++) if (*(decostoplevels + stopidx) >= depth) break; if (stopidx > 0) stopidx--; /* Stoplevels are either depths of gas changes or potential deco stop depths. */ stoplevels = sort_stops(decostoplevels, stopidx + 1, gaschanges, gaschangenr); stopidx += gaschangenr; gi = gaschangenr - 1; /* Set tissue tolerance and initial vpmb gradient at start of ascent phase */ diveplan->surface_interval = tissue_at_end(ds, dive, cached_datap); nuclear_regeneration(ds, clock); vpmb_start_gradient(ds); if (decoMode() == RECREATIONAL) { bool safety_stop = prefs.safetystop && max_depth >= 10000; track_ascent_gas(depth, &dive->cylinder[current_cylinder], avg_depth, bottom_time, safety_stop); // How long can we stay at the current depth and still directly ascent to the surface? do { add_segment(ds, depth_to_bar(depth, dive), &dive->cylinder[current_cylinder].gasmix, timestep, po2, dive, prefs.bottomsac); update_cylinder_pressure(dive, depth, depth, timestep, prefs.bottomsac, &dive->cylinder[current_cylinder], false); clock += timestep; } while (trial_ascent(ds, 0, depth, 0, avg_depth, bottom_time, &dive->cylinder[current_cylinder].gasmix, po2, diveplan->surface_pressure / 1000.0, dive) && enough_gas(current_cylinder)); // We did stay one DECOTIMESTEP too many. // In the best of all worlds, we would roll back also the last add_segment in terms of caching deco state, but // let's ignore that since for the eventual ascent in recreational mode, nobody looks at the ceiling anymore, // so we don't really have to compute the deco state. update_cylinder_pressure(dive, depth, depth, -timestep, prefs.bottomsac, &dive->cylinder[current_cylinder], false); clock -= timestep; plan_add_segment(diveplan, clock - previous_point_time, depth, current_cylinder, po2, true); previous_point_time = clock; do { /* Ascend to surface */ int deltad = ascent_velocity(depth, avg_depth, bottom_time) * TIMESTEP; if (ascent_velocity(depth, avg_depth, bottom_time) != last_ascend_rate) { plan_add_segment(diveplan, clock - previous_point_time, depth, current_cylinder, po2, false); previous_point_time = clock; last_ascend_rate = ascent_velocity(depth, avg_depth, bottom_time); } if (depth - deltad < 0) deltad = depth; clock += TIMESTEP; depth -= deltad; if (depth <= 5000 && depth >= (5000 - deltad) && safety_stop) { plan_add_segment(diveplan, clock - previous_point_time, 5000, current_cylinder, po2, false); previous_point_time = clock; clock += 180; plan_add_segment(diveplan, clock - previous_point_time, 5000, current_cylinder, po2, false); previous_point_time = clock; safety_stop = false; } } while (depth > 0); plan_add_segment(diveplan, clock - previous_point_time, 0, current_cylinder, po2, false); create_dive_from_plan(diveplan, dive, is_planner); add_plan_to_notes(diveplan, dive, show_disclaimer, error); fixup_dc_duration(&dive->dc); free(stoplevels); free(gaschanges); unlock_planner(); return false; } if (best_first_ascend_cylinder != current_cylinder) { current_cylinder = best_first_ascend_cylinder; gas = dive->cylinder[current_cylinder].gasmix; #if DEBUG_PLAN & 16 printf("switch to gas %d (%d/%d) @ %5.2lfm\n", best_first_ascend_cylinder, (get_o2(&gas) + 5) / 10, (get_he(&gas) + 5) / 10, gaschanges[best_first_ascend_cylinder].depth / 1000.0); #endif } // VPM-B or Buehlmann Deco tissue_at_end(ds, dive, cached_datap); previous_deco_time = 100000000; ds->deco_time = 10000000; cache_deco_state(ds, &bottom_cache); // Lets us make several iterations bottom_depth = depth; bottom_gi = gi; bottom_gas = gas; bottom_stopidx = stopidx; //CVA