#include #include "dive.h" #include "divelist.h" #include "file.h" // Convert bytes into an INT #define array_uint16_le(p) ((unsigned int) (p)[0] \ + ((p)[1]<<8) ) #define array_uint32_le(p) ((unsigned int) (p)[0] \ + ((p)[1]<<8) + ((p)[2]<<16) \ + ((p)[3]<<24)) static void parse_dives (int log_version, const unsigned char *buf, unsigned int buf_size) { unsigned int ptr = 0; unsigned char model; struct dive *dive; struct divecomputer *dc; struct sample *sample; while (ptr < buf_size) { dive = alloc_dive(); dc = &dive->dc; // Model 0=Xen, 1,2=Xeo, 4=Lynx, other=Liquivision model = *(buf + ptr); switch (model) { case 0: dc->model = "Xen"; break; case 1: case 2: dc->model = "Xeo"; break; case 4: dc->model = "Lynx"; break; default: dc->model = "LiquiVision"; break; } ptr++; // Dive location, assemble Location and Place unsigned int len, place_len; len = array_uint32_le(buf + ptr); ptr += 4; place_len = array_uint32_le(buf + ptr + len); if (len && place_len) { dive->location = malloc(len + place_len + 4); memset(dive->location, 0, len + place_len + 4); memcpy(dive->location, buf + ptr, len); memcpy(dive->location + len, ", ", 2); memcpy(dive->location + len + 2, buf + ptr + len + 4, place_len); } else if (len) { dive->location = strndup(buf + ptr, len); } else if (place_len) { dive->location = strndup(buf + ptr + len + 4, place_len); } ptr += len + 4 + place_len; // Dive comment len = array_uint32_le(buf + ptr); ptr += 4; // Blank notes are better than the default text if (len && strncmp(buf + ptr, "Comment ...", 11)) { dive->notes = strndup(buf + ptr, len); } ptr += len; dive->id = array_uint32_le(buf + ptr); ptr += 4; dive->number = array_uint16_le(buf + ptr) + 1; ptr += 2; dive->duration.seconds = array_uint32_le(buf + ptr); // seconds ptr += 4; dive->maxdepth.mm = array_uint16_le(buf + ptr) * 10; // cm->mm ptr += 2; dive->meandepth.mm = array_uint16_le(buf + ptr) * 10; // cm->mm ptr += 2; dive->when = array_uint32_le(buf + ptr); ptr += 4; //unsigned int end_time = array_uint32_le(buf + ptr); ptr += 4; //unsigned int sit = array_uint32_le(buf + ptr); ptr += 4; //if (sit == 0xffffffff) { //} dive->surface_pressure.mbar = array_uint16_le(buf + ptr); // ??? ptr += 2; //unsigned int rep_dive = array_uint16_le(buf + ptr); ptr += 2; dive->mintemp.mkelvin = C_to_mkelvin((float)array_uint16_le(buf + ptr)/10);// C->mK ptr += 2; dive->maxtemp.mkelvin = C_to_mkelvin((float)array_uint16_le(buf + ptr)/10);// C->mK ptr += 2; dive->salinity = *(buf + ptr); // ??? ptr += 1; unsigned int sample_count = array_uint32_le(buf + ptr); ptr += 4; // Sample interval unsigned char sample_interval; sample_interval = 1; unsigned char intervals[6] = {1,2,5,10,30,60}; if (*(buf + ptr) < 6) sample_interval = intervals[*(buf + ptr)]; ptr += 1; float start_cns = 0; unsigned char dive_mode = 0, algorithm = 0; if (array_uint32_le(buf + ptr) != sample_count) { // Xeo, with CNS and OTU start_cns = *(float *) (buf + ptr); ptr += 4; dive->cns = *(float *) (buf + ptr); // end cns ptr += 4; dive->otu = *(float *) (buf + ptr); ptr += 4; dive_mode = *(buf + ptr++); // 0=Deco, 1=Gauge, 2=None algorithm = *(buf + ptr++); // 0=ZH-L16C+GF sample_count = array_uint32_le(buf + ptr); } ptr += 4; // Parse dive samples const unsigned char *ds = buf + ptr; const unsigned char *ts = buf + ptr + sample_count * 2 + 4; const unsigned char *ps = buf + ptr + sample_count * 4 + 4; unsigned int ps_count = array_uint32_le(ps); ps += 4; // Bump ptr ptr += sample_count * 4 + 4; // Handle events unsigned int event; unsigned int ps_ptr; ps_ptr = 0; unsigned int d = 0, e; int event_time, mbar, sensor; // Loop through events for (e = 0; e < ps_count; e++) { // Get event event = array_uint16_le(ps + ps_ptr); ps_ptr += 2; switch (event) { case 0x0002: // Unknown case 0x0004: // Unknown ps_ptr += 4; continue; case 0x0005: // Unknown