/* dive.c */ /* maintains the internal dive list structure */ #include #include #include #include #include "gettext.h" #include "dive.h" #include "libdivecomputer.h" struct tag_entry *g_tag_list = NULL; static const char *default_tags[] = { QT_TRANSLATE_NOOP("gettextFromC", "boat"), QT_TRANSLATE_NOOP("gettextFromC", "shore"), QT_TRANSLATE_NOOP("gettextFromC", "drift"), QT_TRANSLATE_NOOP("gettextFromC", "deep"), QT_TRANSLATE_NOOP("gettextFromC", "cavern"), QT_TRANSLATE_NOOP("gettextFromC", "ice"), QT_TRANSLATE_NOOP("gettextFromC", "wreck"), QT_TRANSLATE_NOOP("gettextFromC", "cave"), QT_TRANSLATE_NOOP("gettextFromC", "altitude"), QT_TRANSLATE_NOOP("gettextFromC", "pool"), QT_TRANSLATE_NOOP("gettextFromC", "lake"), QT_TRANSLATE_NOOP("gettextFromC", "river"), QT_TRANSLATE_NOOP("gettextFromC", "night"), QT_TRANSLATE_NOOP("gettextFromC", "fresh"), QT_TRANSLATE_NOOP("gettextFromC", "student"), QT_TRANSLATE_NOOP("gettextFromC", "instructor"), QT_TRANSLATE_NOOP("gettextFromC", "photo"), QT_TRANSLATE_NOOP("gettextFromC", "video"), QT_TRANSLATE_NOOP("gettextFromC", "deco") }; void make_first_dc() { struct divecomputer *dc = ¤t_dive->dc; struct divecomputer *newdc = malloc(sizeof(*newdc)); struct divecomputer *cur_dc = current_dc; /* needs to be in a local variable so the macro isn't re-executed */ /* skip the current DC in the linked list */ while (dc && dc->next != cur_dc) dc = dc->next; if (!dc) { fprintf(stderr, "data inconsistent: can't find the current DC"); return; } dc->next = cur_dc->next; *newdc = current_dive->dc; current_dive->dc = *cur_dc; current_dive->dc.next = newdc; free(cur_dc); } void add_event(struct divecomputer *dc, int time, int type, int flags, int value, const char *name) { struct event *ev, **p; unsigned int size, len = strlen(name); size = sizeof(*ev) + len + 1; ev = malloc(size); if (!ev) return; memset(ev, 0, size); memcpy(ev->name, name, len); ev->time.seconds = time; ev->type = type; ev->flags = flags; ev->value = value; p = &dc->events; /* insert in the sorted list of events */ while (*p && (*p)->time.seconds <= time) p = &(*p)->next; ev->next = *p; *p = ev; remember_event(name); } void remove_event(struct event* event) { struct event **ep = ¤t_dc->events; while (ep && *ep != event) ep = &(*ep)->next; if (ep) { *ep = event->next; free(event); } } /* this returns a pointer to static variable - so use it right away after calling */ struct gasmix *get_gasmix_from_event(struct event *ev) { static struct gasmix g; g.o2.permille = g.he.permille = 0; if (ev && (ev->type == SAMPLE_EVENT_GASCHANGE || ev->type == SAMPLE_EVENT_GASCHANGE2)) { g.o2.permille = 10 * ev->value & 0xffff; if (ev->type == SAMPLE_EVENT_GASCHANGE2) g.he.permille = 10 * (ev->value >> 16); } return &g; } int get_pressure_units(int mb, const char **units) { int pressure; const char *unit; struct units *units_p = get_units(); switch (units_p->pressure) { case PASCAL: pressure = mb * 100; unit = translate("gettextFromC", "pascal"); break; case BAR: default: pressure = (mb + 500) / 1000; unit = translate("gettextFromC", "bar"); break; case PSI: pressure = mbar_to_PSI(mb); unit = translate("gettextFromC", "psi"); break; } if (units) *units = unit; return pressure; } double get_temp_units(unsigned int mk, const char **units) { double deg; const char *unit; struct units *units_p = get_units(); if (units_p->temperature == FAHRENHEIT) { deg = mkelvin_to_F(mk); unit = UTF8_DEGREE "F"; } else { deg = mkelvin_to_C(mk); unit = UTF8_DEGREE "C"; } if (units) *units = unit; return deg; } double get_volume_units(unsigned int ml, int *frac, const char **units) { int decimals; double vol; const char *unit; struct units *units_p = get_units(); switch (units_p->volume) { case LITER: default: vol = ml / 1000.0; unit = translate("gettextFromC", "l"); decimals = 1; break; case CUFT: vol = ml_to_cuft(ml); unit = translate("gettextFromC", "cuft"); decimals = 2; break; } if (frac) *frac = decimals; if (units) *units = unit; return vol; } unsigned int units_to_depth(double depth) { if (get_units()->length == METERS) return rint(depth * 1000); return feet_to_mm(depth); } double get_depth_units(int mm, int *frac, const char **units) { int decimals; double d; const char *unit; struct units *units_p = get_units(); switch (units_p->length) { case METERS: default: d = mm / 1000.0; unit = translate("gettextFromC", "m"); decimals = d < 20; break; case FEET: d = mm_to_feet(mm); unit = translate("gettextFromC", "ft"); decimals = 0; break; } if (frac) *frac = decimals; if (units) *units = unit; return d; } double get_vertical_speed_units(unsigned int mms, int *frac, const char **units) { double d; const char *unit; const struct units *units_p = get_units(); const double time_factor = units_p->vertical_speed_time == MINUTES ? 60.0 : 1.0; switch (units_p->length) { case METERS: default: d = mms / 1000.0 * time_factor; unit = translate("gettextFromC", (units_p->vertical_speed_time == MINUTES) ? "m/min" : "m/s"); break; case FEET: d = mm_to_feet(mms) * time_factor; unit = translate("gettextFromC", (units_p->vertical_speed_time == MINUTES) ? "ft/min" : "ft/s"); break; } if (frac) *frac = d < 10; if (units) *units = unit; return d; } double get_weight_units(unsigned int grams, int *frac, const char **units) { int decimals; double value; const char *unit; struct units *units_p = get_units(); if (units_p->weight == LBS) { value = grams_to_lbs(grams); unit = translate("gettextFromC", "lbs"); decimals = 0; } else { value = grams / 1000.0; unit = translate("gettextFromC", "kg"); decimals = 1; } if (frac) *frac = decimals; if (units) *units = unit; return value; } bool has_hr_data(struct divecomputer *dc) { int i; struct sample *sample; if (!dc) return false; sample = dc->sample; for (i = 0; i < dc->samples; i++) if (sample[i].heartbeat) return true; return false; } struct dive *alloc_dive(void) { struct dive *dive; dive = malloc(sizeof(*dive)); if (!dive) exit(1); memset(dive, 0, sizeof(*dive)); dive->id = dive_getUniqID(dive); return dive; } /* only copies events from the first dive computer */ void copy_events(struct dive *s, struct dive *d) { struct event *ev; if (!s || !d) return; ev = s->dc.events; d->dc.events = NULL; while (ev != NULL) { add_event(&d->dc, ev->time.seconds, ev->type, ev->flags, ev->value, ev->name); ev = ev->next; } } int nr_cylinders(struct dive *dive) { int nr; for (nr = MAX_CYLINDERS; nr; --nr) { cylinder_t *cylinder = dive->cylinder + nr - 1; if (!cylinder_nodata(cylinder)) break; } return nr; } int nr_weightsystems(struct dive *dive) { int nr; for (nr = MAX_WEIGHTSYSTEMS; nr; --nr) { weightsystem_t *ws = dive->weightsystem + nr - 1; if (!weightsystem_none(ws)) break; } return nr; } void copy_cylinders(struct dive *s, struct dive *d) { int i; if (!s || !d) return; for (i = 0; i < MAX_CYLINDERS; i++) d->cylinder[i] = s->cylinder[i]; } void copy_samples(struct dive *s, struct dive *d) { /* instead of carefully copying them one by one and calling add_sample * over and over again, let's just copy the whole blob */ if (!s || !d) return; int nr = s->dc.samples; d->dc.samples = nr; d->dc.sample = malloc(nr * sizeof(struct sample)); if (d->dc.sample) memcpy(d->dc.sample, s->dc.sample, nr * sizeof(struct sample)); } struct sample *prepare_sample(struct divecomputer *dc) { if (dc) { int nr = dc->samples; int alloc_samples = dc->alloc_samples; struct sample *sample; if (nr >= alloc_samples) { struct sample *newsamples; alloc_samples = (alloc_samples * 3) / 2 + 10; newsamples = realloc(dc->sample, alloc_samples * sizeof(struct sample)); if (!newsamples) return NULL; dc->alloc_samples = alloc_samples; dc->sample = newsamples; } sample = dc->sample + nr; memset(sample, 0, sizeof(*sample)); return sample; } return NULL; } void finish_sample(struct divecomputer *dc) { dc->samples++; } /* * So when we re-calculate maxdepth and meandepth, we will * not override the old numbers if they are close to the * new ones. * * Why? Because a dive computer may well actually track the * max depth and mean depth at finer granularity than the * samples it stores. So it's possible that the max and mean * have been reported more correctly originally. * * Only if the values calculated from the samples are clearly * different do we override the normal depth values. * * This considers 1m to be "clearly different". That's * a totally random number. */ static void update_depth(depth_t *depth, int new) { if (new) { int old = depth->mm; if (abs(old - new) > 1000) depth->mm = new; } } static void update_temperature(temperature_t *temperature, int new) { if (new) { int old = temperature->mkelvin; if (abs(old - new) > 1000) temperature->mkelvin = new; } } /* * Calculate how long we were actually under water, and the average * depth while under water. * * This ignores any surface time in the middle of the dive. */ static void fixup_dc_duration(struct divecomputer *dc) { int duration, i; int lasttime, lastdepth, depthtime; duration = 0; lasttime = 0; lastdepth = 0; depthtime = 0; for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; int time = sample->time.seconds; int depth = sample->depth.mm; /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration += time - lasttime; depthtime += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; } if (duration) { dc->duration.seconds = duration; dc->meandepth.mm = (depthtime + duration / 2) / duration; } } void per_cylinder_mean_depth(struct dive *dive, struct divecomputer *dc, int *mean, int *duration) { int i; int depthtime[MAX_CYLINDERS] = { 0, }; int lasttime = 0, lastdepth = 0; int idx = 0; for (i = 0; i < MAX_CYLINDERS; i++) mean[i] = duration[i] = 0; struct event *ev = get_next_event(dc->events, "gaschange"); if (!ev) { // special case - no gas changes mean[0] = dc->meandepth.mm; duration[0] = dc->duration.seconds; return; } for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; int time = sample->time.seconds; int depth = sample->depth.mm; if (ev && time >= ev->time.seconds) { idx = get_cylinder_index(dive, ev); ev = get_next_event(ev->next, "gaschange"); } /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration[idx] += time - lasttime; depthtime[idx] += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; } for (i = 0; i < MAX_CYLINDERS; i++) { if (duration[i]) mean[i] = (depthtime[i] + duration[i] / 2) / duration[i]; } } static void fixup_pressure(struct dive *dive, struct sample *sample) { int pressure, index; cylinder_t *cyl; pressure = sample->cylinderpressure.mbar; if (!pressure) return; index = sample->sensor; /* FIXME! sensor -> cylinder mapping? */ if (index >= MAX_CYLINDERS) return; cyl = dive->cylinder + index; if (!cyl->sample_start.mbar) cyl->sample_start.mbar = pressure; cyl->sample_end.mbar = pressure; } static void update_min_max_temperatures(struct dive *dive, temperature_t temperature) { if (temperature.mkelvin) { if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin) dive->maxtemp = temperature; if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin) dive->mintemp = temperature; } } /* * At high pressures air becomes less compressible, and * does not follow the ideal gas law any more. * * This tries to correct for that, becoming the same * as to_ATM() at lower pressures. * * THIS IS A ROUGH APPROXIMATION! The real numbers will * depend on the exact gas mix and temperature. */ double surface_volume_multiplier(pressure_t pressure) { double bar = pressure.mbar / 1000.0; if (bar > 200) bar = 0.00038 * bar * bar + 0.51629 * bar + 81.542; return bar_to_atm(bar); } int gas_volume(cylinder_t *cyl, pressure_t p) { return cyl->type.size.mliter * surface_volume_multiplier(p); } int wet_volume(double cuft, pressure_t p) { return cuft_to_l(cuft) * 1000 / surface_volume_multiplier(p); } /* * If the cylinder tank pressures are within half a bar * (about 8 PSI) of the sample pressures, we consider it * to be a rounding error, and throw them away as redundant. */ static int same_rounded_pressure(pressure_t a, pressure_t b) { return abs(a.mbar - b.mbar) <= 500; } void sanitize_gasmix(struct gasmix *mix) { unsigned int o2, he; o2 = mix->o2.permille; he = mix->he.permille; /* Regular air: leave empty */ if (!he) { if (!o2) return; /* 20.8% to 21% O2 is just air */ if (is_air(o2, he)) { mix->o2.permille = 0; return; } } /* Sane mix? */ if (o2 <= 1000 && he <= 1000 && o2 + he <= 1000) return; fprintf(stderr, "Odd gasmix: %u O2 %u He\n", o2, he); memset(mix, 0, sizeof(*mix)); } /* * See if the size/workingpressure looks like some standard cylinder * size, eg "AL80". */ static void match_standard_cylinder(cylinder_type_t *type) { double cuft; int psi, len; const char *fmt; char buffer[40], *p; /* Do we already have a cylinder description? */ if (type->description) return; cuft = ml_to_cuft(type->size.mliter); cuft *= surface_volume_multiplier(type->workingpressure); psi = to_PSI(type->workingpressure); switch (psi) { case 2300 ... 2500: /* 2400 psi: LP tank */ fmt = "LP%d"; break; case 2600 ... 2700: /* 2640 psi: LP+10% */ fmt = "LP%d"; break; case 2900 ... 3100: /* 3000 psi: ALx tank */ fmt = "AL%d"; break; case 3400 ... 3500: /* 3442 psi: HP tank */ fmt = "HP%d"; break; case 3700 ... 3850: /* HP+10% */ fmt = "HP%d+"; break; default: return; } len = snprintf(buffer, sizeof(buffer), fmt, (int)rint(cuft)); p = malloc(len + 1); if (!p) return; memcpy(p, buffer, len + 1); type->description = p; } /* * There are two ways to give cylinder size information: * - total amount of gas in cuft (depends on working pressure and physical size) * - physical size * * where "physical size" is the one that actually matters and is sane. * * We internally use physical size only. But we save the workingpressure * so that we can do the conversion if required. */ static void sanitize_cylinder_type(cylinder_type_t *type) { double volume_of_air, volume; /* If we have no working pressure, it had *better* be just a physical size! */ if (!type->workingpressure.mbar) return; /* No size either? Nothing to go on */ if (!type->size.mliter) return; if (xml_parsing_units.volume == CUFT) { /* confusing - we don't really start from ml but millicuft !*/ volume_of_air = cuft_to_l(type->size.mliter); /* milliliters at 1 atm: "true size" */ volume = volume_of_air / surface_volume_multiplier(type->workingpressure); type->size.mliter = rint(volume); } /* Ok, we have both size and pressure: try to match a description */ match_standard_cylinder(type); } static void sanitize_cylinder_info(struct dive *dive) { int i; for (i = 0; i < MAX_CYLINDERS; i++) { sanitize_gasmix(&dive->cylinder[i].gasmix); sanitize_cylinder_type(&dive->cylinder[i].type); } } /* some events should never be thrown away */ static bool is_potentially_redundant(struct event *event) { if (!strcmp(event->name, "gaschange")) return false; if (!strcmp(event->name, "bookmark")) return false; if (!strcmp(event->name, "heading")) return false; return true; } /* match just by name - we compare the details in the code that uses this helper */ static struct event *find_previous_event(struct divecomputer *dc, struct event *event) { struct event *ev = dc->events; struct event *previous = NULL; if (!event->name) return NULL; while (ev && ev != event) { if (ev->name && !strcmp(ev->name, event->name)) previous = ev; ev = ev->next; } return previous; } static void fixup_surface_pressure(struct dive *dive) { struct divecomputer *dc; int sum = 0, nr = 0; for_each_dc(dive, dc) { if (dc->surface_pressure.mbar) { sum += dc->surface_pressure.mbar; nr++; } } if (nr) dive->surface_pressure.mbar = (sum + nr / 2) / nr; } static void fixup_water_salinity(struct dive *dive) { struct divecomputer *dc; int sum = 0, nr = 0; for_each_dc(dive, dc) { if (dc->salinity) { sum += dc->salinity; nr++; } } if (nr) dive->salinity = (sum + nr / 2) / nr; } static void fixup_meandepth(struct dive *dive) { struct divecomputer *dc; int sum = 0, nr = 0; for_each_dc(dive, dc) { if (dc->meandepth.mm) { sum += dc->meandepth.mm; nr++; } } if (nr) dive->meandepth.mm = (sum + nr / 2) / nr; } static void fixup_duration(struct dive *dive) { struct divecomputer *dc; int duration = 0; for_each_dc(dive, dc) duration = MAX(duration, dc->duration.seconds); dive->duration.seconds = duration; } /* * What do the dive computers say the water temperature is? * (not in the samples, but as dc property for dcs that support that) */ unsigned int dc_watertemp(struct divecomputer *dc) { int sum = 0, nr = 0; do { if (dc->watertemp.mkelvin) { sum += dc->watertemp.mkelvin; nr++; } } while ((dc = dc->next) != NULL); if (!nr) return 0; return (sum + nr / 2) / nr; } static void fixup_watertemp(struct dive *dive) { if (!dive->watertemp.mkelvin) dive->watertemp.mkelvin = dc_watertemp(&dive->dc); } /* * What do the dive computers say the air temperature is? */ unsigned int dc_airtemp(struct divecomputer *dc) { int sum = 0, nr = 0; do { if (dc->airtemp.mkelvin) { sum += dc->airtemp.mkelvin; nr++; } } while ((dc = dc->next) != NULL); if (!nr) return 0; return (sum + nr / 2) / nr; } static void fixup_airtemp(struct dive *dive) { if (!dive->airtemp.mkelvin) dive->airtemp.mkelvin = dc_airtemp(&dive->dc); } /* zero out the airtemp in the dive structure if it was just created by * running fixup on the dive. keep it if it had been edited by hand */ static void un_fixup_airtemp(struct dive *a) { if (a->airtemp.mkelvin && a->airtemp.mkelvin == dc_airtemp(&a->dc)) a->airtemp.mkelvin = 0; } /* * events are stored as a linked list, so the concept of * "consecutive, identical events" is somewhat hard to * implement correctly (especially given that on some dive * computers events are asynchronous, so they can come in * between what would be the non-constant sample rate). * * So what we do is that we throw away clearly redundant * events that are fewer than 61 seconds apart (assuming there * is no dive computer with a sample rate of more than 60 * seconds... that would be pretty pointless to plot the * profile with) * * We first only mark the events for deletion so that we * still know when the previous event happened. */ static void fixup_dc_events(struct divecomputer *dc) { struct event *event; event = dc->events; while (event) { struct event *prev; if (is_potentially_redundant(event)) { prev = find_previous_event(dc, event); if (prev && prev->value == event->value && prev->flags == event->flags && event->time.seconds - prev->time.seconds < 61) event->deleted = true; } event = event->next; } event = dc->events; while (event) { if (event->next && event->next->deleted) { struct event *nextnext = event->next->next; free(event->next); event->next = nextnext; } else { event = event->next; } } } static void fixup_dive_dc(struct dive *dive, struct divecomputer *dc) { int i, j; double depthtime = 0; int lasttime = 0; int lastindex = -1; int maxdepth = dc->maxdepth.mm; int mintemp = 0; int lastdepth = 0; int lasttemp = 0, lastpressure = 0; int pressure_delta[MAX_CYLINDERS] = { INT_MAX, }; /* Fixup duration and mean depth */ fixup_dc_duration(dc); update_min_max_temperatures(dive, dc->watertemp); for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; int time = sample->time.seconds; int depth = sample->depth.mm; int temp = sample->temperature.mkelvin; int pressure = sample->cylinderpressure.mbar; int index = sample->sensor; if (index == lastindex) { /* Remove duplicate redundant pressure information */ if (pressure == lastpressure) sample->cylinderpressure.mbar = 0; /* check for simply linear data in the samples +INT_MAX means uninitialized, -INT_MAX means not linear */ if (pressure_delta[index] != -INT_MAX && lastpressure) { if (pressure_delta[index] == INT_MAX) { pressure_delta[index] = abs(pressure - lastpressure); } else { int cur_delta = abs(pressure - lastpressure); if (cur_delta && abs(cur_delta - pressure_delta[index]) > 150) { /* ok the samples aren't just a linearisation * between start and end */ pressure_delta[index] = -INT_MAX; } } } } lastindex = index; lastpressure = pressure; if (depth > SURFACE_THRESHOLD) { if (depth > maxdepth) maxdepth = depth; } fixup_pressure(dive, sample); if (temp) { /* * If we have consecutive identical * temperature readings, throw away * the redundant ones. */ if (lasttemp == temp) sample->temperature.mkelvin = 0; else lasttemp = temp; if (!mintemp || temp < mintemp) mintemp = temp; } update_min_max_temperatures(dive, sample->temperature); depthtime += (time - lasttime) * (lastdepth + depth) / 2; lastdepth = depth; lasttime = time; if (sample->cns > dive->maxcns) dive->maxcns = sample->cns; } /* if all the samples for a cylinder have pressure data that * is basically equidistant throw out the sample cylinder pressure * information but make sure we still have a valid start and end * pressure * this happens when DivingLog decides to linearalize the * pressure between beginning and end and for strange reasons * decides to put that in the sample data as if it came from * the dive computer; we don't want that (we'll visualize with * constant SAC rate instead) * WARNING WARNING - I have only seen this in single tank dives * --- maybe I should try to create a multi tank dive and see what * --- divinglog does there - but the code right now is only tested * --- for the single tank case */ for (j = 0; j < MAX_CYLINDERS; j++) { if (abs(pressure_delta[j]) != INT_MAX) { cylinder_t *cyl = dive->cylinder + j; for (i = 0; i < dc->samples; i++) if (dc->sample[i].sensor == j) dc->sample[i].cylinderpressure.mbar = 0; if (!cyl->start.mbar) cyl->start.mbar = cyl->sample_start.mbar; if (!cyl->end.mbar) cyl->end.mbar = cyl->sample_end.mbar; cyl->sample_start.mbar = 0; cyl->sample_end.mbar = 0; } } update_temperature(&dc->watertemp, mintemp); update_depth(&dc->maxdepth, maxdepth); if (maxdepth > dive->maxdepth.mm) dive->maxdepth.mm = maxdepth; fixup_dc_events(dc); } struct dive *fixup_dive(struct dive *dive) { int i; struct divecomputer *dc; sanitize_cylinder_info(dive); dive->maxcns = dive->cns; for_each_dc(dive, dc) fixup_dive_dc(dive, dc); fixup_water_salinity(dive); fixup_surface_pressure(dive); fixup_meandepth(dive); fixup_duration(dive); fixup_watertemp(dive); fixup_airtemp(dive); for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; add_cylinder_description(&cyl->type); if (same_rounded_pressure(cyl->sample_start, cyl->start)) cyl->start.mbar = 0; if (same_rounded_pressure(cyl->sample_end, cyl->end)) cyl->end.mbar = 0; } for (i = 0; i < MAX_WEIGHTSYSTEMS; i++) { weightsystem_t *ws = dive->weightsystem + i; add_weightsystem_description(ws); } /* we should always have a uniq ID as that gets assigned during alloc_dive(), * but we want to make sure... */ if (!dive->id) dive->id = dive_getUniqID(dive); return dive; } /* Don't pick a zero for MERGE_MIN() */ #define MERGE_MAX(res, a, b, n) res->n = MAX(a->n, b->n) #define MERGE_MIN(res, a, b, n) res->n = (a->n) ? (b->n) ? MIN(a->n, b->n) : (a->n) : (b->n) #define MERGE_TXT(res, a, b, n) res->n = merge_text(a->n, b->n) #define MERGE_NONZERO(res, a, b, n) res->n = a->n ? a->n : b->n static struct sample *add_sample(struct sample *sample, int time, struct divecomputer *dc) { struct sample *p = prepare_sample(dc); if (p) { *p = *sample; p->time.seconds = time; finish_sample(dc); } return p; } /* * This is like add_sample(), but if the distance from the last sample * is excessive, we add two surface samples in between. * * This is so that if you merge two non-overlapping dives, we make sure * that the time in between the dives is at the surface, not some "last * sample that happened to be at a depth of 1.2m". */ static void merge_one_sample(struct sample *sample, int time, struct divecomputer *dc) { int last = dc->samples - 1; if (last >= 0) { static struct sample surface; struct sample *prev = dc->sample + last; int last_time = prev->time.seconds; int last_depth = prev->depth.mm; /* * Only do surface events if the samples are more than * a minute apart, and shallower than 5m */ if (time > last_time + 60 && last_depth < 5000) { add_sample(&surface, last_time + 20, dc); add_sample(&surface, time - 20, dc); } } add_sample(sample, time, dc); } /* * Merge samples. Dive 'a' is "offset" seconds before Dive 'b' */ static void merge_samples(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int offset) { int asamples = a->samples; int bsamples = b->samples; struct sample *as = a->sample; struct sample *bs = b->sample; /* * We want a positive sample offset, so that sample * times are always positive. So if the samples for * 'b' are before the samples for 'a' (so the offset * is negative), we switch a and b around, and use * the reverse offset. */ if (offset < 0) { offset = -offset; asamples = bsamples; bsamples = a->samples; as = bs; bs = a->sample; } for (;;) { int at, bt; struct sample sample; if (!res) return; at = asamples ? as->time.seconds : -1; bt = bsamples ? bs->time.seconds + offset : -1; /* No samples? All done! */ if (at < 0 && bt < 0) return; /* Only samples from a? */ if (bt < 0) { add_sample_a: merge_one_sample(as, at, res); as++; asamples--; continue; } /* Only samples from b? */ if (at < 0) { add_sample_b: merge_one_sample(bs, bt, res); bs++; bsamples--; continue; } if (at < bt) goto add_sample_a; if (at > bt) goto add_sample_b; /* same-time sample: add a merged sample. Take the non-zero ones */ sample = *bs; if (as->depth.mm) sample.depth = as->depth; if (as->temperature.mkelvin) sample.temperature = as->temperature; if (as->cylinderpressure.mbar) sample.cylinderpressure = as->cylinderpressure; if (as->sensor) sample.sensor = as->sensor; if (as->cns) sample.cns = as->cns; if (as->po2) sample.po2 = as->po2; if (as->ndl.seconds) sample.ndl = as->ndl; if (as->stoptime.seconds) sample.stoptime = as->stoptime; if (as->stopdepth.mm) sample.stopdepth = as->stopdepth; if (as->in_deco) sample.in_deco = true; merge_one_sample(&sample, at, res); as++; bs++; asamples--; bsamples--; } } static char *merge_text(const char *a, const char *b) { char *res; if (!a && !b) return NULL; if (!a || !