#include #include #include #include #include #include "dive.h" #include "display.h" #include "divelist.h" int selected_dive = 0; /* Plot info with smoothing and one-, two- and three-minute minimums and maximums */ struct plot_info { int nr; int maxtime; int meandepth, maxdepth; int minpressure, maxpressure; int mintemp, maxtemp; struct plot_data { int sec; int pressure, temperature; /* Depth info */ int val; int smoothed; struct plot_data *min[3]; struct plot_data *max[3]; int avg[3]; } entry[]; }; #define plot_info_size(nr) (sizeof(struct plot_info) + (nr)*sizeof(struct plot_data)) /* Scale to 0,0 -> maxx,maxy */ #define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx) #define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy) #define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y) static void move_to(struct graphics_context *gc, double x, double y) { cairo_move_to(gc->cr, SCALE(gc, x, y)); } static void line_to(struct graphics_context *gc, double x, double y) { cairo_line_to(gc->cr, SCALE(gc, x, y)); } static void set_source_rgba(struct graphics_context *gc, double r, double g, double b, double a) { if (gc->printer) { /* Black is white and white is black */ double sum = r+g+b; if (sum > 2) r = g = b = 0; else if (sum < 1) r = g = b = 1; } cairo_set_source_rgba(gc->cr, r, g, b, a); } static void set_source_rgb(struct graphics_context *gc, double r, double g, double b) { set_source_rgba(gc, r, g, b, 1); } #define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y)) /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such. */ static int get_maxtime(struct plot_info *pi) { int seconds = pi->maxtime; /* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */ return MAX(30*60, ROUND_UP(seconds+150, 60*5)); } static int get_maxdepth(struct plot_info *pi) { unsigned mm = pi->maxdepth; /* Minimum 30m, rounded up to 10m, with at least 3m to spare */ return MAX(30000, ROUND_UP(mm+3000, 10000)); } typedef struct { int size; double r,g,b; double hpos, vpos; } text_render_options_t; #define RIGHT (-1.0) #define CENTER (-0.5) #define LEFT (0.0) #define TOP (1) #define MIDDLE (0) #define BOTTOM (-1) static void plot_text(struct graphics_context *gc, const text_render_options_t *tro, double x, double y, const char *fmt, ...) { cairo_t *cr = gc->cr; cairo_font_extents_t fe; cairo_text_extents_t extents; double dx, dy; char buffer[80]; va_list args; va_start(args, fmt); vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); cairo_set_font_size(cr, tro->size); cairo_font_extents(cr, &fe); cairo_text_extents(cr, buffer, &extents); dx = tro->hpos * extents.width + extents.x_bearing; dy = tro->vpos * extents.height + fe.descent; move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); cairo_text_path(cr, buffer); set_source_rgb(gc, 0, 0, 0); cairo_stroke(cr); move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); set_source_rgb(gc, tro->r, tro->g, tro->b); cairo_show_text(cr, buffer); } static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro) { int sec = entry->sec; depth_t depth = { entry->val }; const char *fmt; double d; switch (output_units.length) { case METERS: d = depth.mm / 1000.0; fmt = "%.1f"; break; case FEET: d = to_feet(depth); fmt = "%.0f"; break; } plot_text(gc, tro, sec, depth.mm, fmt, d); } static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi) { static const text_render_options_t deep = {14, 1.0, 0.2, 0.2, CENTER, TOP}; static const text_render_options_t shallow = {14, 1.0, 0.2, 0.2, CENTER, BOTTOM}; int i; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; if (entry->val < 2000) continue; if (entry == entry->max[2]) render_depth_sample(gc, entry, &deep); if (entry == entry->min[2]) render_depth_sample(gc, entry, &shallow); } } static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi) { int maxtime, maxdepth; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = maxdepth; plot_text_samples(gc, pi); } static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi) { int i; struct plot_data *entry = pi->entry; cairo_set_source_rgba(gc->cr, 