/* profile.c */ /* creates all the necessary data for drawing the dive profile * uses cairo to draw it */ #include #include "dive.h" #include "display.h" #include "display-gtk.h" #include "divelist.h" #include "color.h" #include "libdivecomputer/parser.h" #include "libdivecomputer/version.h" int selected_dive = 0; char zoomed_plot = 0; char dc_number = 0; static double plot_scale = SCALE_SCREEN; static struct plot_data *last_pi_entry = NULL; #define cairo_set_line_width_scaled(cr, w) \ cairo_set_line_width((cr), (w) * plot_scale); typedef enum { STABLE, SLOW, MODERATE, FAST, CRAZY } velocity_t; struct plot_data { unsigned int in_deco:1; unsigned int cylinderindex; int sec; /* pressure[0] is sensor pressure * pressure[1] is interpolated pressure */ int pressure[2]; int temperature; /* Depth info */ int depth; int ceiling; int ndl; int stoptime; int stopdepth; int cns; int smoothed; double po2, pn2, phe; double mod, ead, end, eadd; velocity_t velocity; struct plot_data *min[3]; struct plot_data *max[3]; int avg[3]; }; #define SENSOR_PR 0 #define INTERPOLATED_PR 1 #define SENSOR_PRESSURE(_entry) (_entry)->pressure[SENSOR_PR] #define INTERPOLATED_PRESSURE(_entry) (_entry)->pressure[INTERPOLATED_PR] #define GET_PRESSURE(_entry) (SENSOR_PRESSURE(_entry) ? : INTERPOLATED_PRESSURE(_entry)) #define SAC_COLORS_START_IDX SAC_1 #define SAC_COLORS 9 #define VELOCITY_COLORS_START_IDX VELO_STABLE #define VELOCITY_COLORS 5 typedef enum { /* SAC colors. Order is important, the SAC_COLORS_START_IDX define above. */ SAC_1, SAC_2, SAC_3, SAC_4, SAC_5, SAC_6, SAC_7, SAC_8, SAC_9, /* Velocity colors. Order is still important, ref VELOCITY_COLORS_START_IDX. */ VELO_STABLE, VELO_SLOW, VELO_MODERATE, VELO_FAST, VELO_CRAZY, /* gas colors */ PO2, PO2_ALERT, PN2, PN2_ALERT, PHE, PHE_ALERT, PP_LINES, /* Other colors */ TEXT_BACKGROUND, ALERT_BG, ALERT_FG, EVENTS, SAMPLE_DEEP, SAMPLE_SHALLOW, SMOOTHED, MINUTE, TIME_GRID, TIME_TEXT, DEPTH_GRID, MEAN_DEPTH, DEPTH_TOP, DEPTH_BOTTOM, TEMP_TEXT, TEMP_PLOT, SAC_DEFAULT, BOUNDING_BOX, PRESSURE_TEXT, BACKGROUND, CEILING_SHALLOW, CEILING_DEEP, CALC_CEILING_SHALLOW, CALC_CEILING_DEEP } color_indice_t; typedef struct { /* media[0] is screen, media[1] is b/w printer media[2] is color printer */ struct rgba { double r,g,b,a; } media[3]; } color_t; /* [color indice] = {{screen color, b/w printer color, color printer}} printer & screen colours could be different */ static const color_t profile_color[] = { [SAC_1] = {{FUNGREEN1, BLACK1_LOW_TRANS, FUNGREEN1}}, [SAC_2] = {{APPLE1, BLACK1_LOW_TRANS, APPLE1}}, [SAC_3] = {{ATLANTIS1, BLACK1_LOW_TRANS, ATLANTIS1}}, [SAC_4] = {{ATLANTIS2, BLACK1_LOW_TRANS, ATLANTIS2}}, [SAC_5] = {{EARLSGREEN1, BLACK1_LOW_TRANS, EARLSGREEN1}}, [SAC_6] = {{HOKEYPOKEY1, BLACK1_LOW_TRANS, HOKEYPOKEY1}}, [SAC_7] = {{TUSCANY1, BLACK1_LOW_TRANS, TUSCANY1}}, [SAC_8] = {{CINNABAR1, BLACK1_LOW_TRANS, CINNABAR1}}, [SAC_9] = {{REDORANGE1, BLACK1_LOW_TRANS, REDORANGE1}}, [VELO_STABLE] = {{CAMARONE1, BLACK1_LOW_TRANS, CAMARONE1}}, [VELO_SLOW] = {{LIMENADE1, BLACK1_LOW_TRANS, LIMENADE1}}, [VELO_MODERATE] = {{RIOGRANDE1, BLACK1_LOW_TRANS, RIOGRANDE1}}, [VELO_FAST] = {{PIRATEGOLD1, BLACK1_LOW_TRANS, PIRATEGOLD1}}, [VELO_CRAZY] = {{RED1, BLACK1_LOW_TRANS, RED1}}, [PO2] = {{APPLE1, APPLE1_MED_TRANS, APPLE1}}, [PO2_ALERT] = {{RED1, APPLE1_MED_TRANS, RED1}}, [PN2] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}}, [PN2_ALERT] = {{RED1, BLACK1_LOW_TRANS, RED1}}, [PHE] = {{PEANUT, PEANUT_MED_TRANS, PEANUT}}, [PHE_ALERT] = {{RED1, PEANUT_MED_TRANS, RED1}}, [PP_LINES] = {{BLACK1_HIGH_TRANS, BLACK1_HIGH_TRANS, BLACK1_HIGH_TRANS}}, [TEXT_BACKGROUND] = {{CONCRETE1_LOWER_TRANS, WHITE1, CONCRETE1_LOWER_TRANS}}, [ALERT_BG] = {{BROOM1_LOWER_TRANS, BLACK1_LOW_TRANS, BROOM1_LOWER_TRANS}}, [ALERT_FG] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}}, [EVENTS] = {{REDORANGE1, BLACK1_LOW_TRANS, REDORANGE1}}, [SAMPLE_DEEP] = {{PERSIANRED1, BLACK1_LOW_TRANS, PERSIANRED1}}, [SAMPLE_SHALLOW] = {{PERSIANRED1, BLACK1_LOW_TRANS, PERSIANRED1}}, [SMOOTHED] = {{REDORANGE1_HIGH