ps_ptr += 6; continue; case 0x0007: // Gas // 4 byte time // 1 byte O2, 1 bye He ps_ptr += 6; continue; case 0x0008: // 4 byte time // 2 byte gas set point 2 ps_ptr += 6; continue; case 0x000f: // Tank pressure event_time = array_uint32_le(ps + ps_ptr); sensor = 0; //array_uint16_le(ps + ps_ptr + 4); mbar = array_uint16_le(ps + ps_ptr + 6) * 10; // cb->mb // 1 byte PSR // 1 byte ST ps_ptr += 10; break; case 0x0010: ps_ptr += 26; continue; case 0x0015: // Unknown ps_ptr += 2; continue; default: ps_ptr += 4; continue; } int sample_time, next_time, last_time; int depth_mm, last_depth, temp_mk, last_temp; while (true) { sample = prepare_sample(dc); // Get sample times sample_time = d * sample_interval; depth_mm = array_uint16_le(ds + d * 2) * 10; // cm->mm temp_mk = C_to_mkelvin(array_uint16_le(ts + d * 2) / 10); // dC->mK next_time = (d < sample_count - 1 ? (d + 1) * sample_interval : sample_time); last_time = (d ? (d - 1) * sample_interval : 0); if (d == sample_count) { // We still have events to record sample->time.seconds = event_time; sample->depth.mm == array_uint16_le(ds + (d - 1) * 2) * 10; // cm->mm sample->temperature.mkelvin = C_to_mkelvin(array_uint16_le(ts + (d - 1) * 2) / 10); // dC->mK sample->sensor = sensor; sample->cylinderpressure.mbar = mbar; finish_sample(dc); break; } else if (event_time > sample_time) { // Record sample and loop sample->time.seconds = sample_time; sample->depth.mm = depth_mm; sample->temperature.mkelvin = temp_mk; finish_sample(dc); d++; continue; } else if (event_time == sample_time) { sample->time.seconds = sample_time; sample->depth.mm = depth_mm; sample->temperature.mkelvin = temp_mk; sample->sensor = sensor; sample->cylinderpressure.mbar = mbar; finish_sample(dc); break; } else { // Event is prior to sample sample->time.seconds = event_time; sample->sensor = sensor; sample->cylinderpressure.mbar = mbar; if (last_time == sample_time) { sample->depth.mm = depth_mm; sample->temperature.mkelvin = temp_mk; } else { // Extrapolate last_depth = array_uint16_le(ds + (d - 1) * 2) * 10; // cm->mm last_temp = C_to_mkelvin(array_uint16_le(ts + (d - 1) * 2) / 10); // dC->mK sample->depth.mm = last_depth + (depth_mm - last_depth) * (event_time - last_time) / sample_interval; sample->temperature.mkelvin = last_temp + (temp_mk - last_temp) * (event_time - last_time) / sample_interval; } finish_sample(dc); break; } } // while (true); } // for each event sample // record trailing depth samples for ( ;d < sample_count; d++) { sample = prepare_sample(dc); sample->time.seconds = d * sample_interval; sample->depth.mm = array_uint16_le(ds + d * 2) * 10; // cm->mm sample->temperature.mkelvin = C_to_mkelvin((float)array_uint16_le(ts + d * 2) / 10); finish_sample(dc); } if (log_version == 3 && model == 4) { // Advance to begin of next dive switch (array_uint16_le(ps + ps_ptr)) { case 0x0000: ps_ptr += 5; break; case 0x0100: ps_ptr += 7; break; case 0x0200: ps_ptr += 9; break; case 0x0300: ps_ptr += 11; break; case 0x0b0b: ps_ptr += 27; break; } while (*(ps + ps_ptr) != 0x04) ps_ptr++; } // End dive dive->downloaded = true; record_dive(dive); mark_divelist_changed(true); // Advance ptr for next dive ptr += ps_ptr + 4; } // while save_dives("/tmp/test.xml"); } int try_to_open_liquivision(const char *filename, struct memblock *mem) { void *name; const unsigned char *buf = mem->buffer; unsigned int buf_size = mem->size; unsigned int ptr; int log_version; // Get name unsigned int len = array_uint32_le(buf); if (len) { name = malloc(len); strncpy(name, buf + 4, len); } ptr = 4 + len; unsigned int dive_count = array_uint32_le(buf + ptr); if (dive_count == 0xffffffff) { // File version 3.0 log_version = 3; ptr += 6; dive_count = array_uint32_le(buf + ptr); } else { log_version = 2; } ptr += 4; parse_dives(log_version, buf + ptr, buf_size - ptr); return 1; }