1, 0.2, 0.2, 0.20); move_to(gc, entry->sec, entry->smoothed); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->smoothed); } cairo_stroke(gc->cr); } static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi, int index, double a) { int i; struct plot_data *entry = pi->entry; cairo_set_source_rgba(gc->cr, 1, 0.2, 1, a); move_to(gc, entry->sec, entry->min[index]->val); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->min[index]->val); } for (i = 1; i < pi->nr; i++) { line_to(gc, entry->sec, entry->max[index]->val); entry--; } cairo_close_path(gc->cr); cairo_fill(gc->cr); } static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi) { if (gc->printer) return; plot_minmax_profile_minute(gc, pi, 2, 0.1); plot_minmax_profile_minute(gc, pi, 1, 0.1); plot_minmax_profile_minute(gc, pi, 0, 0.1); } static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi) { int i; cairo_t *cr = gc->cr; int begins, sec, depth; struct plot_data *entry; int maxtime, maxdepth, marker; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); /* Time markers: every 5 min */ gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = 1.0; for (i = 5*60; i < maxtime; i += 5*60) { move_to(gc, i, 0); line_to(gc, i, 1); } /* Depth markers: every 30 ft or 10 m*/ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = maxdepth; switch (output_units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } set_source_rgba(gc, 1, 1, 1, 0.5); for (i = marker; i < maxdepth; i += marker) { move_to(gc, 0, i); line_to(gc, 1, i); } cairo_stroke(cr); /* Show mean depth */ set_source_rgba(gc, 1, 0.2, 0.2, 0.40); move_to(gc, 0, pi->meandepth); line_to(gc, 1, pi->meandepth); cairo_stroke(cr); gc->leftx = 0; gc->rightx = maxtime; plot_smoothed_profile(gc, pi); plot_minmax_profile(gc, pi); entry = pi->entry; set_source_rgba(gc, 1, 0.2, 0.2, 0.80); begins = entry->sec; move_to(gc, entry->sec, entry->val); for (i = 1; i < pi->nr; i++) { entry++; sec = entry->sec; if (sec <= maxtime) { depth = entry->val; line_to(gc, sec, depth); } } gc->topy = 0; gc->bottomy = 1.0; line_to(gc, MIN(sec,maxtime), 0); line_to(gc, begins, 0); cairo_close_path(cr); set_source_rgba(gc, 1, 0.2, 0.2, 0.20); cairo_fill_preserve(cr); set_source_rgba(gc, 1, 0.2, 0.2, 0.80); cairo_stroke(cr); } static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi) { int maxtime, mintemp, maxtemp, delta; /* Get plot scaling limits */ maxtime = get_maxtime(pi); mintemp = pi->mintemp; maxtemp = pi->maxtemp; gc->leftx = 0; gc->rightx = maxtime; /* Show temperatures in roughly the lower third, but make sure the scale is at least somewhat reasonable */ delta = maxtemp - mintemp; if (delta > 3000) { /* more than 3K in fluctuation */ gc->topy = maxtemp + delta*2; gc->bottomy = mintemp - delta/2; } else { gc->topy = maxtemp + 1500 + delta*2; gc->bottomy = mintemp - delta/2; } return maxtemp > mintemp; } static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin) { int deg; const char *unit; static const text_render_options_t tro = {12, 0.2, 0.2, 1.0, LEFT, TOP}; temperature_t temperature = { mkelvin }; if (output_units.temperature == FAHRENHEIT) { deg = to_F(temperature); unit = "F"; } else { deg = to_C(temperature); unit = "C"; } plot_text(gc, &tro, sec, temperature.mkelvin, "%d %s", deg, unit); } static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi) { int i; int last = 0, sec = 0; int last_temperature = 0, last_printed_temp = 0; if (!setup_temperature_limits(gc, pi)) return; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; int mkelvin = entry->temperature; if (!mkelvin) continue; last_temperature = mkelvin; sec = entry->sec; if (sec < last + 300) continue; last = sec; plot_single_temp_text(gc,sec,mkelvin); last_printed_temp = mkelvin; } /* it would be nice to print the end temperature, if it's different */ if (abs(last_temperature - last_printed_temp) > 500) plot_single_temp_text(gc, sec, last_temperature); } static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi) { int i; cairo_t *cr = gc->cr; int last = 0; if (!setup_temperature_limits(gc, pi)) return; set_source_rgba(gc, 0.2, 0.2, 1.0, 0.8); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; int mkelvin = entry->temperature; int sec = entry->sec; if (!mkelvin) { if (!last) continue; mkelvin = last; } if (last) line_to(gc, sec, mkelvin); else move_to(gc, sec, mkelvin); last = mkelvin; } cairo_stroke(cr); } /* gets both the actual start and end pressure as well as the scaling factors */ static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi) { gc->leftx = 0; gc->rightx = get_maxtime(pi); gc->topy = 0; gc->bottomy = pi->maxpressure * 1.5; return pi->maxpressure != 0; } static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi) { int i; if (!get_cylinder_pressure_range(gc, pi)) return; cairo_set_source_rgba(gc->cr, 0.2, 1.0, 0.2, 0.80); move_to(gc, 0, pi->maxpressure); for (i = 1; i < pi->nr; i++) { int mbar; struct plot_data *entry = pi->entry + i; mbar = entry->pressure; if (!mbar) continue; line_to(gc, entry->sec, mbar); } line_to(gc, pi->maxtime, pi->minpressure); cairo_stroke(gc->cr); } /* * Return air usage (in liters). */ static double calculate_airuse(struct dive *dive) { double airuse = 0; int i; for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; int size = cyl->type.size.mliter; double kilo_atm; if (!size) continue; kilo_atm = (cyl->start.mbar - cyl->end.mbar) / 1013250.0; /* Liters of air at 1 atm == milliliters at 1k atm*/ airuse += kilo_atm * size; } return airuse; } static void plot_info(struct dive *dive, struct graphics_context *gc) { text_render_options_t tro = {10, 0.2, 1.0, 0.2, RIGHT, BOTTOM}; const double liters_per_cuft = 28.317; const char *unit, *desc; double airuse; airuse = calculate_airuse(dive); if (!airuse) return; /* I really need to start addign some unit setting thing */ switch (output_units.volume) { case LITER: unit = "l"; break; case CUFT: unit = "cuft"; airuse /= liters_per_cuft; break; } tro.vpos = -1.0; plot_text(gc, &tro, 0.98, 0.98, "vol: %4.2f %s", airuse, unit); tro.vpos = -2.2; if (dive->duration.seconds) { double pressure = 1 + (dive->meandepth.mm / 10000.0); double sac = airuse / pressure * 60 / dive->duration.seconds; plot_text(gc, &tro, 0.98, 0.98, "SAC: %4.2f %s/min", sac, unit); } tro.vpos = -3.4; desc = dive->cylinder[0].type.description; if (desc || dive->cylinder[0].gasmix.o2.permille) { int o2 = dive->cylinder[0].gasmix.o2.permille / 10; if (!desc) desc = ""; if (!o2) o2 = 21; plot_text(gc, &tro, 0.98, 0.98, "%s (%d%%)", desc, o2); } } static int mbar_to_PSI(int mbar) { pressure_t p = {mbar}; return to_PSI(p); } static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi) { if (get_cylinder_pressure_range(gc, pi)) { int start, end; const char *unit = "bar"; switch (output_units.pressure) { case PASCAL: start = pi->maxpressure * 100; end = pi->minpressure * 100; unit = "pascal"; break; case BAR: start = (pi->maxpressure + 500) / 1000; end = (pi->minpressure + 500) / 1000; unit = "bar"; break; case PSI: start = mbar_to_PSI(pi->maxpressure); end = mbar_to_PSI(pi->minpressure); unit = "psi"; break; } text_render_options_t tro = {10, 0.2, 1.0, 0.2, LEFT, TOP}; plot_text(gc, &tro, 0, pi->maxpressure, "%d %s", start, unit); plot_text(gc, &tro, pi->maxtime, pi->minpressure, "%d %s", end, unit); } } static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index) { struct plot_data *p = entry; int time = entry->sec; int seconds = 90*(index+1); struct plot_data *min, *max; int avg, nr; /* Go back 'seconds' in time */ while (p > first) { if (p[-1].sec < time - seconds) break; p--; } /* Then go forward until we hit an entry past the time */ min = max = p; avg = p->val; nr = 1; while (++p < last) { int val = p->val; if (p->sec > time + seconds) break; avg += val; nr ++; if (val < min->val) min = p; if (val > max->val) max = p; } entry->min[index] = min; entry->max[index] = max; entry->avg[index] = (avg + nr/2) / nr; } static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last) { analyze_plot_info_minmax_minute(entry, first, last, 0); analyze_plot_info_minmax_minute(entry, first, last, 