_TRANS, BLACK1_LOW_TRANS, REDORANGE1_HIGH_TRANS}}, [MINUTE] = {{MEDIUMREDVIOLET1_HIGHER_TRANS, BLACK1_LOW_TRANS, MEDIUMREDVIOLET1_HIGHER_TRANS}}, [TIME_GRID] = {{WHITE1, TUNDORA1_MED_TRANS, TUNDORA1_MED_TRANS}}, [TIME_TEXT] = {{FORESTGREEN1, BLACK1_LOW_TRANS, FORESTGREEN1}}, [DEPTH_GRID] = {{WHITE1, TUNDORA1_MED_TRANS, TUNDORA1_MED_TRANS}}, [MEAN_DEPTH] = {{REDORANGE1_MED_TRANS, BLACK1_LOW_TRANS, REDORANGE1_MED_TRANS}}, [DEPTH_BOTTOM] = {{GOVERNORBAY1_MED_TRANS, TUNDORA1_MED_TRANS, GOVERNORBAY1_MED_TRANS}}, [DEPTH_TOP] = {{MERCURY1_MED_TRANS, WHITE1_MED_TRANS, MERCURY1_MED_TRANS}}, [TEMP_TEXT] = {{GOVERNORBAY2, BLACK1_LOW_TRANS, GOVERNORBAY2}}, [TEMP_PLOT] = {{ROYALBLUE2_LOW_TRANS, BLACK1_LOW_TRANS, ROYALBLUE2_LOW_TRANS}}, [SAC_DEFAULT] = {{WHITE1, BLACK1_LOW_TRANS, FORESTGREEN1}}, [BOUNDING_BOX] = {{WHITE1, BLACK1_LOW_TRANS, TUNDORA1_MED_TRANS}}, [PRESSURE_TEXT] = {{KILLARNEY1, BLACK1_LOW_TRANS, KILLARNEY1}}, [BACKGROUND] = {{SPRINGWOOD1, BLACK1_LOW_TRANS, SPRINGWOOD1}}, [CEILING_SHALLOW] = {{REDORANGE1_HIGH_TRANS, REDORANGE1_HIGH_TRANS, REDORANGE1_HIGH_TRANS}}, [CEILING_DEEP] = {{RED1_MED_TRANS, RED1_MED_TRANS, RED1_MED_TRANS}}, [CALC_CEILING_SHALLOW] = {{FUNGREEN1_HIGH_TRANS, FUNGREEN1_HIGH_TRANS, FUNGREEN1_HIGH_TRANS}}, [CALC_CEILING_DEEP] = {{APPLE1_HIGH_TRANS, APPLE1_HIGH_TRANS, APPLE1_HIGH_TRANS}}, }; /* Scale to 0,0 -> maxx,maxy */ #define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx) #define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy) #define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y) /* keep the last used gc around so we can invert the SCALEX calculation in * order to calculate a time value for an x coordinate */ static struct graphics_context last_gc; int x_to_time(double x) { int seconds = (x - last_gc.drawing_area.x) / last_gc.maxx * (last_gc.rightx - last_gc.leftx) + last_gc.leftx; return (seconds > 0) ? seconds : 0; } /* x offset into the drawing area */ int x_abs(double x) { return x - last_gc.drawing_area.x; } static void move_to(struct graphics_context *gc, double x, double y) { cairo_move_to(gc->cr, SCALE(gc, x, y)); } static void line_to(struct graphics_context *gc, double x, double y) { cairo_line_to(gc->cr, SCALE(gc, x, y)); } static void set_source_rgba(struct graphics_context *gc, color_indice_t c) { const color_t *col = &profile_color[c]; struct rgba rgb = col->media[gc->printer]; double r = rgb.r; double g = rgb.g; double b = rgb.b; double a = rgb.a; cairo_set_source_rgba(gc->cr, r, g, b, a); } void init_profile_background(struct graphics_context *gc) { set_source_rgba(gc, BACKGROUND); } static void pattern_add_color_stop_rgba(struct graphics_context *gc, cairo_pattern_t *pat, double o, color_indice_t c) { const color_t *col = &profile_color[c]; struct rgba rgb = col->media[gc->printer]; cairo_pattern_add_color_stop_rgba(pat, o, rgb.r, rgb.g, rgb.b, rgb.a); } #define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y)) /* debugging tool - not normally used */ static void dump_pi (struct plot_info *pi) { int i; printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n" " maxpressure:%d mintemp:%d maxtemp:%d\n", pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth, pi->maxpressure, pi->mintemp, pi->maxtemp); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = &pi->entry[i]; printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n" " time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n", i, entry->cylinderindex, entry->sec, entry->pressure[0], entry->pressure[1], entry->sec / 60, entry->sec % 60, entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed, entry->po2, entry->phe, entry->pn2, entry->po2 + entry->phe + entry->pn2); } printf(" }\n"); } /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such unless zoom is enabled. * We also need to add 180 seconds at the end so the min/max * plots correctly */ static int get_maxtime(struct plot_info *pi) { int seconds = pi->maxtime; if (zoomed_plot) { /* Rounded up to one minute, with at least 2.5 minutes to * spare. * For dive times shorter than 10 