*a) return b ? strdup(b) : NULL; if (!b || !*b) return strdup(a); if (!strcmp(a, b)) return a ? strdup(a) : NULL; res = malloc(strlen(a) + strlen(b) + 32); if (!res) return (char *)a; sprintf(res, translate("gettextFromC", "(%s) or (%s)"), a, b); return res; } #define SORT(a, b, field) \ if (a->field != b->field) \ return a->field < b->field ? -1 : 1 static int sort_event(struct event *a, struct event *b) { SORT(a, b, time.seconds); SORT(a, b, type); SORT(a, b, flags); SORT(a, b, value); return strcmp(a->name, b->name); } static void merge_events(struct divecomputer *res, struct divecomputer *src1, struct divecomputer *src2, int offset) { struct event *a, *b; struct event **p = &res->events; /* Always use positive offsets */ if (offset < 0) { struct divecomputer *tmp; offset = -offset; tmp = src1; src1 = src2; src2 = tmp; } a = src1->events; b = src2->events; while (b) { b->time.seconds += offset; b = b->next; } b = src2->events; while (a || b) { int s; if (!b) { *p = a; break; } if (!a) { *p = b; break; } s = sort_event(a, b); /* Pick b */ if (s > 0) { *p = b; p = &b->next; b = b->next; continue; } /* Pick 'a' or neither */ if (s < 0) { *p = a; p = &a->next; } a = a->next; continue; } } /* Pick whichever has any info (if either). Prefer 'a' */ static void merge_cylinder_type(cylinder_type_t *src, cylinder_type_t *dst) { if (!dst->size.mliter) dst->size.mliter = src->size.mliter; if (!dst->workingpressure.mbar) dst->workingpressure.mbar = src->workingpressure.mbar; if (!dst->description) { dst->description = src->description; src->description = NULL; } } static void merge_cylinder_mix(struct gasmix *src, struct gasmix *dst) { if (!dst->o2.permille) *dst = *src; } static void merge_cylinder_info(cylinder_t *src, cylinder_t *dst) { merge_cylinder_type(&src->type, &dst->type); merge_cylinder_mix(&src->gasmix, &dst->gasmix); MERGE_MAX(dst, dst, src, start.mbar); MERGE_MIN(dst, dst, src, end.mbar); } static void merge_weightsystem_info(weightsystem_t *res, weightsystem_t *a, weightsystem_t *b) { if (!a->weight.grams) a = b; *res = *a; } int gasmix_distance(const struct gasmix *a, const struct gasmix *b) { int a_o2 = get_o2(a), b_o2 = get_o2(b); int a_he = get_he(a), b_he = get_he(b); int delta_o2 = a_o2 - b_o2, delta_he = a_he - b_he; delta_he = delta_he * delta_he; delta_o2 = delta_o2 * delta_o2; return delta_he + delta_o2; } static int find_cylinder_match(cylinder_t *cyl, cylinder_t array[], unsigned int used) { int i; int best = -1, score = INT_MAX; if (cylinder_nodata(cyl)) return -1; for (i = 0; i < MAX_CYLINDERS; i++) { const cylinder_t *match; int distance; if (used & (1 << i)) continue; match = array + i; distance = gasmix_distance(&cyl->gasmix, &match->gasmix); if (distance >= score) continue; best = i; score = distance; } return best; } /* Force an initial gaschange event to the (old) gas #0 */ static void add_initial_gaschange(struct dive *dive, struct divecomputer *dc) { struct event *ev = get_next_event(dc->events, "gaschange"); if (ev && ev->time.seconds < 30) return; /* Old starting gas mix */ add_gas_switch_event(dive, dc, 0, 0); } static void dc_cylinder_renumber(struct dive *dive, struct divecomputer *dc, int mapping[]) { int i; /* Did the first gas get remapped? Add gas switch event */ if (mapping[0] > 0) add_initial_gaschange(dive, dc); /* Remap the sensor indexes */ for (i = 0; i < dc->samples; i++) { struct sample *s = dc->sample + i; int sensor; if (!s->cylinderpressure.mbar) continue; sensor = mapping[s->sensor]; if (sensor >= 0) s->sensor = sensor; } } /* * If the cylinder indexes change (due to merging dives or deleting * cylinders in the middle), we need to change the indexes in the * dive computer data for this dive. * * Also note that we assume that the initial cylinder is cylinder 0, * so if that got renamed, we need to create a fake gas change event */ static void cylinder_renumber(struct dive *dive, int mapping[]) { struct divecomputer *dc; for_each_dc(dive, dc) dc_cylinder_renumber(dive, dc, mapping); } /* * Merging cylinder information is non-trivial, because the two dive computers * may have different ideas of what the different cylinder indexing is. * * Logic: take all the cylinder information from the preferred dive ('a'), and * then try to match each of the cylinders in the other dive by the gasmix that * is the best match and hasn't been used yet. */ static void merge_cylinders(struct dive *res, struct dive *a, struct dive *b) { int i, renumber = 0; int mapping[MAX_CYLINDERS]; unsigned int used = 0; /* Copy the cylinder info raw from 'a' */ memcpy(res->cylinder, a->cylinder, sizeof(res->cylinder)); memset(a->cylinder, 0, sizeof(a->cylinder)); for (i = 0; i < MAX_CYLINDERS; i++) { int j; cylinder_t *cyl = b->cylinder + i; j = find_cylinder_match(cyl, res->cylinder, used); mapping[i] = j; if (j < 0) continue; used |= 1 << j; merge_cylinder_info(cyl, res->cylinder + j); /* If that renumbered the cylinders, fix it up! */ if (i != j) renumber = 1; } if (renumber) cylinder_renumber(b, mapping); } static void merge_equipment(struct dive *res, struct dive *a, struct dive *b) { int i; merge_cylinders(res, a, b); for (i = 0; i < MAX_WEIGHTSYSTEMS; i++) merge_weightsystem_info(res->weightsystem + i, a->weightsystem + i, b->weightsystem + i); } static void merge_airtemps(struct dive *res, struct dive *a, struct dive *b) { un_fixup_airtemp(a); un_fixup_airtemp(b); MERGE_NONZERO(res, a, b, airtemp.mkelvin); } /* * When merging two dives, this picks the trip from one, and removes it * from the other. * * The 'next' dive is not involved in the dive merging, but is the dive * that will be the next dive after the merged dive. */ static void pick_trip(struct dive *res, struct dive *pick) { tripflag_t tripflag = pick->tripflag; dive_trip_t *trip = pick->divetrip; res->tripflag = tripflag; add_dive_to_trip(res, trip); } /* * Pick a trip for a dive */ static void merge_trip(struct dive *res, struct dive *a, struct dive *b) { dive_trip_t *atrip, *btrip; /* * The larger tripflag is more relevant: we prefer * take manually assigned trips over auto-generated * ones. */ if (a->tripflag > b->tripflag) goto pick_a; if (a->tripflag < b->tripflag) goto pick_b; /* Otherwise, look at the trip data and pick the "better" one */ atrip = a->divetrip; btrip = b->divetrip; if (!atrip) goto pick_b; if (!btrip) goto pick_a; if (!atrip->location) goto pick_b; if (!btrip->location) goto pick_a; if (!atrip->notes) goto pick_b; if (!btrip->notes) goto pick_a; /* * Ok, so both have location and notes. * Pick the earlier one. */ if (a->when < b->when) goto pick_a; goto pick_b; pick_a: b = a; pick_b: pick_trip(res, b); } #if CURRENTLY_NOT_USED /* * Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'. * * If 's' and 'a' are at the same time, offset is 0, and b is NULL. */ static int compare_sample(struct sample *s, struct sample *a, struct sample *b, int offset) { unsigned int depth = a->depth.mm; int diff; if (offset) { unsigned int interval = b->time.seconds - a->time.seconds; unsigned int depth_a = a->depth.mm; unsigned int depth_b = b->depth.mm; if (offset > interval) return -1; /* pick the average depth, scaled by the offset from 'b' */ depth = (depth_a * offset) + (depth_b * (interval - offset)); depth /= interval; } diff = s->depth.mm - depth; if (diff < 0) diff = -diff; /* cut off at one meter difference */ if (diff > 1000) diff = 1000; return diff * diff; } /* * Calculate a "difference" in samples between the two dives, given * the offset in seconds between them. Use this to find the best * match of samples between two different dive computers. */ static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset) { int asamples = a->samples; int bsamples = b->samples; struct sample *as = a->sample; struct sample *bs = b->sample; unsigned long error = 0; int start = -1; if (!asamples || !bsamples) return 0; /* * skip the first sample - this way we know can always look at * as/bs[-1] to look at the samples around it in the loop. */ as++; bs++; asamples--; bsamples--; for (;;) { int at, bt, diff; /* If we run out of samples, punt */ if (!asamples) return INT_MAX; if (!bsamples) return INT_MAX; at = as->time.seconds; bt = bs->time.seconds + offset; /* b hasn't started yet? Ignore it */ if (bt < 0) { bs++; bsamples--; continue; } if (at < bt) { diff = compare_sample(as, bs - 1, bs, bt - at); as++; asamples--; } else if (at > bt) { diff = compare_sample(bs, as - 1, as, at - bt); bs++; bsamples--; } else { diff = compare_sample(as, bs, NULL, 0); as++; bs++; asamples--; bsamples--; } /* Invalid comparison point? */ if (diff < 0) continue; if (start < 0) start = at; error += diff; if (at - start > 120) break; } return error; } /* * Dive 'a' is 'offset' seconds before dive 'b' * * This is *not* because the dive computers clocks aren't in sync, * it is because the dive computers may "start" the dive at different * points in the dive, so the sample at time X in dive 'a' is the * same as the sample at time X+offset in dive 'b'. * * For example, some dive computers take longer to "wake up" when * they sense that you are under water (ie Uemis Zurich if it was off * when the dive started). And other dive computers have different * depths that they activate at, etc etc. * * If we cannot find a shared offset, don't try to merge. */ static int find_sample_offset(struct divecomputer *a, struct divecomputer *b) { int offset, best; unsigned long max; /* No samples? Merge at any time (0 offset) */ if (!a->samples) return 0; if (!b->samples) return 0; /* * Common special-case: merging a dive that came from * the same dive computer, so the samples are identical. * Check this first, without wasting time trying to find * some minimal offset case. */ best = 0; max = sample_difference(a, b, 0); if (!max) return 0; /* * Otherwise, look if we can find anything better within * a thirty second window.. */ for (offset = -30; offset <= 30; offset++) { unsigned long diff; diff = sample_difference(a, b, offset); if (diff > max) continue; best = offset; max = diff; } return best; } #endif /* * Are a and b "similar" values, when given a reasonable lower end expected * difference? * * So for example, we'd expect different dive computers to give different * max depth readings. You might have them on different arms, and they * have different pressure sensors and possibly different ideas about * water salinity etc. * * So have an expected minimum difference, but also allow a larger relative * error value. */ static int similar(unsigned long a, unsigned long b, unsigned long expected) { if (a && b) { unsigned long min, max, diff; min = a; max = b; if (a > b) { min = b; max = a; } diff = max - min; /* Smaller than expected difference? */ if (diff < expected) return 1; /* Error less than 10% or the maximum */ if (diff * 10 < max) return 1; } return 0; } /* * Match two dive computer entries against each other, and * tell if it's the same dive. Return 0 if "don't know", * positive for "same dive" and negative for "definitely * not the same dive" */ int match_one_dc(struct divecomputer *a, struct divecomputer *b) { /* Not same model? Don't know if matching.. */ if (!a->model || !b->model) return 0; if (strcasecmp(a->model, b->model)) return 0; /* Different device ID's? Don't know */ if (a->deviceid != b->deviceid) return 0; /* Do we have dive IDs? */ if (!a->diveid || !b->diveid) return 0; /* * If they have different dive ID's on the same * dive computer, that's a definite "same or not" */ return a->diveid == b->diveid ? 