1); analyze_plot_info_minmax_minute(entry, first, last, 2); } static struct plot_info *analyze_plot_info(struct plot_info *pi) { int i; int nr = pi->nr; /* Do pressure min/max based on the non-surface data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry+i; int pressure = entry->pressure; int temperature = entry->temperature; if (pressure) { if (!pi->minpressure || pressure < pi->minpressure) pi->minpressure = pressure; if (pressure > pi->maxpressure) pi->maxpressure = pressure; } if (temperature) { if (!pi->mintemp || temperature < pi->mintemp) pi->mintemp = temperature; if (temperature > pi->maxtemp) pi->maxtemp = temperature; } } /* Smoothing function: 5-point triangular smooth */ for (i = 2; i < nr-2; i++) { struct plot_data *entry = pi->entry+i; int val; val = entry[-2].val + 2*entry[-1].val + 3*entry[0].val + 2*entry[1].val + entry[2].val; entry->smoothed = (val+4) / 9; } /* One-, two- and three-minute minmax data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry +i; analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr); } return pi; } /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. */ static struct plot_info *create_plot_info(struct dive *dive) { int lastdepth, lastindex; int i, nr = dive->samples + 4, sec; size_t alloc_size = plot_info_size(nr); struct plot_info *pi; pi = malloc(alloc_size); if (!pi) return pi; memset(pi, 0, alloc_size); pi->nr = nr; sec = 0; lastindex = 0; lastdepth = -1; for (i = 0; i < dive->samples; i++) { int depth; struct sample *sample = dive->sample+i; struct plot_data *entry = pi->entry + i + 2; sec = entry->sec = sample->time.seconds; depth = entry->val = sample->depth.mm; entry->pressure = sample->cylinderpressure.mbar; entry->temperature = sample->temperature.mkelvin; if (depth || lastdepth) lastindex = i+2; lastdepth = depth; if (depth > pi->maxdepth) pi->maxdepth = depth; } if (lastdepth) lastindex = i + 2; /* Fill in the last two entries with empty values but valid times */ i = dive->samples + 2; pi->entry[i].sec = sec + 20; pi->entry[i+1].sec = sec + 40; pi->nr = lastindex+1; pi->maxtime = pi->entry[lastindex].sec; pi->minpressure = dive->cylinder[0].end.mbar; pi->maxpressure = dive->cylinder[0].start.mbar; pi->meandepth = dive->meandepth.mm; return analyze_plot_info(pi); } void plot(struct graphics_context *gc, int w, int h, struct dive *dive) { double topx, topy; struct plot_info *pi = create_plot_info(dive); topx = w / 20.0; topy = h / 20.0; cairo_translate(gc->cr, topx, topy); cairo_set_line_width(gc->cr, 2); cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND); cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND); /* * We can use "cairo_translate()" because that doesn't * scale line width etc. But the actual scaling we need * do set up ourselves.. * * Snif. What a pity. */ gc->maxx = (w - 2*topx); gc->maxy = (h - 2*topy); /* Temperature profile */ plot_temperature_profile(gc, pi); /* Cylinder pressure plot */ plot_cylinder_pressure(gc, pi); /* Depth profile */ plot_depth_profile(gc, pi); /* Text on top of all graphs.. */ plot_temperature_text(gc, pi); plot_depth_text(gc, pi); plot_cylinder_pressure_text(gc, pi); /* And info box in the lower right corner.. */ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = 1.0; plot_info(dive, gc); /* Bounding box last */ set_source_rgb(gc, 1, 1, 1); move_to(gc, 0, 0); line_to(gc, 0, 1); line_to(gc, 1, 1); line_to(gc, 1, 0); cairo_close_path(gc->cr); cairo_stroke(gc->cr); } static gboolean expose_event(GtkWidget *widget, GdkEventExpose *event, gpointer data) { struct dive *dive = current_dive; struct graphics_context gc = { .printer = 0 }; int w,h; w = widget->allocation.width; h = widget->allocation.height; gc.cr = gdk_cairo_create(widget->window); set_source_rgb(&gc, 0, 0, 0); cairo_paint(gc.cr); if (dive) plot(&gc, w, h, dive); cairo_destroy(gc.cr); return FALSE; } GtkWidget *dive_profile_widget(void) { GtkWidget *da; da = gtk_drawing_area_new(); gtk_widget_set_size_request(da, 350, 250); g_signal_connect(da, "expose_event", G_CALLBACK(expose_event), NULL); return da; }