minutes, we use seconds/4 to * calculate the space dynamically. * This is seamless since 600/4 = 150. */ if (seconds < 600) return ROUND_UP(seconds+seconds/4, 60); else return ROUND_UP(seconds+150, 60); } else { /* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */ return MAX(30*60, ROUND_UP(seconds+150, 60*5)); } } /* get the maximum depth to which we want to plot * take into account the additional verical space needed to plot * partial pressure graphs */ static int get_maxdepth(struct plot_info *pi) { unsigned mm = pi->maxdepth; int md; if (zoomed_plot) { /* Rounded up to 10m, with at least 3m to spare */ md = ROUND_UP(mm+3000, 10000); } else { /* Minimum 30m, rounded up to 10m, with at least 3m to spare */ md = MAX(30000, ROUND_UP(mm+3000, 10000)); } md += pi->maxpp * 9000; return md; } typedef struct { double size; color_indice_t color; double hpos, vpos; } text_render_options_t; #define RIGHT (-1.0) #define CENTER (-0.5) #define LEFT (0.0) #define TOP (1) #define MIDDLE (0) #define BOTTOM (-1) static void plot_text(struct graphics_context *gc, const text_render_options_t *tro, double x, double y, const char *fmt, ...) { cairo_t *cr = gc->cr; cairo_font_extents_t fe; cairo_text_extents_t extents; double dx, dy; char buffer[256]; va_list args; va_start(args, fmt); vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); cairo_set_font_size(cr, tro->size * plot_scale); cairo_font_extents(cr, &fe); cairo_text_extents(cr, buffer, &extents); dx = tro->hpos * (extents.width + extents.x_bearing); dy = tro->vpos * (extents.height + fe.descent); move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); cairo_text_path(cr, buffer); set_source_rgba(gc, TEXT_BACKGROUND); cairo_stroke(cr); move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); set_source_rgba(gc, tro->color); cairo_show_text(cr, buffer); } /* collect all event names and whether we display them */ struct ev_select { char *ev_name; gboolean plot_ev; }; static struct ev_select *ev_namelist; static int evn_allocated; static int evn_used; int evn_foreach(void (*callback)(const char *, int *, void *), void *data) { int i; for (i = 0; i < evn_used; i++) { /* here we display an event name on screen - so translate */ callback(_(ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data); } return i; } void clear_events(void) { evn_used = 0; } void remember_event(const char *eventname) { int i = 0, len; if (!eventname || (len = strlen(eventname)) == 0) return; while (i < evn_used) { if (!strncmp(eventname, ev_namelist[i].ev_name, len)) return; i++; } if (evn_used == evn_allocated) { evn_allocated += 10; ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select)); if (! ev_namelist) /* we are screwed, but let's just bail out */ return; } ev_namelist[evn_used].ev_name = strdup(eventname); ev_namelist[evn_used].plot_ev = TRUE; evn_used++; } static void plot_one_event(struct graphics_context *gc, struct plot_info *pi, struct event *event) { int i, depth = 0; int x,y; char buffer[256]; /* is plotting this event disabled? */ if (event->name) { for (i = 0; i < evn_used; i++) { if (! strcmp(event->name, ev_namelist[i].ev_name)) { if (ev_namelist[i].plot_ev) break; else return; } } } if (event->time.seconds < 30 && !strcmp(event->name, "gaschange")) /* a gas change in the first 30 seconds is the way of some dive computers * to tell us the gas that is used; let's not plot a marker for that */ return; for (i = 0; i < pi->nr; i++) { struct plot_data *data = pi->entry + i; if (event->time.seconds < data->sec) break; depth = data->depth; } /* draw a little triangular marker and attach tooltip */ x = SCALEX(gc, event->time.seconds); y = SCALEY(gc, depth); set_source_rgba(gc, ALERT_BG); cairo_move_to(gc->cr, x-6, y+12); cairo_line_to(gc->cr, x+6, y+12); cairo_line_to(gc->cr, x , y); cairo_line_to(gc->cr, x-6, y+12); cairo_stroke_preserve(gc->cr); cairo_fill(gc->cr); set_source_rgba(gc, ALERT_FG); cairo_move_to(gc->cr, x, y+3); cairo_line_to(gc->cr, x, y+7); cairo_move_to(gc->cr, x, y+10); cairo_line_to(gc->cr, x, y+10); cairo_stroke(gc->cr); /* we