/* calculate deco values * based on Bühlmann ZHL-16b * based on an implemention by heinrichs weikamp for the DR5 * the original file doesn't carry a license and is used here with * the permission of Matthias Heinrichs * * The implementation below is (C) Dirk Hohndel 2012 and released under the GPLv2 * * clear_deco() - call to initialize for a new deco calculation * add_segment(pressure, gasmix, seconds) - add at the given pressure, breathing gasmix * deco_allowed_depth(tissues_tolerance, surface_pressure, dive, smooth) * - ceiling based on lead tissue, surface pressure, 3m increments or smooth * set_gf(gflow, gfhigh) - set Buehlmann gradient factors */ #include #include "dive.h" //! Option structure for Buehlmann decompression. struct buehlmann_config { double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100). double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100). double safety_dist_deco_stop;//! assumed distance to official decompression where decompression takes places. int last_deco_stop_in_mtr; //! depth of last_deco_stop. double gf_high; //! gradient factor high (at surface). double gf_low; //! gradient factor low (at bottom/start of deco calculation). double gf_low_position_min; //! gf_low_position below surface_min_shallow. double gf_low_position_max; //! gf_low_position below surface_max_depth. double gf_high_emergency; //! emergency gf factors double gf_low_emergency; //! gradient factor low (at bottom/start of deco calculation). }; struct buehlmann_config buehlmann_config = { 1.0, 1.01, 0.5, 3, 0.75, 0.35, 1.0, 6.0, 0.95, 0.95 }; struct dive_data { double pressure; //! pesent ambient pressure double surface; //! pressure at water surface struct gasmix *gasmix; //! current selected gas }; const double buehlmann_N2_a[] = {1.1696, 1.0, 0.8618, 0.7562, 0.62, 0.5043, 0.441, 0.4, 0.375, 0.35, 0.3295, 0.3065, 0.2835, 0.261, 0.248, 0.2327}; const double buehlmann_N2_b[] = {0.5578, 0.6514, 0.7222, 0.7825, 0.8126, 0.8434, 0.8693, 0.8910, 0.9092, 0.9222, 0.9319, 0.9403, 0.9477, 0.9544, 0.9602, 0.9653}; const double buehlmann_N2_t_halflife[] = {5.0, 8.0, 12.5, 18.5, 27.0, 38.3, 54.3, 77.0, 109.0, 146.0, 187.0, 239.0, 305.0, 390.0, 498.0, 635.0}; const double buehlmann_N2_factor_expositon_one_second[] = { 2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004, 4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004, 1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005, 3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005}; const double buehlmann_He_a[] = { 1.6189, 1.383 , 1.1919, 1.0458, 0.922 , 0.8205, 0.7305, 0.6502, 0.595 , 0.5545, 0.5333, 0.5189, 0.5181, 0.5176, 0.5172, 0.5119}; const double buehlmann_He_b[] = {0.4770, 0.5747, 0.6527, 0.7223, 0.7582, 0.7957, 0.8279, 0.8553, 0.8757, 0.8903, 0.8997, 0.9073, 0.9122, 0.9171, 0.9217, 0.9267}; const double buehlmann_He_t_halflife[] = {1.88, 3.02, 4.72, 6.99, 10.21, 14.48, 20.53, 29.11, 41.20, 55.19, 70.69, 90.34, 115.29, 147.42, 188.24, 240.03}; const double buehlmann_He_factor_expositon_one_second[] = { 6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003, 1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004, 2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004, 1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005}; #define WV_PRESSURE 0.0627 /* water vapor pressure */ #define N2_IN_AIR 0.7902 #define DIST_FROM_3_MTR 0.28 #define PRESSURE_CHANGE_3M 0.3 #define TOLERANCE 0.02 double tissue_n2_sat[16]; double tissue_he_sat[16]; double tissue_tolerated_ambient_pressure[16]; int ci_pointing_to_guiding_tissue; double gf_low_position_this_dive; static double actual_gradient_limit(const struct dive_data *data) { double pressure_diff, limit_at_position; double gf_high = buehlmann_config.gf_high; double gf_low = buehlmann_config.gf_low; pressure_diff = data->pressure - data->surface; if (pressure_diff > TOLERANCE) { if (pressure_diff < gf_low_position_this_dive) limit_at_position = gf_high - ((gf_high - gf_low) * pressure_diff / gf_low_position_this_dive); else limit_at_position = gf_low; } else { limit_at_position = gf_high; } return limit_at_position; } static double gradient_factor_calculation(const struct dive_data *data) { double tissue_inertgas_saturation; tissue_inertgas_saturation = tissue_n2_sat[ci_pointing_to_guiding_tissue] + tissue_he_sat[ci_pointing_to_guiding_tissue]; if (tissue_inertgas_saturation < data->pressure) return 0.0; else return (tissue_inertgas_saturation - data->pressure) / (tissue_inertgas_saturation - tissue_tolerated_ambient_pressure[ci_pointing_to_guiding_tissue]); } static double tissue_tolerance_calc(void) { int