1 : -1; } /* * Match every dive computer against each other to see if * we have a matching dive. * * Return values: * -1 for "is definitely *NOT* the same dive" * 0 for "don't know" * 1 for "is definitely the same dive" */ static int match_dc_dive(struct divecomputer *a, struct divecomputer *b) { do { struct divecomputer *tmp = b; do { int match = match_one_dc(a, tmp); if (match) return match; tmp = tmp->next; } while (tmp); a = a->next; } while (a); return 0; } /* * Do we want to automatically try to merge two dives that * look like they are the same dive? * * This happens quite commonly because you download a dive * that you already had, or perhaps because you maintained * multiple dive logs and want to load them all together * (possibly one of them was imported from another dive log * application entirely). * * NOTE! We mainly look at the dive time, but it can differ * between two dives due to a few issues: * * - rounding the dive date to the nearest minute in other dive * applications * * - dive computers with "relative datestamps" (ie the dive * computer doesn't actually record an absolute date at all, * but instead at download-time syncronizes its internal * time with real-time on the downloading computer) * * - using multiple dive computers with different real time on * the same dive * * We do not merge dives that look radically different, and if * the dates are *too* far off the user will have to join two * dives together manually. But this tries to handle the sane * cases. */ static int likely_same_dive(struct dive *a, struct dive *b) { int match, fuzz = 20 * 60; /* Don't try to merge dives in different trips */ if (a->divetrip && b->divetrip && a->divetrip != b->divetrip) return 0; /* * Do some basic sanity testing of the values we * have filled in during 'fixup_dive()' */ if (!similar(a->maxdepth.mm, b->maxdepth.mm, 1000) || (a->meandepth.mm && b->meandepth.mm && !similar(a->meandepth.mm, b->meandepth.mm, 1000)) || !similar(a->duration.seconds, b->duration.seconds, 5 * 60)) return 0; /* See if we can get an exact match on the dive computer */ match = match_dc_dive(&a->dc, &b->dc); if (match) return match > 0; /* * Allow a time difference due to dive computer time * setting etc. Check if they overlap. */ fuzz = MAX(a->duration.seconds, b->duration.seconds) / 2; if (fuzz < 60) fuzz = 60; return ((a->when <= b->when + fuzz) && (a->when >= b->when - fuzz)); } /* * This could do a lot more merging. Right now it really only * merges almost exact duplicates - something that happens easily * with overlapping dive downloads. */ struct dive *try_to_merge(struct dive *a, struct dive *b, bool prefer_downloaded) { if (likely_same_dive(a, b)) return merge_dives(a, b, 0, prefer_downloaded); return NULL; } static void free_events(struct event *ev) { while (ev) { struct event *next = ev->next; free(ev); ev = next; } } static void free_dc(struct divecomputer *dc) { free(dc->sample); free((void *)dc->model); free_events(dc->events); free(dc); } static int same_event(struct event *a, struct event *b) { if (a->time.seconds != b->time.seconds) return 0; if (a->type != b->type) return 0; if (a->flags != b->flags) return 0; if (a->value != b->value) return 0; return !strcmp(a->name, b->name); } static int same_sample(struct sample *a, struct sample *b) { if (a->time.seconds != b->time.seconds) return 0; if (a->depth.mm != b->depth.mm) return 0; if (a->temperature.mkelvin != b->temperature.mkelvin) return 0; if (a->cylinderpressure.mbar != b->cylinderpressure.mbar) return 0; return a->sensor == b->sensor; } static int same_dc(struct divecomputer *a, struct divecomputer *b) { int i; struct event *eva, *evb; i = match_one_dc(a, b); if (i) return i > 0; if (a->when && b->when && a->when != b->when) return 0; if (a->samples != b->samples) return 0; for (i = 0; i < a->samples; i++) if (!same_sample(a->sample + i, b->sample + i)) return 0; eva = a->events; evb = b->events; while (eva && evb) { if (!same_event(eva, evb)) return 0; eva = eva->next; evb = evb->next; } return eva == evb; } static int might_be_same_device(struct divecomputer *a, struct divecomputer *b) { /* No dive computer model? That matches anything */ if (!a->model || !b->model) return 1; /* Otherwise at least the model names have to match */ if (strcasecmp(a->model, b->model)) return 0; /* No device ID? Match */ if (!a->deviceid || !b->deviceid) return 1; return a->deviceid == b->deviceid; } static void remove_redundant_dc(struct divecomputer *dc, int prefer_downloaded) { do { struct divecomputer **p = &dc->next; /* Check this dc against all the following ones.. */ while (*p) { struct divecomputer *check = *p; if (same_dc(dc, check) || (prefer_downloaded && might_be_same_device(dc, check))) { *p = check->next; check->next = NULL; free_dc(check); continue; } p = &check->next; } /* .. and then continue down the chain, but we */ prefer_downloaded = 0; dc = dc->next; } while (dc); } static void clear_dc(struct divecomputer *dc) { memset(dc, 0, sizeof(*dc)); } static struct divecomputer *find_matching_computer(struct divecomputer *match, struct divecomputer *list) { struct divecomputer *p; while ((p = list) != NULL) { list = list->next; if (might_be_same_device(match, p)) break; } return p; } static void copy_dive_computer(struct divecomputer *res, struct divecomputer *a) { *res = *a; res->model = a->model ? strdup(a->model) : NULL; res->samples = res->alloc_samples = 0; res->sample = NULL; res->events = NULL; res->next = NULL; } /* * Join dive computers with a specific time offset between * them. * * Use the dive computer ID's (or names, if ID's are missing) * to match them up. If we find a matching dive computer, we * merge them. If not, we just take the data from 'a'. */ static void interleave_dive_computers(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int offset) { do { struct divecomputer *match; copy_dive_computer(res, a); match = find_matching_computer(a, b); if (match) { merge_events(res, a, match, offset); merge_samples(res, a, match, offset); /* Use the diveid of the later dive! */ if (offset > 0) res->diveid = match->diveid; } else { res->sample = a->sample; res->samples = a->samples; res->events = a->events; a->sample = NULL; a->samples = 0; a->events = NULL; } a = a->next; if (!a) break; res->next = calloc(1, sizeof(struct divecomputer)); res = res->next; } while (res); } /* * Join dive computer information. * * If we have old-style dive computer information (no model * name etc), we will prefer a new-style one and just throw * away the old. We're assuming it's a re-download. * * Otherwise, we'll just try to keep all the information, * unless the user has specified that they prefer the * downloaded computer, in which case we'll aggressively * try to throw out old information that *might* be from * that one. */ static void join_dive_computers(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int prefer_downloaded) { struct divecomputer *tmp; if (a->model && !b->model) { *res = *a; clear_dc(a); return; } if (b->model && !a->model) { *res = *b; clear_dc(b); return; } *res = *a; clear_dc(a); tmp = res; while (tmp->next) tmp = tmp->next; tmp->next = calloc(1, sizeof(*tmp)); *tmp->next = *b; clear_dc(b); remove_redundant_dc(res, prefer_downloaded); } int