display the event on screen - so translate */ if (event->value) { if (event->name && !strcmp(event->name, "gaschange")) { unsigned int he = event->value >> 16; unsigned int o2 = event->value & 0xffff; if (he) { snprintf(buffer, sizeof(buffer), "%s:%u/%u", _(event->name), o2, he); } else { if (o2 == 21) snprintf(buffer, sizeof(buffer), "%s:%s", _(event->name), _("air")); else snprintf(buffer, sizeof(buffer), "%s:%u%% %s", _(event->name), o2, "O" UTF8_SUBSCRIPT_2); } } else if (event->name && !strcmp(event->name, "SP change")) { snprintf(buffer, sizeof(buffer), "%s:%0.1f", _(event->name), (double) event->value / 1000); } else { snprintf(buffer, sizeof(buffer), "%s:%d", _(event->name), event->value); } } else if (event->name && !strcmp(event->name, "SP change")) { snprintf(buffer, sizeof(buffer), _("Bailing out to OC")); } else { snprintf(buffer, sizeof(buffer), "%s%s", _(event->name), event->flags == SAMPLE_FLAGS_BEGIN ? C_("Starts with space!"," begin") : event->flags == SAMPLE_FLAGS_END ? C_("Starts with space!", " end") : ""); } attach_tooltip(x-6, y, 12, 12, buffer, event); } static void plot_events(struct graphics_context *gc, struct plot_info *pi, struct divecomputer *dc) { struct event *event = dc->events; if (gc->printer) return; while (event) { plot_one_event(gc, pi, event); event = event->next; } } static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro) { int sec = entry->sec, decimals; double d; d = get_depth_units(entry->depth, &decimals, NULL); plot_text(gc, tro, sec, entry->depth, "%.*f", decimals, d); } static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi) { static const text_render_options_t deep = {14, SAMPLE_DEEP, CENTER, TOP}; static const text_render_options_t shallow = {14, SAMPLE_SHALLOW, CENTER, BOTTOM}; int i; int last = -1; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; if (entry->depth < 2000) continue; if ((entry == entry->max[2]) && entry->depth != last) { render_depth_sample(gc, entry, &deep); last = entry->depth; } if ((entry == entry->min[2]) && entry->depth != last) { render_depth_sample(gc, entry, &shallow); last = entry->depth; } if (entry->depth != last) last = -1; } } static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi) { int maxtime, maxdepth; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = maxdepth; plot_text_samples(gc, pi); } static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi) { int i; struct plot_data *entry = pi->entry; set_source_rgba(gc, SMOOTHED); move_to(gc, entry->sec, entry->smoothed); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->smoothed); } cairo_stroke(gc->cr); } static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi, int index) { int i; struct plot_data *entry = pi->entry; set_source_rgba(gc, MINUTE); move_to(gc, entry->sec, entry->min[index]->depth); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->min[index]->depth); } for (i = 1; i < pi->nr; i++) { line_to(gc, entry->sec, entry->max[index]->depth); entry--; } cairo_close_path(gc->cr); cairo_fill(gc->cr); } static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi) { if (gc->printer) return; plot_minmax_profile_minute(gc, pi, 2); plot_minmax_profile_minute(gc, pi, 1); plot_minmax_profile_minute(gc, pi, 0); } static void plot_depth_scale(struct graphics_context *gc, struct plot_info *pi) { int i, maxdepth, marker; static const text_render_options_t tro = {DEPTH_TEXT_SIZE, SAMPLE_DEEP, RIGHT, MIDDLE}; /* Depth markers: every 30 ft or 10 m*/ maxdepth = get_maxdepth(pi); gc->topy = 0; gc->bottomy = maxdepth; switch (prefs.units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } set_source_rgba(gc, DEPTH_GRID); /* don't write depth labels all the way to the bottom as * there may be other graphs below the depth plot (like * partial pressure graphs) where this would look out * of place - so we only make sure that we print the next * marker below the actual maxdepth of the dive */ for (i = marker; i <= pi->maxdepth + marker; i += marker) { double d = get_depth_units(i, NULL, NULL); plot_text(gc, &tro, -0.002, i, "%.0f", d); } } static void setup_pp_limits(struct graphics_context *gc, struct plot_info *pi) { int maxdepth; gc->leftx = 0; gc->rightx = get_maxtime(pi); /* the maxdepth already includes extra vertical space - and if * we use 1.5 times the corresponding pressure as maximum partial * pressure the graph seems to look fine*/ maxdepth = get_maxdepth(pi); gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * SURFACE_PRESSURE / 1000; gc->bottomy = -gc->topy / 20; } static void plot_pp_text(struct graphics_context *gc, struct plot_info *pi) { double pp, dpp, m; int hpos; static const text_render_options_t tro = {PP_TEXT_SIZE, PP_LINES, LEFT, MIDDLE}; setup_pp_limits(gc, pi); pp = floor(pi->maxpp * 10.0) / 10.0 + 0.2; dpp = pp > 4 ? 1.0 : 0.5; hpos = pi->entry[pi->nr - 1].sec; set_source_rgba(gc, PP_LINES); for (m = 0.0; m <= pp; m += dpp) { move_to(gc, 0, m); line_to(gc, hpos, m); cairo_stroke(gc->cr); plot_text(gc, &tro, hpos + 30, m, "%.1f", m); } } static void plot_pp_gas_profile(struct graphics_context *gc, struct plot_info *pi) { int i; struct plot_data *entry; setup_pp_limits(gc, pi); if (prefs.pp_graphs.pn2) { set_source_rgba(gc, PN2); entry = pi->entry; move_to(gc, entry->sec, entry->pn2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->pn2 < prefs.pp_graphs.pn2_threshold) line_to(gc, entry->sec, entry->pn2); else move_to(gc, entry->sec, entry->pn2); } cairo_stroke(gc->cr); set_source_rgba(gc, PN2_ALERT); entry = pi->entry; move_to(gc, entry->sec, entry->pn2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->pn2 >= prefs.pp_graphs.pn2_threshold) line_to(gc, entry->sec, entry->pn2); else move_to(gc, entry->sec, entry->pn2); } cairo_stroke(gc->cr); } if (prefs.pp_graphs.phe) { set_source_rgba(gc, PHE); entry = pi->entry; move_to(gc, entry->sec, entry->phe); for (i = 1; i < pi->nr; i++) { entry++; if (entry->phe < prefs.pp_graphs.phe_threshold) line_to(gc, entry->sec, entry->phe); else move_to(gc, entry->sec, entry->phe); } cairo_stroke(gc->cr); set_source_rgba(gc, PHE_ALERT); entry = pi->entry; move_to(gc, entry->sec, entry->phe); for (i = 1; i < pi->nr; i++) { entry++; if (entry->phe >= prefs.pp_graphs.phe_threshold) line_to(gc, entry->sec, entry->phe); else move_to(gc, entry->sec, entry->phe); } cairo_stroke(gc->cr); } if (prefs.pp_graphs.po2) { set_source_rgba(gc, PO2); entry = pi->entry; move_to(gc, entry->sec, entry->po2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->po2 < prefs.pp_graphs.po2_threshold) line_to(gc, entry->sec, entry->po2); else move_to(gc, entry->sec, entry->po2); } cairo_stroke(gc->cr); set_source_rgba(gc, PO2_ALERT); entry = pi->entry; move_to(gc, entry->sec, entry->po2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->po2 >= prefs.pp_graphs.po2_threshold) line_to(gc, entry->sec, entry->po2); else move_to(gc, entry->sec, entry->po2); } cairo_stroke(gc->cr); } } static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi) { int i, incr; cairo_t *cr = gc->cr; int sec, depth; struct plot_data *entry; int maxtime, maxdepth, marker, maxline; int increments[8] = { 10, 20, 30, 60, 5*60, 10*60, 15*60, 30*60 }; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); gc->maxtime = maxtime; /* Time markers: at most every 10 seconds, but no more than 12 markers. * We start out with 10 seconds and increment up to 30 minutes, * depending on the dive time. * This allows for 6h dives - enough (I hope) for even the craziest * divers - but just in case, for those 8h depth-record-breaking dives, * we double the interval if this still doesn't get us to 12 or fewer * time markers */ i = 0; while (maxtime / increments[i] > 12 && i < 7) i++; incr = increments[i]; while (maxtime / incr > 12) incr *= 2; gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = 1.0; last_gc = *gc; set_source_rgba(gc, TIME_GRID); cairo_set_line_width_scaled(gc->cr, 2); for (i = incr; i < maxtime; i += incr) { move_to(gc, i, 0); line_to(gc, i, 1); } cairo_stroke(cr); /* now the text on the time markers */ text_render_options_t tro = {DEPTH_TEXT_SIZE, TIME_TEXT, CENTER, TOP}; if (maxtime < 600) { /* Be a bit more verbose with shorter dives */ for (i = incr; i < maxtime; i += incr) plot_text(gc, &tro, i, 1, "%02d:%02d", i/60, i%60); } else { /* Only render the time on every second marker for normal dives */ for (i = incr; i < maxtime; i += 2 * incr) plot_text(gc, &tro, i, 1, "%d", i/60); } /* Depth markers: every 30 ft or 10 m*/ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = maxdepth; switch (prefs.units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } maxline = MAX(pi->maxdepth + marker, maxdepth * 2 / 3); set_source_rgba(gc, DEPTH_GRID); for (i = marker; i < maxline; i += marker) { move_to(gc, 0, i); line_to(gc, 1, i); } cairo_stroke(cr); gc->leftx = 0; gc->rightx = maxtime; /* Show mean depth */ if (! gc->printer) { set_source_rgba(gc, MEAN_DEPTH); move_to(gc, 0, pi->meandepth); line_to(gc, pi->entry[pi->nr - 1].sec, pi->meandepth); cairo_stroke(cr); } /* * These are good for debugging text placement etc, * but not for actual display.. */ if (0) { plot_smoothed_profile(gc, pi); plot_minmax_profile(gc, pi); } /* Do the depth profile for the neat fill */ gc->topy = 0; gc->bottomy = maxdepth; cairo_pattern_t *pat; pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale); pattern_add_color_stop_rgba (gc, pat, 1, DEPTH_BOTTOM); pattern_add_color_stop_rgba (gc, pat, 0, DEPTH_TOP); cairo_set_source(gc->cr, pat); cairo_pattern_destroy(pat); cairo_set_line_width_scaled(gc->cr, 2); entry = pi->entry; move_to(gc, 0, 0); for (i = 0; i < pi->nr; i++, entry++) line_to(gc, entry->sec, entry->depth); /* Show any ceiling we may have encountered */ for (i = pi->nr - 1; i >= 0; i--, entry--) { if (entry->ndl) { /* non-zero NDL implies this is a safety stop, no ceiling */ line_to(gc, entry->sec, 0); } else if (entry->stopdepth < entry->depth) { line_to(gc, entry->sec, entry->stopdepth); } else { line_to(gc, entry->sec, entry->depth); } } cairo_close_path(gc->cr); cairo_fill(gc->cr); /* if the user wants the deco ceiling more visible, do that here (this * basically draws over the background that we had allowed to shine * through so far) */ if (prefs.profile_red_ceiling) { pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale); pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW); pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP); cairo_set_source(gc->cr, pat); cairo_pattern_destroy(pat); entry = pi->entry; move_to(gc, 0, 0); for (i = 0; i < pi->nr; i++, entry++) { if (entry->ndl == 0 && entry->stopdepth) { if (entry->ndl == 0 && entry->stopdepth < entry->depth) { line_to(gc, entry->sec, entry->stopdepth); } else { line_to(gc, entry->sec, entry->depth); } } else { line_to(gc, entry->sec, 0); } } cairo_close_path(gc->cr); cairo_fill(gc->cr); } /* finally, plot the calculated ceiling over all this */ if (prefs.profile_calc_ceiling) { pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale); pattern_add_color_stop_rgba (gc, pat, 0, CALC_CEILING_SHALLOW); pattern_add_color_stop_rgba (gc, pat, 1, CALC_CEILING_DEEP); cairo_set_source(gc->cr, pat); cairo_pattern_destroy(pat); entry = pi->entry; move_to(gc, 0, 0); for (i = 0; i < pi->nr; i++, entry++) { if (entry->ceiling) line_to(gc, entry->sec, entry->ceiling); else line_to(gc, entry->sec, 0); } line_to(gc, (entry-1)->sec, 0); /* make sure we end at 0 */ cairo_close_path(gc->cr); cairo_fill(gc->cr); } /* next show where we have been bad and crossed the dc's ceiling */ pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale); pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW); pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP); cairo_set_source(gc->cr, pat); cairo_pattern_destroy(pat); entry = pi->entry; move_to(gc, 0, 0); for (i = 0; i < pi->nr; i++, entry++) line_to(gc, entry->sec, entry->depth); for (i = pi->nr - 1; i >= 0; i--, entry--) { if (entry->ndl == 0 && entry->stopdepth > entry->depth) { line_to(gc, entry->sec, entry->stopdepth); } else { line_to(gc, entry->sec, entry->depth); } } cairo_close_path(gc->cr); cairo_fill(gc->cr); /* Now do