ci = -1; double tissue_inertgas_saturation, buehlmann_inertgas_a, buehlmann_inertgas_b; double ret_tolerance_limit_ambient_pressure = 0.0; for (ci = 0; ci < 16; ci++) { tissue_inertgas_saturation = tissue_n2_sat[ci] + tissue_he_sat[ci]; buehlmann_inertgas_a = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation; buehlmann_inertgas_b = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation; tissue_tolerated_ambient_pressure[ci] = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; if (tissue_tolerated_ambient_pressure[ci] > ret_tolerance_limit_ambient_pressure) { ci_pointing_to_guiding_tissue = ci; ret_tolerance_limit_ambient_pressure = tissue_tolerated_ambient_pressure[ci]; } } return ret_tolerance_limit_ambient_pressure; } /* add a second at the given pressure and gas to the deco calculation */ double add_segment(double pressure, struct gasmix *gasmix, int period_in_seconds, double ccpo2) { int ci; double ppn2 = (pressure - WV_PRESSURE) * (1000 - gasmix->o2.permille - gasmix->he.permille) / 1000.0; double pphe = (pressure - WV_PRESSURE) * gasmix->he.permille / 1000.0; if (ccpo2 > 0.0) { /* CC */ double rel_o2_amb, f_dilutent; rel_o2_amb = ccpo2 / pressure; f_dilutent = (1 - rel_o2_amb) / (1 - gasmix->o2.permille / 1000.0); if (f_dilutent < 0) { /* setpoint is higher than ambient pressure -> pure O2 */ ppn2 = 0.0; pphe = 0.0; } else if (f_dilutent < 1.0) { ppn2 *= f_dilutent; pphe *= f_dilutent; } } if (period_in_seconds == 1) { /* one second interval during dive */ for (ci = 0; ci < 16; ci++) { if (ppn2 - tissue_n2_sat[ci] > 0) tissue_n2_sat[ci] += buehlmann_config.satmult * (ppn2 - tissue_n2_sat[ci]) * buehlmann_N2_factor_expositon_one_second[ci]; else tissue_n2_sat[ci] += buehlmann_config.desatmult * (ppn2 - tissue_n2_sat[ci]) * buehlmann_N2_factor_expositon_one_second[ci]; if (pphe - tissue_he_sat[ci] > 0) tissue_he_sat[ci] += buehlmann_config.satmult * (pphe - tissue_he_sat[ci]) * buehlmann_He_factor_expositon_one_second[ci]; else tissue_he_sat[ci] += buehlmann_config.desatmult * (pphe - tissue_he_sat[ci]) * buehlmann_He_factor_expositon_one_second[ci]; } } else { /* all other durations */ for (ci = 0; ci < 16; ci++) { if (ppn2 - tissue_n2_sat[ci] > 0) tissue_n2_sat[ci] += buehlmann_config.satmult * (ppn2 - tissue_n2_sat[ci]) * (1 - pow(2.0,(- period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60)))); else tissue_n2_sat[ci] += buehlmann_config.desatmult * (ppn2 - tissue_n2_sat[ci]) * (1 - pow(2.0,(- period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60)))); if (pphe - tissue_he_sat[ci] > 0) tissue_he_sat[ci] += buehlmann_config.satmult * (pphe - tissue_he_sat[ci]) * (1 - pow(2.0,(- period_in_seconds / (buehlmann_He_t_halflife[ci] * 60)))); else tissue_he_sat[ci] += buehlmann_config.desatmult * (pphe - tissue_he_sat[ci]) * (1 - pow(2.0,(- period_in_seconds / (buehlmann_He_t_halflife[ci] * 60)))); } } return tissue_tolerance_calc(); } void dump_tissues() { int ci; printf("N2 tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", tissue_n2_sat[ci]); printf("\nHe tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", tissue_he_sat[ci]); printf("\n"); } void clear_deco(double surface_pressure) { int ci; for (ci = 0; ci < 16; ci++) { tissue_n2_sat[ci] = (surface_pressure - WV_PRESSURE) * N2_IN_AIR; tissue_he_sat[ci] = 0.0; tissue_tolerated_ambient_pressure[ci] = 0.0; } gf_low_position_this_dive = buehlmann_config.gf_low_position_min; } unsigned int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, gboolean smooth) { unsigned int depth, multiples_of_3m; gboolean below_gradient_limit; double new_gradient_factor; double pressure_delta = tissues_tolerance - surface_pressure; struct dive_data mydata; if (pressure_delta > 0) { if (!smooth) { multiples_of_3m = (pressure_delta + DIST_FROM_3_MTR) / 0.3; depth = 3000 * multiples_of_3m; } else { depth = rel_mbar_to_depth(pressure_delta * 1000, dive); } } else { depth = 0; } mydata.pressure = depth_to_mbar(depth, dive) / 1000.0; mydata.surface = surface_pressure; new_gradient_factor = gradient_factor_calculation(&mydata); below_gradient_limit = (new_gradient_factor < actual_gradient_limit(&mydata)); while(!below_gradient_limit) { mydata.pressure += PRESSURE_CHANGE_3M; new_gradient_factor = gradient_factor_calculation(&mydata); below_gradient_limit = (new_gradient_factor < actual_gradient_limit(&mydata)); } depth = rel_mbar_to_depth((mydata.pressure - surface_pressure) * 1000, dive); return depth; } void set_gf(double gflow, double gfhigh) { if (gflow != -1.0) buehlmann_config.gf_low = gflow; if (gfhigh != -1.0) buehlmann_config.gf_high = gfhigh; }