do { decostopcounter = 0; is_final_plan = (decoMode() == BUEHLMANN) || (previous_deco_time - ds->deco_time < 10); // CVA time converges if (ds->deco_time != 10000000) vpmb_next_gradient(ds, ds->deco_time, diveplan->surface_pressure / 1000.0); previous_deco_time = ds->deco_time; restore_deco_state(bottom_cache, ds, true); depth = bottom_depth; gi = bottom_gi; clock = previous_point_time = bottom_time; gas = bottom_gas; stopping = false; decodive = false; first_stop_depth = 0; stopidx = bottom_stopidx; ds->first_ceiling_pressure.mbar = depth_to_mbar( deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(depth, dive)), diveplan->surface_pressure / 1000.0, dive, 1), dive); if (ds->max_bottom_ceiling_pressure.mbar > ds->first_ceiling_pressure.mbar) ds->first_ceiling_pressure.mbar = ds->max_bottom_ceiling_pressure.mbar; last_ascend_rate = ascent_velocity(depth, avg_depth, bottom_time); /* Always prefer the best_first_ascend_cylinder if it has the right gasmix. * Otherwise take first cylinder from list with rightgasmix */ if (same_gasmix(&gas, &dive->cylinder[best_first_ascend_cylinder].gasmix)) current_cylinder = best_first_ascend_cylinder; else current_cylinder = get_gasidx(dive, &gas); if (current_cylinder == -1) { report_error(translate("gettextFromC", "Can't find gas %s"), gasname(&gas)); current_cylinder = 0; } reset_regression(); while (1) { /* We will break out when we hit the surface */ do { /* Ascend to next stop depth */ int deltad = ascent_velocity(depth, avg_depth, bottom_time) * TIMESTEP; if (ascent_velocity(depth, avg_depth, bottom_time) != last_ascend_rate) { if (is_final_plan) plan_add_segment(diveplan, clock - previous_point_time, depth, current_cylinder, po2, false); previous_point_time = clock; stopping = false; last_ascend_rate = ascent_velocity(depth, avg_depth, bottom_time); } if (depth - deltad < stoplevels[stopidx]) deltad = depth - stoplevels[stopidx]; add_segment(ds, depth_to_bar(depth, dive), &dive->cylinder[current_cylinder].gasmix, TIMESTEP, po2, dive, prefs.decosac); last_segment_min_switch = false; clock += TIMESTEP; depth -= deltad; /* Print VPM-Gradient as gradient factor, this has to be done from within deco.c */ if (decodive) plot_depth = depth; } while (depth > 0 && depth > stoplevels[stopidx]); if (depth <= 0) break; /* We are at the surface */ if (gi >= 0 && stoplevels[stopidx] <= gaschanges[gi].depth) { /* We have reached a gas change. * Record this in the dive plan */ if (is_final_plan) plan_add_segment(diveplan, clock - previous_point_time, depth, current_cylinder, po2, false); previous_point_time = clock; stopping = true; /* Check we need to change cylinder. * We might not if the cylinder was chosen by the user * or user has selected only to switch only at required stops. * If current gas is hypoxic, we want to switch asap */ if (current_cylinder != gaschanges[gi].gasidx) { if (!prefs.switch_at_req_stop || !trial_ascent(ds, 0, depth, stoplevels[stopidx - 1], avg_depth, bottom_time, &dive->cylinder[current_cylinder].gasmix, po2, diveplan->surface_pressure / 1000.0, dive) || get_o2(&dive->cylinder[current_cylinder].gasmix) < 160) { current_cylinder = gaschanges[gi].gasidx; gas = dive->cylinder[current_cylinder].gasmix; #if DEBUG_PLAN & 16 printf("switch to gas %d (%d/%d) @ %5.2lfm\n", gaschanges[gi].gasidx, (get_o2(&gas) + 5) / 10, (get_he(&gas) + 5) / 10, gaschanges[gi].depth / 1000.0); #endif /* Stop for the minimum duration to switch gas unless we switch to o2 */ if (!last_segment_min_switch && get_o2(&dive->cylinder[current_cylinder].gasmix) != 