it again for the velocity colors */ entry = pi->entry; for (i = 1; i < pi->nr; i++) { entry++; sec = entry->sec; /* we want to draw the segments in different colors * representing the vertical velocity, so we need to * chop this into short segments */ depth = entry->depth; set_source_rgba(gc, VELOCITY_COLORS_START_IDX + entry->velocity); move_to(gc, entry[-1].sec, entry[-1].depth); line_to(gc, sec, depth); cairo_stroke(cr); } } static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi) { int maxtime, mintemp, maxtemp, delta; /* Get plot scaling limits */ maxtime = get_maxtime(pi); mintemp = pi->mintemp; maxtemp = pi->maxtemp; gc->leftx = 0; gc->rightx = maxtime; /* Show temperatures in roughly the lower third, but make sure the scale is at least somewhat reasonable */ delta = maxtemp - mintemp; if (delta < 3000) /* less than 3K in fluctuation */ delta = 3000; gc->topy = maxtemp + delta*2; if (PP_GRAPHS_ENABLED) gc->bottomy = mintemp - delta * 2; else gc->bottomy = mintemp - delta / 3; pi->endtempcoord = SCALEY(gc, pi->mintemp); return maxtemp && maxtemp >= mintemp; } static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin) { double deg; const char *unit; static const text_render_options_t tro = {TEMP_TEXT_SIZE, TEMP_TEXT, LEFT, TOP}; deg = get_temp_units(mkelvin, &unit); plot_text(gc, &tro, sec, mkelvin, "%.2g%s", deg, unit); } static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi) { int i; int last = -300, sec = 0; int last_temperature = 0, last_printed_temp = 0; if (!setup_temperature_limits(gc, pi)) return; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; int mkelvin = entry->temperature; sec = entry->sec; if (!mkelvin) continue; last_temperature = mkelvin; /* don't print a temperature * if it's been less than 5min and less than a 2K change OR * if it's been less than 2min OR if the change from the * last print is less than .4K (and therefore less than 1F */ if (((sec < last + 300) && (abs(mkelvin - last_printed_temp) < 2000)) || (sec < last + 120) || (abs(mkelvin - last_printed_temp) < 400)) continue; last = sec; plot_single_temp_text(gc,sec,mkelvin); last_printed_temp = mkelvin; } /* it would be nice to print the end temperature, if it's * different or if the last temperature print has been more * than a quarter of the dive back */ if ((abs(last_temperature - last_printed_temp) > 500) || ((double)last / (double)sec < 0.75)) plot_single_temp_text(gc, sec, last_temperature); } static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi) { int i; cairo_t *cr = gc->cr; int last = 0; if (!setup_temperature_limits(gc, pi)) return; cairo_set_line_width_scaled(gc->cr, 2); set_source_rgba(gc, TEMP_PLOT); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; int mkelvin = entry->temperature; int sec = entry->sec; if (!mkelvin) { if (!last) continue; mkelvin = last; } if (last) line_to(gc, sec, mkelvin); else move_to(gc, sec, mkelvin); last = mkelvin; } cairo_stroke(cr); } /* gets both the actual start and end pressure as well as the scaling factors */ static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi) { gc->leftx = 0; gc->rightx = get_maxtime(pi); if (PP_GRAPHS_ENABLED) gc->bottomy = -pi->maxpressure * 0.75; else gc->bottomy = 0; gc->topy = pi->maxpressure * 1.5; if (!pi->maxpressure) return FALSE; while (pi->endtempcoord <= SCALEY(gc, pi->minpressure - (gc->topy) * 0.1)) gc->bottomy -= gc->topy * 0.1; return TRUE; } /* set the color for the pressure plot according to temporary sac rate * as compared to avg_sac; the calculation simply maps the delta between * sac and avg_sac to indexes 0 .. (SAC_COLORS - 1) with everything * more than 6000 ml/min below avg_sac mapped to 0 */ static void set_sac_color(struct graphics_context *gc, int sac, int avg_sac) { int sac_index = 0; int delta = sac - avg_sac + 7000; if (!gc->printer) { sac_index = delta / 2000; if (sac_index < 0) sac_index = 0; if (sac_index > SAC_COLORS - 1) sac_index = SAC_COLORS - 1; set_source_rgba(gc, SAC_COLORS_START_IDX + sac_index); } else { set_source_rgba(gc, SAC_DEFAULT); } } /* Get