taglist_get_tagstring(struct tag_entry *tag_list, char *buffer, int len) { int i = 0; struct tag_entry *tmp; tmp = tag_list; memset(buffer, 0, len); while (tmp != NULL) { int newlength = strlen(tmp->tag->name); if (i > 0) newlength += 2; if ((i + newlength) < len) { if (i > 0) { strcpy(buffer + i, ", "); strcpy(buffer + i + 2, tmp->tag->name); } else { strcpy(buffer, tmp->tag->name); } } else { return i; } i += newlength; tmp = tmp->next; } return i; } static inline void taglist_free_divetag(struct divetag *tag) { if (tag->name != NULL) free(tag->name); if (tag->source != NULL) free(tag->source); free(tag); } /* Add a tag to the tag_list, keep the list sorted */ static struct divetag *taglist_add_divetag(struct tag_entry **tag_list, struct divetag *tag) { struct tag_entry *next, *entry; while ((next = *tag_list) != NULL) { int cmp = strcmp(next->tag->name, tag->name); /* Already have it? */ if (!cmp) return next->tag; /* Is the entry larger? If so, insert here */ if (cmp > 0) break; /* Continue traversing the list */ tag_list = &next->next; } /* Insert in front of it */ entry = malloc(sizeof(struct tag_entry)); entry->next = next; entry->tag = tag; *tag_list = entry; return tag; } struct divetag *taglist_add_tag(struct tag_entry **tag_list, const char *tag) { int i = 0, is_default_tag = 0; struct divetag *ret_tag, *new_tag; const char *translation; new_tag = malloc(sizeof(struct divetag)); for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++) { if (strcmp(default_tags[i], tag) == 0) { is_default_tag = 1; break; } } /* Only translate default tags */ if (is_default_tag) { translation = translate("gettextFromC", tag); new_tag->name = malloc(strlen(translation) + 1); memcpy(new_tag->name, translation, strlen(translation) + 1); new_tag->source = malloc(strlen(tag) + 1); memcpy(new_tag->source, tag, strlen(tag) + 1); } else { new_tag->source = NULL; new_tag->name = malloc(strlen(tag) + 1); memcpy(new_tag->name, tag, strlen(tag) + 1); } /* Try to insert new_tag into g_tag_list if we are not operating on it */ if (tag_list != &g_tag_list) { ret_tag = taglist_add_divetag(&g_tag_list, new_tag); /* g_tag_list already contains new_tag, free the duplicate */ if (ret_tag != new_tag) taglist_free_divetag(new_tag); ret_tag = taglist_add_divetag(tag_list, ret_tag); } else { ret_tag = taglist_add_divetag(tag_list, new_tag); if (ret_tag != new_tag) taglist_free_divetag(new_tag); } return ret_tag; } /* Clear everything but the first element */ void taglist_free(struct tag_entry *entry) { while (entry) { struct tag_entry *next = entry->next; free(entry); entry = next; } } /* Merge src1 and src2, write to *dst */ static void taglist_merge(struct tag_entry **dst, struct tag_entry *src1, struct tag_entry *src2) { struct tag_entry *entry; for (entry = src1; entry; entry = entry->next) taglist_add_divetag(dst, entry->tag); for (entry = src2; entry; entry = entry->next) taglist_add_divetag(dst, entry->tag); } void taglist_init_global() { int i; for (i = 0; i < sizeof(default_tags) / sizeof(char *); i++) taglist_add_tag(&g_tag_list, default_tags[i]); } struct dive *merge_dives(struct dive *a, struct dive *b, int offset, bool prefer_downloaded) { struct dive *res = alloc_dive(); struct dive *dl = NULL; /* Aim for newly downloaded dives to be 'b' (keep old dive data first) */ if (a->downloaded && !b->downloaded) { struct dive *tmp = a; a = b; b = tmp; } if (prefer_downloaded && b->downloaded) dl = b; /* * Did the user ask us to merge dives in the dive list? * We may want to just join the dive computers, not try to * interleave them at some offset. */ if (offset && likely_same_dive(a, b)) offset = 0; res->when = dl ? dl->when : a->when; res->selected = a->selected || b->selected; merge_trip(res, a, b); MERGE_NONZERO(res, a, b, latitude.udeg); MERGE_NONZERO(res, a, b, longitude.udeg); MERGE_TXT(res, a, b, location); MERGE_TXT(res, a, b, notes); MERGE_TXT(res, a, b, buddy); MERGE_TXT(res, a, b, divemaster); MERGE_MAX(res, a, b, rating); MERGE_TXT(res, a, b, suit); MERGE_MAX(res, a, b, number); MERGE_NONZERO(res, a, b, cns); MERGE_NONZERO(res, a, b, visibility); taglist_merge(&res->tag_list, a->tag_list, b->tag_list); merge_equipment(res, a, b); merge_airtemps(res, a, b); if (dl) { /* If we prefer downloaded, do those first, and get rid of "might be same" computers */ join_dive_computers(&res->dc, &dl->dc, &a->dc, 1); } else if (offset && might_be_same_device(&a->dc, &b->dc)) interleave_dive_computers(&res->dc, &a->dc, &b->dc, offset); else join_dive_computers(&res->dc, &a->dc, &b->dc, 0); fixup_dive(res); return res; } struct dive *find_dive_including(timestamp_t when) { int i; struct dive *dive; /* binary search, anyone? Too lazy for now; * also we always use the duration from the first divecomputer * could this ever be a problem? */ for_each_dive(i, dive) { if (dive->when <= when && when <= dive->when + dive->duration.seconds) return dive; } return NULL; } bool dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset) { return when - offset <= dive->when && dive->when + dive->duration.seconds <= when + offset; } /* find the n-th dive that is part of a group of dives within the offset around 'when'. * How is that for a vague definition of what this function should do... */ struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset) { int i, j = 0; struct dive *dive; for_each_dive(i, dive) { if (dive_within_time_range(dive, when, offset)) if (++j == n) return dive; } return NULL; } void shift_times(const timestamp_t amount) { int i; struct dive *dive; for_each_dive(i, dive) { if (!dive->selected) continue; dive->when += amount; } } timestamp_t get_times() { int i; struct dive *dive; for_each_dive(i, dive) { if (dive->selected) break; } return dive->when; } #define MAX_USERID_SIZE 32 void set_save_userid_local(short value) { prefs.save_userid_local = value; } void set_userid(char *rUserId) { prefs.userid = (char *) malloc(MAX_USERID_SIZE); if (prefs.userid && rUserId) strcpy(prefs.userid, rUserId); } #undef MAX_USERID_SIZE int average_depth(struct diveplan *dive) { int integral = 0; int last_time = 0; int last_depth = 0; struct divedatapoint *dp = dive->dp; while (dp) { if (dp->time) { /* Ignore gas indication samples */ integral += (dp->depth + last_depth) * (dp->time - last_time) / 2; last_time = dp->time; last_depth = dp->depth; } dp = dp->next; } return integral / last_time; }