#include #include #include #include #include "gettext.h" #include "dive.h" #include "device.h" #include "divelist.h" #include "display.h" #ifdef USE_GTK_UI #include "display-gtk.h" #endif #include "libdivecomputer.h" #include "libdivecomputer/version.h" /* Christ. Libdivecomputer has the worst configuration system ever. */ #ifdef HW_FROG_H #define NOT_FROG , 0 #define LIBDIVECOMPUTER_SUPPORTS_FROG #else #define NOT_FROG #endif const char *progress_bar_text = ""; double progress_bar_fraction = 0.0; static int stoptime, stopdepth, ndl, po2, cns; static bool in_deco, first_temp_is_air; #if USE_GTK_UI static GError *error(const char *fmt, ...) { va_list args; GError *error; va_start(args, fmt); error = g_error_new_valist( g_quark_from_string("subsurface"), DIVE_ERROR_PARSE, fmt, args); va_end(args); return error; } #endif static dc_status_t create_parser(device_data_t *devdata, dc_parser_t **parser) { return dc_parser_new(parser, devdata->device); } /* Atomics Aquatics Cobalt specific parsing of tank information * realistically this REALLY needs to be done in libdivecomputer - but the * current API doesn't even have the notion of tank size, so for now I do * this here, but I need to work with Jef to make sure this gets added in * the new libdivecomputer API */ #define COBALT_HEADER 228 struct atomics_gas_info { uint8_t gas_nr; uint8_t po2imit; uint8_t tankspecmethod; /* 1: CF@psi 2: CF@bar 3: wet vol in deciliter */ uint8_t gasmixtype; uint8_t fo2; uint8_t fhe; uint16_t startpressure; /* in psi */ uint16_t tanksize; /* CF or dl */ uint16_t workingpressure; uint16_t sensorid; uint16_t endpressure; /* in psi */ uint16_t totalconsumption; /* in liters */ }; #define COBALT_CFATPSI 1 #define COBALT_CFATBAR 2 #define COBALT_WETINDL 3 static void get_tanksize(device_data_t *devdata, const unsigned char *data, cylinder_t *cyl, int idx) { /* I don't like this kind of match... I'd love to have an ID and * a firmware version or... something; and even better, just get * this from libdivecomputer */ if (!strcmp(devdata->vendor, "Atomic Aquatics") && !strcmp(devdata->product, "Cobalt")) { struct atomics_gas_info *atomics_gas_info; double airvolume; int mbar; /* at least some quick sanity check to make sure this is the * right data */ if (*(uint32_t *)data != 0xFFFEFFFE) { printf("incorrect header for Atomics dive\n"); return; } atomics_gas_info = (void*)(data + COBALT_HEADER); switch (atomics_gas_info[idx].tankspecmethod) { case COBALT_CFATPSI: airvolume = cuft_to_l(atomics_gas_info[idx].tanksize) * 1000.0; mbar = psi_to_mbar(atomics_gas_info[idx].workingpressure); cyl[idx].type.size.mliter = airvolume / bar_to_atm(mbar / 1000.0) + 0.5; cyl[idx].type.workingpressure.mbar = mbar; break; case COBALT_CFATBAR: airvolume = cuft_to_l(atomics_gas_info[idx].tanksize) * 1000.0; mbar = atomics_gas_info[idx].workingpressure * 1000; cyl[idx].type.size.mliter = airvolume / bar_to_atm(mbar / 1000.0) + 0.5; cyl[idx].type.workingpressure.mbar = mbar; break; case COBALT_WETINDL: cyl[idx].type.size.mliter = atomics_gas_info[idx].tanksize * 100; break; } } } static int parse_gasmixes(device_data_t *devdata, struct dive *dive, dc_parser_t *parser, int ngases, const unsigned char *data) { int i; for (i = 0; i < ngases; i++) { int rc; dc_gasmix_t gasmix = {0}; int o2, he; rc = dc_parser_get_field(parser, DC_FIELD_GASMIX, i, &gasmix); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) return rc; if (i >= MAX_CYLINDERS) continue; o2 = gasmix.oxygen * 1000 + 0.5; he = gasmix.helium * 1000 + 0.5; /* Ignore bogus data - libdivecomputer does some crazy stuff */ if (o2 + he <= O2_IN_AIR || o2 >= 1000) o2 = 0; if (he < 0 || he >= 800 || o2+he >= 1000) he = 0; dive->cylinder[i].gasmix.o2.permille = o2; dive->cylinder[i].gasmix.he.permille = he; get_tanksize(devdata, data, dive->cylinder, i); } return DC_STATUS_SUCCESS; } static void handle_event(struct divecomputer *dc, struct sample *sample, dc_sample_value_t value) { int type, time; /* we mark these for translation here, but we store the untranslated strings * and only translate them when they are displayed on screen */ static const char *events[] = { QT_TR_NOOP("none"), QT_TR_NOOP("deco stop"), QT_TR_NOOP("rbt"), QT_TR_NOOP("ascent"), QT_TR_NOOP("ceiling"), QT_TR_NOOP("workload"), QT_TR_NOOP("transmitter"), QT_TR_NOOP("violation"), QT_TR_NOOP("bookmark"), QT_TR_NOOP("surface"), QT_TR_NOOP("safety stop"), QT_TR_NOOP("gaschange"), QT_TR_NOOP("safety stop (voluntary)"), QT_TR_NOOP("safety stop (mandatory)"), QT_TR_NOOP("deepstop"), QT_TR_NOOP("ceiling (safety stop)"), QT_TR_NOOP("below floor"), QT_TR_NOOP("divetime"), QT_TR_NOOP("maxdepth"), QT_TR_NOOP("OLF"), QT_TR_NOOP("PO2"), QT_TR_NOOP("airtime"), QT_TR_NOOP("rgbm"), QT_TR_NOOP("heading"), QT_TR_NOOP("tissue level warning"), QT_TR_NOOP("gaschange"), QT_TR_NOOP("non stop time") }; const int nr_events = sizeof(events) / sizeof(const char *); const char *name; /* * Just ignore surface events. They are pointless. What "surface" * means depends on the dive computer (and possibly even settings * in the dive computer). It does *not* necessarily mean "depth 0", * so don't even turn it into that. */ if (value.event.type == SAMPLE_EVENT_SURFACE) return; /* * Other evens might be more interesting, but for now we just print them out. */ type = value.event.type; name = QT_TR_NOOP("invalid event number"); if (type < nr_events) name = events[type]; time = value.event.time; if (sample) time += sample->time.seconds; add_event(dc, time, type, value.event.flags, value.event.value, name); } void sample_cb(dc_sample_type_t type, dc_sample_value_t value, void *userdata) { int i; struct divecomputer *dc = userdata; struct sample *sample; /* * We fill in the "previous" sample - except for DC_SAMPLE_TIME, * which creates a new one. */ sample = dc->samples ? dc->sample+dc->samples-1 : NULL; switch (type) { case DC_SAMPLE_TIME: if (sample) { sample->in_deco = in_deco; sample->ndl.seconds = ndl; sample->stoptime.seconds = stoptime; sample->stopdepth.mm = stopdepth; sample->po2 = po2; sample->cns = cns; } sample = prepare_sample(dc); sample->time.seconds = value.time; finish_sample(dc); break; case DC_SAMPLE_DEPTH: sample->depth.mm = value.depth * 1000 + 0.5; break; case DC_SAMPLE_PRESSURE: sample->sensor = value.pressure.tank; sample->cylinderpressure.mbar = value.pressure.value * 1000 + 0.5; break; case DC_SAMPLE_TEMPERATURE: sample->temperature.mkelvin = value.temperature * 1000 + ZERO_C_IN_MKELVIN + 0.5; break; case DC_SAMPLE_EVENT: handle_event(dc, sample, value); break; case DC_SAMPLE_RBT: printf(" %u\n", value.rbt); break; case DC_SAMPLE_HEARTBEAT: printf(" %u\n", value.heartbeat); break; case DC_SAMPLE_BEARING: printf(" %u\n", value.bearing); break; case DC_SAMPLE_VENDOR: printf(" ", FRACTION(sample->time.seconds, 60), value.vendor.type, value.vendor.size); for (i = 0; i < value.vendor.size; ++i) printf("%02X", ((unsigned char *) value.vendor.data)[i]); printf("\n"); break; #if DC_VERSION_CHECK(0, 3, 0) case DC_SAMPLE_SETPOINT: /* for us a setpoint means constant pO2 from here */ sample->po2 = po2 = value.setpoint * 1000 + 0.5; break; case DC_SAMPLE_PPO2: sample->po2 = po2 = value.ppo2 * 1000 + 0.5; break; case DC_SAMPLE_CNS: sample->cns = cns = value.cns * 100 + 0.5; break; case DC_SAMPLE_DECO: if (value.deco.type == DC_DECO_NDL) { sample->ndl.seconds = ndl = value.deco.time; sample->stopdepth.mm = stopdepth = value.deco.depth * 1000.0 + 0.5; sample->in_deco = in_deco = FALSE; } else if (value.deco.type == DC_DECO_DECOSTOP || value.deco.type == DC_DECO_DEEPSTOP) { sample->in_deco = in_deco = TRUE; sample->stopdepth.mm = stopdepth = value.deco.depth * 1000.0 + 0.5; sample->stoptime.seconds = stoptime = value.deco.time; ndl = 0; } else if (value.deco.type == DC_DECO_SAFETYSTOP) { sample->in_deco = in_deco = FALSE; sample->stopdepth.mm = stopdepth = value.deco.depth * 1000.0 + 0.5; sample->stoptime.seconds = stoptime = value.deco.time; } #endif default: break; } } static void dev_info(device_data_t *devdata, const char *fmt, ...) { static char buffer[1024]; va_list ap; va_start(ap, fmt); vsnprintf(buffer, sizeof(buffer), fmt, ap); va_end(ap); progress_bar_text = buffer; } static int import_dive_number = 0; static int parse_samples(device_data_t *devdata, struct divecomputer *dc, dc_parser_t *parser) { // Parse the sample data. return dc_parser_samples_foreach(parser, sample_cb, dc); } static int might_be_same_dc(struct divecomputer *a, struct divecomputer *b) { if (!a->model || !b->model) return 1; if (strcasecmp(a->model, b->model)) return 0; if (!a->deviceid || !b->deviceid) return 1; return a->deviceid == b->deviceid; } static int match_one_dive(struct divecomputer *a, struct dive *dive) { struct divecomputer *b = &dive->dc; /* * Walk the existing dive computer data, * see if we have a match (or an anti-match: * the same dive computer but a different * dive ID). */ do { int match = match_one_dc(a, b); if (match) return match > 0; b = b->next; } while (b); /* Ok, no exact dive computer match. Does the date match? */ b = &dive->dc; do { if (a->when == b->when && might_be_same_dc(a, b)) return 1; b = b->next; } while (b); return 0; } /* * Check if this dive already existed before the import */ static int find_dive(struct divecomputer *match) { int i; for (i = 0; i < dive_table.preexisting; i++) { struct dive *old = dive_table.dives[i]; if (match_one_dive(match, old)) return 1; } return 0; } static inline int year(int year) { if (year < 70) return year + 2000; if (year < 100) return year + 1900; return year; } /* * Like g_strdup_printf(), but without the stupid g_malloc/g_free confusion. * And we limit the string to some arbitrary size. */ static char *str_printf(const char *fmt, ...) { va_list args; char buf[1024]; va_start(args, fmt); vsnprintf(buf, sizeof(buf)-1, fmt, args); va_end(args); buf[sizeof(buf)-1] = 0; return strdup(buf); } /* * The dive ID for libdivecomputer dives is the first word of the * SHA1 of the fingerprint, if it exists. * * NOTE! This is byte-order dependent, and I don't care. */ static uint32_t calculate_diveid(const unsigned char *fingerprint, unsigned int fsize) { uint32_t csum[5]; if (!fingerprint || !fsize) return 0; SHA1(fingerprint, fsize, (unsigned char *)csum); return csum[0]; } static int dive_cb(const unsigned char *data, unsigned int size, const unsigned char *fingerprint, unsigned int fsize, void *userdata) { int rc; dc_parser_t *parser = NULL; device_data_t *devdata = userdata; dc_datetime_t dt = {0}; struct tm tm; struct dive *dive; /* reset the deco / ndl data */ ndl = stoptime = stopdepth = 0; in_deco = FALSE; rc = create_parser(devdata, &parser); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, tr("Unable to create parser for %s %s"), devdata->vendor, devdata->product); return rc; } rc = dc_parser_set_data(parser, data, size); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, tr("Error registering the data")); dc_parser_destroy(parser); return rc; } import_dive_number++; dive = alloc_dive(); rc = dc_parser_get_datetime(parser, &dt); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, tr("Error parsing the datetime")); dc_parser_destroy(parser); return rc; } dive->dc.model = strdup(devdata->model); dive->dc.deviceid = devdata->deviceid; dive->dc.diveid = calculate_diveid(fingerprint, fsize); tm.tm_year = dt.year; tm.tm_mon = dt.month-1; tm.tm_mday = dt.day; tm.tm_hour = dt.hour; tm.tm_min = dt.minute; tm.tm_sec = dt.second; dive->when = dive->dc.when = utc_mktime(&tm); // Parse the divetime. dev_info(devdata, tr("Dive %d: %s %d %04d"), import_dive_number, monthname(tm.tm_mon), tm.tm_mday, year(tm.tm_year)); unsigned int divetime = 0; rc = dc_parser_get_field (parser, DC_FIELD_DIVETIME, 0, &divetime); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, tr("Error parsing the divetime")); dc_parser_destroy(parser); return rc; } dive->dc.duration.seconds = divetime; // Parse the maxdepth. double maxdepth = 0.0; rc = dc_parser_get_field(parser, DC_FIELD_MAXDEPTH, 0, &maxdepth); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, tr("Error parsing the maxdepth")); dc_parser_destroy(parser); return rc; } dive->dc.maxdepth.mm = maxdepth * 1000 + 0.5; // Parse the gas mixes. unsigned int ngases = 0; rc = dc_parser_get_field(parser, DC_FIELD_GASMIX_COUNT, 0, &ngases); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, tr("Error parsing the gas mix count")); dc_parser_destroy(parser); return rc; } #if DC_VERSION_CHECK(0, 3, 0) // Check if the libdivecomputer version already supports salinity & atmospheric dc_salinity_t salinity = { .type = DC_WATER_SALT, .density = 1.03 }; rc = dc_parser_get_field(parser, DC_FIELD_SALINITY, 0, &salinity); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, tr("Error obtaining water salinity")); dc_parser_destroy(parser); return rc; } dive->dc.salinity = salinity.density * 10000.0 + 0.5; double surface_pressure = 1.0; rc = dc_parser_get_field(parser, DC_FIELD_ATMOSPHERIC, 0, &surface_pressure); if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) { dev_info(devdata, tr("Error obtaining surface pressure")); dc_parser_destroy(parser); return rc; } dive->dc.surface_pressure.mbar = surface_pressure * 1000.0 + 0.5; #endif rc = parse_gasmixes(devdata, dive, parser, ngases, data); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, tr("Error parsing the gas mix")); dc_parser_destroy(parser); return rc; } // Initialize the sample data. rc = parse_samples(devdata, &dive->dc, parser); if (rc != DC_STATUS_SUCCESS) { dev_info(devdata, tr("Error parsing the samples")); dc_parser_destroy(parser); return rc; } dc_parser_destroy(parser); /* If we already saw this dive, abort. */ if (!devdata->force_download && find_dive(&dive->dc)) return 0; /* Various libdivecomputer interface fixups */ if (first_temp_is_air && dive->dc.samples) { dive->dc.airtemp = dive->dc.sample[0].temperature; dive->dc.sample[0].temperature.mkelvin = 0; } dive->downloaded = TRUE; record_dive(dive); mark_divelist_changed(TRUE); return 1; } static dc_status_t import_device_data(dc_device_t *device, device_data_t *devicedata) { return dc_device_foreach(device, dive_cb, devicedata); } /* * The device ID for libdivecomputer devices is the first 32-bit word * of the SHA1 hash of the model/firmware/serial numbers. * * NOTE! This is byte-order-dependent. And I can't find it in myself to * care. */ static uint32_t calculate_sha1(unsigned int model, unsigned int firmware, unsigned int serial) { SHA_CTX ctx; uint32_t csum[5]; SHA1_Init(&ctx); SHA1_Update(&ctx, &model, sizeof(model)); SHA1_Update(&ctx, &firmware, sizeof(firmware)); SHA1_Update(&ctx, &serial, sizeof(serial)); SHA1_Final((unsigned char *)csum, &ctx); return csum[0]; } /* * libdivecomputer has returned two different serial numbers for the * same device in different versions. First it used to just do the four * bytes as one 32-bit number, then it turned it into a decimal number * with each byte giving two digits (0-99). * * The only way we can tell is by looking at the format of the number, * so we'll just fix it to the first format. */ static unsigned int undo_libdivecomputer_suunto_nr_changes(unsigned int serial) { unsigned char b0, b1, b2, b3; /* * The second format will never have more than 8 decimal * digits, so do a cheap check first */ if (serial >= 100000000) return serial; /* The original format seems to be four bytes of values 00-99 */ b0 = (serial >> 0) & 0xff; b1 = (serial >> 8) & 0xff; b2 = (serial >> 16) & 0xff; b3 = (serial >> 24) & 0xff; /* Looks like an old-style libdivecomputer serial number */ if ((b0 < 100) && (b1 < 100) && (b2 < 100) && (b3 < 100)) return serial; /* Nope, it was converted. */ b0 = serial % 100; serial /= 100; b1 = serial % 100; serial /= 100; b2 = serial % 100; serial /= 100; b3 = serial % 100; serial /= 100; serial = b0 + (b1 << 8) + (b2 << 16) + (b3 << 24); return serial; } static unsigned int fixup_suunto_versions(device_data_t *devdata, const dc_event_devinfo_t *devinfo) { unsigned int serial = devinfo->serial; char serial_nr[13] = ""; char firmware[13] = ""; first_temp_is_air = 1; serial = undo_libdivecomputer_suunto_nr_changes(serial); if (serial) { snprintf(serial_nr, sizeof(serial_nr), "%02d%02d%02d%02d", (devinfo->serial >> 24) & 0xff, (devinfo->serial >> 16) & 0xff, (devinfo->serial >> 8) & 0xff, (devinfo->serial >> 0) & 0xff); } if (devinfo->firmware) { snprintf(firmware, sizeof(firmware), "%d.%d.%d", (devinfo->firmware >> 16) & 0xff, (devinfo->firmware >> 8) & 0xff, (devinfo->firmware >> 0) & 0xff); } create_device_node(devdata->model, devdata->deviceid, serial_nr, firmware, ""); return serial; } static void event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata) { const dc_event_progress_t *progress = data; const dc_event_devinfo_t *devinfo = data; const dc_event_clock_t *clock = data; device_data_t *devdata = userdata; unsigned int serial; switch (event) { case DC_EVENT_WAITING: dev_info(devdata, tr("Event: waiting for user action")); break; case DC_EVENT_PROGRESS: if (!progress->maximum) break; progress_bar_fraction = (double) progress->current / (double) progress->maximum; break; case DC_EVENT_DEVINFO: dev_info(devdata, tr("model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)"), devinfo->model, devinfo->model, devinfo->firmware, devinfo->firmware, devinfo->serial, devinfo->serial); /* * libdivecomputer doesn't give serial numbers in the proper string form, * so we have to see if we can do some vendor-specific munging. */ serial = devinfo->serial; if (!strcmp(devdata->vendor, "Suunto")) serial = fixup_suunto_versions(devdata, devinfo); devdata->deviceid = calculate_sha1(devinfo->model, devinfo->firmware, serial); break; case DC_EVENT_CLOCK: dev_info(devdata, tr("Event: systime=%"PRId64", devtime=%u\n"), (uint64_t)clock->systime, clock->devtime); break; default: break; } } int import_thread_cancelled; static int cancel_cb(void *userdata) { return import_thread_cancelled; } static const char *do_device_import(device_data_t *data) { dc_status_t rc; dc_device_t *device = data->device; data->model = str_printf("%s %s", data->vendor, data->product); // Register the event handler. int events = DC_EVENT_WAITING | DC_EVENT_PROGRESS | DC_EVENT_DEVINFO | DC_EVENT_CLOCK; rc = dc_device_set_events(device, events, event_cb, data); if (rc != DC_STATUS_SUCCESS) return tr("Error registering the event handler."); // Register the cancellation handler. rc = dc_device_set_cancel(device, cancel_cb, data); if (rc != DC_STATUS_SUCCESS) return tr("Error registering the cancellation handler."); rc = import_device_data(device, data); if (rc != DC_STATUS_SUCCESS) return tr("Dive data import error"); /* All good */ return NULL; } const char *do_libdivecomputer_import(device_data_t *data) { dc_status_t rc; const char *err; import_dive_number = 0; first_temp_is_air = 0; data->device = NULL; data->context = NULL; rc = dc_context_new(&data->context); if (rc != DC_STATUS_SUCCESS) return tr("Unable to create libdivecomputer context"); err = tr("Unable to open %s %s (%s)"); rc = dc_device_open(&data->device, data->context, data->descriptor, data->devname); if (rc == DC_STATUS_SUCCESS) { err = do_device_import(data); dc_device_close(data->device); } dc_context_free(data->context); return err; }