local sac-rate (in ml/min) between entry1 and entry2 */ static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive) { int index = entry1->cylinderindex; cylinder_t *cyl; int duration = entry2->sec - entry1->sec; int depth, airuse; pressure_t a, b; double atm; if (entry2->cylinderindex != index) return 0; if (duration <= 0) return 0; a.mbar = GET_PRESSURE(entry1); b.mbar = GET_PRESSURE(entry2); if (!a.mbar || !b.mbar) return 0; /* Mean pressure in ATM */ depth = (entry1->depth + entry2->depth) / 2; atm = (double) depth_to_mbar(depth, dive) / SURFACE_PRESSURE; cyl = dive->cylinder + index; airuse = gas_volume(cyl, a) - gas_volume(cyl, b); /* milliliters per minute */ return airuse / atm * 60 / duration; } /* calculate the current SAC in ml/min and convert to int */ #define GET_LOCAL_SAC(_entry1, _entry2, _dive) \ get_local_sac(_entry1, _entry2, _dive) #define SAC_WINDOW 45 /* sliding window in seconds for current SAC calculation */ static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi, struct dive *dive, struct divecomputer *dc) { int i; int last = -1, last_index = -1; int lift_pen = FALSE; int first_plot = TRUE; int sac = 0; struct plot_data *last_entry = NULL; if (!get_cylinder_pressure_range(gc, pi)) return; cairo_set_line_width_scaled(gc->cr, 2); for (i = 0; i < pi->nr; i++) { int mbar; struct plot_data *entry = pi->entry + i; mbar = GET_PRESSURE(entry); if (entry->cylinderindex != last_index) { lift_pen = TRUE; last_entry = NULL; } if (!mbar) { lift_pen = TRUE; continue; } if (!last_entry) { last = i; last_entry = entry; sac = GET_LOCAL_SAC(entry, pi->entry + i + 1, dive); } else { int j; sac = 0; for (j = last; j < i; j++) sac += GET_LOCAL_SAC(pi->entry + j, pi->entry + j + 1, dive); sac /= (i - last); if (entry->sec - last_entry->sec >= SAC_WINDOW) { last++; last_entry = pi->entry + last; } } set_sac_color(gc, sac, dive->sac); if (lift_pen) { if (!first_plot && entry->cylinderindex == last_index) { /* if we have a previous event from the same tank, * draw at least a short line */ int prev_pr; prev_pr = GET_PRESSURE(entry - 1); move_to(gc, (entry-1)->sec, prev_pr); line_to(gc, entry->sec, mbar); } else { first_plot = FALSE; move_to(gc, entry->sec, mbar); } lift_pen = FALSE; } else { line_to(gc, entry->sec, mbar); } cairo_stroke(gc->cr); move_to(gc, entry->sec, mbar); last_index = entry->cylinderindex; } } static void plot_pressure_value(struct graphics_context *gc, int mbar, int sec, int xalign, int yalign) { int pressure; const char *unit; pressure = get_pressure_units(mbar, &unit); text_render_options_t tro = {PRESSURE_TEXT_SIZE, PRESSURE_TEXT, xalign, yalign}; plot_text(gc, &tro, sec, mbar, "%d %s", pressure, unit); } static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi) { int i; int mbar, cyl; int seen_cyl[MAX_CYLINDERS] = { FALSE, }; int last_pressure[MAX_CYLINDERS] = { 0, }; int last_time[MAX_CYLINDERS] = { 0, }; struct plot_data *entry; if (!get_cylinder_pressure_range(gc, pi)) return; cyl = -1; for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; mbar = GET_PRESSURE(entry); if (!mbar) continue; if (cyl != entry->cylinderindex) { cyl = entry->cylinderindex; if (!seen_cyl[cyl]) { plot_pressure_value(gc, mbar, entry->sec, LEFT, BOTTOM); seen_cyl[cyl] = TRUE; } } last_pressure[cyl] = mbar; last_time[cyl] = entry->sec; } for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { if (last_time[cyl]) { plot_pressure_value(gc, last_pressure[cyl], last_time[cyl], CENTER, TOP); } } } static void plot_deco_text(struct graphics_context *gc, struct plot_info *pi) { if (prefs.profile_calc_ceiling) { float x = gc->leftx + (gc->rightx - gc->leftx) / 2; float y = gc->topy = 1.0; text_render_options_t tro = {PRESSURE_TEXT_SIZE, PRESSURE_TEXT, CENTER, -0.2}; gc->bottomy = 0.0; plot_text(gc, &tro, x, y, "GF %.0f/%.0f", prefs.gflow * 100, prefs.gfhigh * 100); } } static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index) { struct plot_data *p = entry; int time = entry->sec; int seconds = 90*(index+1); struct plot_data *min, *max; int avg, nr; /* