#include #include #include #include #include #include "dive.h" #include "divelist.h" #include "display.h" #include "display-gtk.h" #include "libdivecomputer.h" #include "libdivecomputer/version.h" /* Christ. Libdivecomputer has the worst configuration system ever. */ #ifdef HW_FROG_H #define NOT_FROG , 0 #define LIBDIVECOMPUTER_SUPPORTS_FROG #else #define NOT_FROG #endif static const char *progress_bar_text = ""; static double progress_bar_fraction = 0.0; static int stoptime, stopdepth, ndl, po2, cns; static GError *error(const char *fmt, ...) { va_list args; GError *error; va_start(args, fmt); error = g_error_new_valist( g_quark_from_string("subsurface"), DIVE_ERROR_PARSE, fmt, args); va_end(args); return error; } static dc_status_t create_parser(device_data_t *devdata, dc_parser_t **parser) { return dc_parser_new(parser, devdata->device); } static int parse_gasmixes(device_data_t *devdata, struct dive *dive, dc_parser_t *parser, int ngases) { int i; for (i = 0; i < ngases; i++) { int rc; dc_gasmix_t gasmix = {0}; int o2, he; rc = dc_parser_get_field(parser, DC_FIELD_GASMIX, i, &gasmix); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) return rc; if (i >= MAX_CYLINDERS) continue; o2 = gasmix.oxygen * 1000 + 0.5; he = gasmix.helium * 1000 + 0.5; /* Ignore bogus data - libdivecomputer does some crazy stuff */ if (o2 + he <= AIR_PERMILLE || o2 >= 1000) o2 = 0; if (he < 0 || he >= 800 || o2+he >= 1000) he = 0; dive->cylinder[i].gasmix.o2.permille = o2; dive->cylinder[i].gasmix.he.permille = he; } return DC_STATUS_SUCCESS; } static void handle_event(struct divecomputer *dc, struct sample *sample, dc_sample_value_t value) { int type, time; /* we mark these for translation here, but we store the untranslated strings * and only translate them when they are displayed on screen */ static const char *events[] = { N_("none"), N_("deco stop"), N_("rbt"), N_("ascent"), N_("ceiling"), N_("workload"), N_("transmitter"), N_("violation"), N_("bookmark"), N_("surface"), N_("safety stop"), N_("gaschange"), N_("safety stop (voluntary)"), N_("safety stop (mandatory)"), N_("deepstop"), N_("ceiling (safety stop)"), N_("unknown"), N_("divetime"), N_("maxdepth"), N_("OLF"), N_("PO2"), N_("airtime"), N_("rgbm"), N_("heading"), N_("tissue level warning"), N_("gaschange"), N_("non stop time") }; const int nr_events = sizeof(events) / sizeof(const char *); const char *name; /* * Just ignore surface events. They are pointless. What "surface" * means depends on the dive computer (and possibly even settings * in the dive computer). It does *not* necessarily mean "depth 0", * so don't even turn it into that. */ if (value.event.type == SAMPLE_EVENT_SURFACE) return; /* an early development version of libdivecomputer 0.3 provided us with deco / ndl information for * a couple of dive computers through events; this got fixed later in the release cycle but for a * short while I'll keep the code around that converts the events into our preferred sample format here */ #if 0 if (value.event.type == SAMPLE_EVENT_DECOSTOP) { /* packed value - time in seconds in high 16 bit * depth in m(!) in low 16 bits */ stoptime = value.event.value >> 16; stopdepth = (value.event.value & 0xFFFF) * 1000; ndl = 0; } if (value.event.type == SAMPLE_EVENT_NDL) { stopdepth = 0; stoptime = 0; ndl = value.event.value; } if (value.event.type == SAMPLE_EVENT_DECOSTOP || value.event.type == SAMPLE_EVENT_NDL) /* don't create a Subsurface event for these */ return; #endif /* * Other evens might be more interesting, but for now we just print them out. */ type = value.event.type; name = N_("invalid event number"); if (type < nr_events) name = events[type]; time = value.event.time; if (sample) time += sample->time.seconds; add_event(dc, time, type, value.event.flags, value.event.value, name); } void sample_cb(dc_sample_type_t type, dc_sample_value_t value, void *userdata) { int i; struct divecomputer *dc = userdata; struct sample *sample; /* * We fill in the "previous" sample - except for DC_SAMPLE_TIME, * which creates a new one. */ sample = dc->samples ? dc->sample+dc->samples-1 : NULL; switch (type) { case DC_SAMPLE_TIME: if (sample) { sample->ndl.seconds = ndl; sample->stoptime.seconds = stoptime; sample->stopdepth.mm = stopdepth; sample->po2 = po2; sample->cns = cns; } sample = prepare_sample(dc); sample->time.seconds = value.time; finish_sample(dc); break; case DC_SAMPLE_DEPTH: sample->depth.mm = value.depth * 1000 + 0.5; break; case DC_SAMPLE_PRESSURE: sample->cylinderindex = value.pressure.tank; sample->cylinderpressure.mbar = value.pressure.value * 1000 + 0.5; break; case DC_SAMPLE_TEMPERATURE: sample->temperature.mkelvin = (value.temperature + 273.15) * 1000 + 0.5; break; case DC_SAMPLE_EVENT: handle_event(dc, sample, value); break; case DC_SAMPLE_RBT: printf(" %u\n", value.rbt); break; case DC_SAMPLE_HEARTBEAT: printf(" %u\n", value.heartbeat); break; case DC_SAMPLE_BEARING: printf(" %u\n", value.bearing); break; case DC_SAMPLE_VENDOR: printf(" ", value.vendor.type, value.vendor.size); for (i = 0; i < value.vendor.size; ++i) printf("%02X", ((unsigned char *) value.vendor.data)[i]); printf("\n"); break; #if DC_VERSION_CHECK(0, 3, 0) case DC_SAMPLE_SETPOINT: /* for us a setpoint means constant pO2 from here */ sample->po2 = po2 = value.setpoint * 1000 + 0.5; break; case DC_SAMPLE_PPO2: sample->po2 = po2 = value.ppo2 * 1000 + 0.5; break; case DC_SAMPLE_CNS: sample->cns = cns = value.cns * 100 + 0.5; break; case DC_SAMPLE_DECO: if (value.deco.type == DC_DECO_NDL) { ndl = value.deco.time; } else if (value.deco.type == DC_DECO_DECOSTOP || value.deco.type == DC_DECO_DEEPSTOP) { stopdepth = value.deco.depth * 1000.0 + 0.5; stoptime = value.deco.time; } #endif default: break; } } static void dev_info(device_data_t *devdata, const char *fmt, ...) { static char buffer[256]; va_list ap; va_start(ap, fmt); vsnprintf(buffer, sizeof(buffer), fmt, ap); va_end(ap); progress_bar_text = buffer; } static int import_dive_number = 0; static int parse_samples(device_data_t *devdata, struct divecomputer *dc, dc_parser_t *parser) { // Parse the sample data. return dc_parser_samples_foreach(parser, sample_cb, dc); } static inline int match_dc(struct divecomputer *a, struct divecomputer *b) { if (a->when != b->when) return 0; if (a->model && b->model && strcasecmp(a->model, b->model)) return 0; return 1; } /* * Check if this dive already existed before the import */ static int find_dive(struct divecomputer *match) { int i; for (i = 0; i < dive_table.preexisting; i++) { struct dive *old = dive_table.dives[i]; struct divecomputer *dc = &old->dc; /* Old-style dive with no explicit divecomputer information? */ if (!dc->when && old->when == match->when) return 1; do { if (match_dc(dc, match)) return 1; dc = dc->next; } while (dc); } return 0; } static inline int year(int year) { if (year < 70) return year + 2000; if (year < 100) return year + 1900; return year; } /* * Like g_strdup_printf(), but without the stupid g_malloc/g_free confusion. * And we limit the string to some arbitrary size. */ static char *str_printf(const char *fmt, ...) { va_list args; char buf[80]; va_start(args, fmt); vsnprintf(buf, sizeof(buf)-1, fmt, args); va_end(args); buf[sizeof(buf)-1] = 0; return strdup(buf); } /* * The dive ID for libdivecomputer dives is the first word of the * SHA1 of the fingerprint, if it exists. * * NOTE! This is byte-order dependent, and I don't care. */ static uint32_t calculate_diveid(const unsigned char *fingerprint, unsigned int fsize) { uint32_t csum[5]; if (!fingerprint || !fsize) return 0; SHA1(fingerprint, fsize, (unsigned char *)csum); return csum[0]; } static int dive_cb(const unsigned char *data, unsigned int size, const unsigned char *fingerprint, unsigned int fsize, void *userdata) { int rc; dc_parser_t *parser = NULL; device_data_t *devdata = userdata; dc_datetime_t dt = {0}; struct tm tm; struct dive *dive; /* reset the deco / ndl data */ ndl = stoptime = stopdepth = 0; rc = create_parser(devdata, &parser); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, _("Unable to create parser for %s %s"), devdata->vendor, devdata->product); return rc; } rc = dc_parser_set_data(parser, data, size); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, _("Error registering the data")); dc_parser_destroy(parser); return rc; } import_dive_number++; dive = alloc_dive(); rc = dc_parser_get_datetime(parser, &dt); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, _("Error parsing the datetime")); dc_parser_destroy(parser); return rc; } dive->dc.model = str_printf("%s %s", devdata->vendor, devdata->product); dive->dc.deviceid = devdata->deviceid; dive->dc.diveid = calculate_diveid(fingerprint, fsize); tm.tm_year = dt.year; tm.tm_mon = dt.month-1; tm.tm_mday = dt.day; tm.tm_hour = dt.hour; tm.tm_min = dt.minute; tm.tm_sec = dt.second; dive->when = dive->dc.when = utc_mktime(&tm); // Parse the divetime. dev_info(devdata, _("Dive %d: %s %d %04d"), import_dive_number, monthname(tm.tm_mon), tm.tm_mday, year(tm.tm_year)); unsigned int divetime = 0; rc = dc_parser_get_field (parser, DC_FIELD_DIVETIME, 0, &divetime); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, _("Error parsing the divetime")); dc_parser_destroy(parser); return rc; } dive->duration.seconds = divetime; // Parse the maxdepth. double maxdepth = 0.0; rc = dc_parser_get_field(parser, DC_FIELD_MAXDEPTH, 0, &maxdepth); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, _("Error parsing the maxdepth")); dc_parser_destroy(parser); return rc; } dive->maxdepth.mm = maxdepth * 1000 + 0.5; // Parse the gas mixes. unsigned int ngases = 0; rc = dc_parser_get_field(parser, DC_FIELD_GASMIX_COUNT, 0, &ngases); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, _("Error parsing the gas mix count")); dc_parser_destroy(parser); return rc; } #ifdef DC_FIELD_SALINITY // Check if the libdivecomputer version already supports salinity double salinity = 1.03; rc = dc_parser_get_field(parser, DC_FIELD_SALINITY, 0, &salinity); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, _("Error obtaining water salinity")); dc_parser_destroy(parser); return rc; } dive->salinity = salinity * 10000.0 + 0.5; #endif rc = parse_gasmixes(devdata, dive, parser, ngases); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, _("Error parsing the gas mix")); dc_parser_destroy(parser); return rc; } // Initialize the sample data. rc = parse_samples(devdata, &dive->dc, parser); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, _("Error parsing the samples")); dc_parser_destroy(parser); return rc; } dc_parser_destroy(parser); /* If we already saw this dive, abort. */ if (!devdata->force_download && find_dive(&dive->dc)) return 0; dive->downloaded = TRUE; record_dive(dive); mark_divelist_changed(TRUE); return 1; } static dc_status_t import_device_data(dc_device_t *device, device_data_t *devicedata) { return dc_device_foreach(device, dive_cb, devicedata); } /* * The device ID for libdivecomputer devices is the first 32-bit word * of the SHA1 hash of the model/firmware/serial numbers. * * NOTE! This is byte-order-dependent. And I can't find it in myself to * care. */ static uint32_t calculate_sha1(unsigned int model, unsigned int firmware, unsigned int serial) { SHA_CTX ctx; uint32_t csum[5]; SHA1_Init(&ctx); SHA1_Update(&ctx, &model, sizeof(model)); SHA1_Update(&ctx, &firmware, sizeof(firmware)); SHA1_Update(&ctx, &serial, sizeof(serial)); SHA1_Final((unsigned char *)csum, &ctx); return csum[0]; } static void event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata) { const dc_event_progress_t *progress = data; const dc_event_devinfo_t *devinfo = data; const dc_event_clock_t *clock = data; device_data_t *devdata = userdata; switch (event) { case DC_EVENT_WAITING: dev_info(devdata, _("Event: waiting for user action")); break; case DC_EVENT_PROGRESS: if (!progress->maximum) break; progress_bar_fraction = (double) progress->current / (double) progress->maximum; break; case DC_EVENT_DEVINFO: dev_info(devdata, _("model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)"), devinfo->model, devinfo->model, devinfo->firmware, devinfo->firmware, devinfo->serial, devinfo->serial); devdata->deviceid = calculate_sha1(devinfo->model, devinfo->firmware, devinfo->serial); break; case DC_EVENT_CLOCK: dev_info(devdata, _("Event: systime=%"PRId64", devtime=%u\n"), (uint64_t)clock->systime, clock->devtime); break; default: break; } } static int import_thread_done = 0, import_thread_cancelled; static int cancel_cb(void *userdata) { return import_thread_cancelled; } static const char *do_device_import(device_data_t *data) { dc_status_t rc; dc_device_t *device = data->device; // Register the event handler. int events = DC_EVENT_WAITING | DC_EVENT_PROGRESS | DC_EVENT_DEVINFO | DC_EVENT_CLOCK; rc = dc_device_set_events(device, events, event_cb, data); if (rc != DC_STATUS_SUCCESS) return _("Error registering the event handler."); // Register the cancellation handler. rc = dc_device_set_cancel(device, cancel_cb, data); if (rc != DC_STATUS_SUCCESS) return _("Error registering the cancellation handler."); rc = import_device_data(device, data); if (rc != DC_STATUS_SUCCESS) return _("Dive data import error"); /* All good */ return NULL; } static const char *do_libdivecomputer_import(device_data_t *data) { dc_status_t rc; const char *err; import_dive_number = 0; data->device = NULL; data->context = NULL; rc = dc_context_new(&data->context); if (rc != DC_STATUS_SUCCESS) return _("Unable to create libdivecomputer context"); err = _("Unable to open %s %s (%s)"); rc = dc_device_open(&data->device, data->context, data->descriptor, data->devname); if (rc == DC_STATUS_SUCCESS) { err = do_device_import(data); dc_device_close(data->device); } dc_context_free(data->context); return err; } static void *pthread_wrapper(void *_data) { device_data_t *data = _data; const char *err_string = do_libdivecomputer_import(data); import_thread_done = 1; return (void *)err_string; } /* this simply ends the dialog without a response and asks not to be fired again * as we set this function up in every loop while uemis_download is waiting for * the download to finish */ static gboolean timeout_func(gpointer _data) { GtkDialog *dialog = _data; if (!import_thread_cancelled) gtk_dialog_response(dialog, GTK_RESPONSE_NONE); return FALSE; } GError *do_import(device_data_t *data) { pthread_t pthread; void *retval; GtkDialog *dialog = data->dialog; /* I'm sure there is some better interface for waiting on a thread in a UI main loop */ import_thread_done = 0; progress_bar_text = ""; progress_bar_fraction = 0.0; pthread_create(&pthread, NULL, pthread_wrapper, data); /* loop here until the import is done or was cancelled by the user; * in order to get control back from gtk we register a timeout function * that ends the dialog with no response every 100ms; we then update the * progressbar and setup the timeout again - unless of course the user * pressed cancel, in which case we just wait for the download thread * to react to that and exit */ while (!import_thread_done) { if (!import_thread_cancelled) { int result; g_timeout_add(100, timeout_func, dialog); update_progressbar(&data->progress, progress_bar_fraction); update_progressbar_text(&data->progress, progress_bar_text); result = gtk_dialog_run(dialog); switch (result) { case GTK_RESPONSE_CANCEL: import_thread_cancelled = TRUE; progress_bar_text = "Cancelled..."; break; default: /* nothing */ break; } } else { update_progressbar(&data->progress, progress_bar_fraction); update_progressbar_text(&data->progress, progress_bar_text); usleep(100000); } } if (pthread_join(pthread, &retval) < 0) retval = _("Odd pthread error return"); if (retval) return error(retval, data->vendor, data->product, data->devname); return NULL; }