1000) { add_segment(ds, depth_to_bar(depth, dive), &dive->cylinder[current_cylinder].gasmix, prefs.min_switch_duration, po2, dive, prefs.decosac); clock += prefs.min_switch_duration; last_segment_min_switch = true; } } else { /* The user has selected the option to switch gas only at required stops. * Remember that we are waiting to switch gas */ pendinggaschange = true; } } gi--; } --stopidx; /* Save the current state and try to ascend to the next stopdepth */ while (1) { /* Check if ascending to next stop is clear, go back and wait if we hit the ceiling on the way */ if (trial_ascent(ds, 0, depth, stoplevels[stopidx], avg_depth, bottom_time, &dive->cylinder[current_cylinder].gasmix, po2, diveplan->surface_pressure / 1000.0, dive)) { decostoptable[decostopcounter].depth = depth; decostoptable[decostopcounter].time = 0; decostopcounter++; break; /* We did not hit the ceiling */ } /* Add a minute of deco time and then try again */ if (!decodive) { decodive = true; first_stop_depth = depth; } if (!stopping) { /* The last segment was an ascend segment. * Add a waypoint for start of this deco stop */ if (is_final_plan) plan_add_segment(diveplan, clock - previous_point_time, depth, current_cylinder, po2, false); previous_point_time = clock; stopping = true; } /* Are we waiting to switch gas? * Occurs when the user has selected the option to switch only at required stops */ if (pendinggaschange) { current_cylinder = gaschanges[gi + 1].gasidx; gas = dive->cylinder[current_cylinder].gasmix; #if DEBUG_PLAN & 16 printf("switch to gas %d (%d/%d) @ %5.2lfm\n", gaschanges[gi + 1].gasidx, (get_o2(&gas) + 5) / 10, (get_he(&gas) + 5) / 10, gaschanges[gi + 1].depth / 1000.0); #endif /* Stop for the minimum duration to switch gas unless we switch to o2 */ if (!last_segment_min_switch && get_o2(&dive->cylinder[current_cylinder].gasmix) != 1000) { add_segment(ds, depth_to_bar(depth, dive), &dive->cylinder[current_cylinder].gasmix, prefs.min_switch_duration, po2, dive, prefs.decosac); clock += prefs.min_switch_duration; last_segment_min_switch = true; } pendinggaschange = false; } int new_clock = wait_until(ds, dive, clock, clock, laststoptime * 2 + 1, timestep, depth, stoplevels[stopidx], avg_depth, bottom_time, &dive->cylinder[current_cylinder].gasmix, po2, diveplan->surface_pressure / 1000.0); laststoptime = new_clock - clock; /* Finish infinite deco */ if (laststoptime >= 48 * 3600 && depth >= 6000) { error = LONGDECO; break; } o2breaking = false; stop_cylinder = current_cylinder; if (prefs.doo2breaks && prefs.last_stop) { /* The backgas breaks option limits time on oxygen to 12 minutes, followed by 6 minutes on * backgas. This could be customized if there were demand. */ if (break_cylinder == -1) { if (get_o2(&dive->cylinder[best_first_ascend_cylinder].gasmix) <= 320) break_cylinder = best_first_ascend_cylinder; else break_cylinder = 0; } if (get_o2(&dive->cylinder[current_cylinder].gasmix) == 1000) { if (laststoptime >= 12 * 60) { laststoptime = 12 * 60; new_clock = clock + laststoptime; o2breaking = true; o2break_next = true; breakfrom_cylinder = current_cylinder; if (is_final_plan) plan_add_segment(diveplan, laststoptime, depth, current_cylinder, po2, false); previous_point_time = clock + laststoptime; current_cylinder = break_cylinder; gas = dive->cylinder[current_cylinder].gasmix; } } else if (o2break_next) { if (laststoptime >= 6 * 60) { laststoptime = 6 * 60; new_clock = clock + laststoptime; o2breaking = true; o2break_next = false; if (is_final_plan) plan_add_segment(diveplan, laststoptime, depth, current_cylinder, po2, false); previous_point_time = clock + laststoptime; current_cylinder = breakfrom_cylinder; gas = dive->cylinder[current_cylinder].gasmix; } } } add_segment(ds, depth_to_bar(depth, dive), &dive->cylinder[stop_cylinder].gasmix, laststoptime, po2, dive, prefs.decosac); last_segment_min_switch = false; decostoptable[decostopcounter].depth = depth; decostoptable[decostopcounter].time = laststoptime; ++decostopcounter; clock += laststoptime; if (!o2breaking) break; } if (stopping) { /* Next we will ascend again. Add a waypoint if we have spend deco time */ if (is_final_plan) plan_add_segment(diveplan, clock - previous_point_time, depth, current_cylinder, po2, false); previous_point_time = clock; stopping = false; } } /* When calculating deco_time, we should pretend the final ascent rate is always the same, * otherwise odd things can happen, such as CVA causing the final ascent to start *later* * if the ascent rate is slower, which is completely nonsensical. * Assume final ascent takes 20s, which is the time taken to ascend at 9m/min from 3m */ ds->deco_time = clock - bottom_time - stoplevels[stopidx + 1] / last_ascend_rate + 20; } while (!is_final_plan); decostoptable[decostopcounter].depth = 0; plan_add_segment(diveplan, clock - previous_point_time, 0, current_cylinder, po2, false); if (decoMode() == VPMB) { diveplan->eff_gfhigh = lrint(100.0 * regressionb()); diveplan->eff_gflow = lrint(100.0 * (regressiona() * first_stop_depth + regressionb())); } create_dive_from_plan(diveplan, dive, is_planner); add_plan_to_notes(diveplan, dive, show_disclaimer, error); fixup_dc_duration(&dive->dc); free(stoplevels); free(gaschanges); free(bottom_cache); unlock_planner(); return decodive; } /* * Get a value in tenths (so "10.2" == 102, "9" = 90) * * Return negative for errors. */ static int get_tenths(const char *begin, const char **endp) { char *end; int value = strtol(begin, &end, 10); if (begin == end) return -1; value *= 10; /* Fraction? We only look at the first digit */ if (*end == '.') { end++; if (!isdigit(*end)) return -1; value += *end - '0'; do { end++; } while (isdigit(*end)); } *endp = end; return value; } static int get_permille(const char *begin, const char **end) { int value = get_tenths(begin, end); if (value >= 0) { /* Allow a percentage sign */ if (**end == '%') ++*end; } return value; } int validate_gas(const char *text, struct gasmix *gas) { int o2, he; if (!text) return 0; while (isspace(*text)) text++; if (!*text) return 0; if (!strcasecmp(text, translate("gettextFromC", "air"))) { o2 = O2_IN_AIR; he = 0; text += strlen(translate("gettextFromC", "air")); } else if (!strcasecmp(text, translate("gettextFromC", "oxygen"))) { o2 = 1000; he = 0; text += strlen(translate("gettextFromC", "oxygen")); } else if (!strncasecmp(text, translate("gettextFromC", "ean"), 3)) { o2 = get_permille(text + 3, &text); he = 0; } else { o2 = get_permille(text, &text); he = 0; if (*text == '/') he = get_permille(text + 1, &text); } /* We don't want any extra crud */ while (isspace(*text)) text++; if (*text) return 0; /* Validate the gas mix */ if (*text || o2 < 1 || o2 > 1000 || he < 0 || o2 + he > 1000) return 0; /* Let it rip */ gas->o2.permille = o2; gas->he.permille = he; return 1; } int validate_po2(const char *text, int *mbar_po2) { int po2; if (!text) return 0; po2 = get_tenths(text, &text); if (po2 < 0) return 0; while (isspace(*text)) text++; while (isspace(*text)) text++; if (*text) return 0; *mbar_po2 = po2 * 100; return 1; }