#include #include #include #include #include "dive.h" #include "display.h" #include "divelist.h" int selected_dive = 0; #define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y)) /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such. */ static int round_seconds_up(int seconds) { return MAX(30*60, ROUND_UP(seconds, 60*10)); } static int round_depth_up(depth_t depth) { unsigned mm = depth.mm; /* Minimum 30m */ return MAX(30000, ROUND_UP(mm+3000, 10000)); } typedef struct { double r,g,b; enum {CENTER,LEFT} allign; } text_render_options_t; static void plot_text(cairo_t *cr, text_render_options_t *tro, double x, double y, const char *fmt, ...) { cairo_text_extents_t extents; char buffer[80]; va_list args; va_start(args, fmt); vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); cairo_text_extents(cr, buffer, &extents); if (tro->allign == CENTER) x -= extents.width/2 + extents.x_bearing; y += extents.height * 1.2; cairo_move_to(cr, x, y); cairo_text_path(cr, buffer); cairo_set_source_rgb(cr, 0, 0, 0); cairo_stroke(cr); cairo_move_to(cr, x, y); cairo_set_source_rgb(cr, tro->r, tro->g, tro->b); cairo_show_text(cr, buffer); } /* * Find the next maximum point in a 10-minute window. * * We exit early if we hit "enough" of a depth reversal, * which is roughly 10 feet. */ static int next_minmax(struct dive *dive, int index, int minmax) { const int enough = 3000; int timelimit, depthlimit, result; struct sample *sample = dive->sample + index; if (index >= dive->samples) return 0; timelimit = 24*60*60; depthlimit = sample->depth.mm; result = 0; for (;;) { int time, depth; index++; sample++; if (index >= dive->samples) break; time = sample->time.seconds; depth = sample->depth.mm; if (time > timelimit) break; if (minmax) { if (depth <= depthlimit) { if (depthlimit - depth > enough) break; continue; } } else { if (depth >= depthlimit) { if (depth - depthlimit > enough) break; continue; } } result = index; depthlimit = depth; /* Look up to ten minutes into the future */ timelimit = time + 600; } return result; } /* Scale to 0,0 -> maxx,maxy */ #define SCALE(x,y) (x)*maxx/scalex,(y)*maxy/scaley static void plot_depth_text(struct dive *dive, cairo_t *cr, double maxx, double maxy) { double scalex, scaley; int maxtime, maxdepth; int i; /* Get plot scaling limits */ maxtime = round_seconds_up(dive->duration.seconds); maxdepth = round_depth_up(dive->maxdepth); scalex = maxtime; scaley = maxdepth; cairo_set_font_size(cr, 14); cairo_set_source_rgb(cr, 1, 0.2, 0.2); i = 0; while ((i = next_minmax(dive, i, 1)) != 0) { text_render_options_t tro = {1.0, 0.2, 0.2, CENTER}; struct sample *sample = dive->sample+i; int sec = sample->time.seconds; depth_t depth = sample->depth; const char *fmt; double d; switch (output_units.length) { case METERS: d = depth.mm / 1000.0; fmt = "%.1f"; break; case FEET: d = to_feet(depth); fmt = "%.0f"; break; } plot_text(cr, &tro, SCALE(sec, depth.mm), fmt, d); i = next_minmax(dive, i, 0); if (!i) break; } } static void plot_depth_profile(struct dive *dive, cairo_t *cr, double maxx, double maxy) { double scalex, scaley; int begins, sec, depth; int i, samples; struct sample *sample; int maxtime, maxdepth, marker; samples = dive->samples; if (!samples) return; cairo_set_line_width(cr, 2); /* Get plot scaling limits */ maxtime = round_seconds_up(dive->duration.seconds); maxdepth = round_depth_up(dive->maxdepth); /* Time markers: every 5 min */ scalex = maxtime; scaley = 1.0; for (i = 5*60; i < maxtime; i += 5*60) { cairo_move_to(cr, SCALE(i, 0)); cairo_line_to(cr, SCALE(i, 1)); } /* Depth markers: every 30 ft or 10 m*/ scalex = 1.0; scaley = maxdepth; switch (output_units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } cairo_set_source_rgba(cr, 1, 1, 1, 0.5); for (i = marker; i < maxdepth; i += marker) { cairo_move_to(cr, SCALE(0, i)); cairo_line_to(cr, SCALE(1, i)); } cairo_stroke(cr); /* Show mean depth */ cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.40); cairo_move_to(cr, SCALE(0, dive->meandepth.mm)); cairo_line_to(cr, SCALE(1, dive->meandepth.mm)); cairo_stroke(cr); scalex = maxtime; sample = dive->sample; cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.80); begins = sample->time.seconds; cairo_move_to(cr, SCALE(sample->time.seconds, sample->depth.mm)); for (i = 1; i < dive->samples; i++) { sample++; sec = sample->time.seconds; if (sec <= maxtime) { depth = sample->depth.mm; cairo_line_to(cr, SCALE(sec, depth)); } } scaley = 1.0; cairo_line_to(cr, SCALE(MIN(sec,maxtime), 0)); cairo_line_to(cr, SCALE(begins, 0)); cairo_close_path(cr); cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.20); cairo_fill_preserve(cr); cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.80); cairo_stroke(cr); } /* gets both the actual start and end pressure as well as the scaling factors */ static int get_cylinder_pressure_range(struct dive *dive, double *scalex, double *scaley, pressure_t *startp, pressure_t *endp) { int i; int min, max; *scalex = round_seconds_up(dive->duration.seconds); max = 0; min = 5000000; if (startp) startp->mbar = endp->mbar = 0; for (i = 0; i < dive->samples; i++) { int mbar; struct sample *sample = dive->sample + i; /* FIXME! We only track cylinder 0 right now */ if (sample->cylinderindex) continue; mbar = sample->cylinderpressure.mbar; if (!mbar) continue; if (mbar < min) min = mbar; if (mbar > max) max = mbar; } if (startp) startp->mbar = max; if (endp) endp->mbar = min; if (!max) return 0; *scaley = max * 1.5; return 1; } static void plot_cylinder_pressure(struct dive *dive, cairo_t *cr, double maxx, double maxy) { int i, sec = -1; double scalex, scaley; if (!get_cylinder_pressure_range(dive, &scalex, &scaley, NULL, NULL)) return; cairo_set_source_rgba(cr, 0.2, 1.0, 0.2, 0.80); cairo_move_to(cr, SCALE(0, dive->cylinder[0].start.mbar)); for (i = 1; i < dive->samples; i++) { int mbar; struct sample *sample = dive->sample + i; mbar = sample->cylinderpressure.mbar; if (!mbar) continue; sec = sample->time.seconds; if (sec <= dive->duration.seconds) cairo_line_to(cr, SCALE(sec, mbar)); } /* * We may have "surface time" events, in which case we don't go * back to dive duration */ if (sec < dive->duration.seconds) cairo_line_to(cr, SCALE(dive->duration.seconds, dive->cylinder[0].end.mbar)); cairo_stroke(cr); } /* * Return air usage (in liters). */ static double calculate_airuse(struct dive *dive) { double airuse = 0; int i; for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; int size = cyl->type.size.mliter; double kilo_atm; if (!size) continue; kilo_atm = (cyl->start.mbar - cyl->end.mbar) / 1013250.0; /* Liters of air at 1 atm == milliliters at 1k atm*/ airuse += kilo_atm * size; } return airuse; } static void plot_info(struct dive *dive, cairo_t *cr, double maxx, double maxy) { text_render_options_t tro = {0.2, 1.0, 0.2, LEFT}; const double liters_per_cuft = 28.317; const char *unit; double airuse; airuse = calculate_airuse(dive); if (!airuse) return; /* I really need to start addign some unit setting thing */ switch (output_units.volume) { case LITER: unit = "l"; break; case CUFT: unit = "cuft"; airuse /= liters_per_cuft; break; } plot_text(cr, &tro, maxx*0.8, maxy*0.8, "vol: %4.2f %s", airuse, unit); if (dive->duration.seconds) { double pressure = 1 + (dive->meandepth.mm / 10000.0); double sac = airuse / pressure * 60 / dive->duration.seconds; plot_text(cr, &tro, maxx*0.8, maxy*0.85, "SAC: %4.2f %s/min", sac, unit); } } static void plot_cylinder_pressure_text(struct dive *dive, cairo_t *cr, double maxx, double maxy) { double scalex, scaley; pressure_t startp, endp; cairo_set_font_size(cr, 10); if (get_cylinder_pressure_range(dive, &scalex, &scaley, &startp, &endp)) { int start, end; const char *unit = "bar"; switch (output_units.pressure) { case PASCAL: start = startp.mbar * 100; end = startp.mbar * 100; unit = "pascal"; break; case BAR: start = (startp.mbar + 500) / 1000; end = (endp.mbar + 500) / 1000; unit = "bar"; break; case PSI: start = to_PSI(startp); end = to_PSI(endp); unit = "psi"; break; } text_render_options_t tro = {0.2, 1.0, 0.2, LEFT}; plot_text(cr, &tro, SCALE(0, startp.mbar), "%d %s", start, unit); plot_text(cr, &tro, SCALE(dive->duration.seconds, endp.mbar), "%d %s", end, unit); } } static void plot(cairo_t *cr, int w, int h, struct dive *dive) { double topx, topy, maxx, maxy; double scalex, scaley; topx = w / 20.0; topy = h / 20.0; maxx = (w - 2*topx); maxy = (h - 2*topy); cairo_translate(cr, topx, topy); /* Cylinder pressure plot */ plot_cylinder_pressure(dive, cr, maxx, maxy); /* Depth profile */ plot_depth_profile(dive, cr, maxx, maxy); /* Text on top of all graphs.. */ plot_depth_text(dive, cr, maxx, maxy); plot_cylinder_pressure_text(dive, cr, maxx, maxy); /* And info box in the lower right corner.. */ plot_info(dive, cr, maxx, maxy); /* Bounding box last */ scalex = scaley = 1.0; cairo_set_source_rgb(cr, 1, 1, 1); cairo_move_to(cr, SCALE(0,0)); cairo_line_to(cr, SCALE(0,1)); cairo_line_to(cr, SCALE(1,1)); cairo_line_to(cr, SCALE(1,0)); cairo_close_path(cr); cairo_stroke(cr); } static gboolean expose_event(GtkWidget *widget, GdkEventExpose *event, gpointer data) { struct dive *dive = current_dive; cairo_t *cr; int w,h; w = widget->allocation.width; h = widget->allocation.height; cr = gdk_cairo_create(widget->window); cairo_set_source_rgb(cr, 0, 0, 0); cairo_paint(cr); if (dive) plot(cr, w, h, dive); cairo_destroy(cr); return FALSE; } GtkWidget *dive_profile_widget(void) { GtkWidget *da; da = gtk_drawing_area_new(); gtk_widget_set_size_request(da, 450, 350); g_signal_connect(da, "expose_event", G_CALLBACK(expose_event), NULL); return da; }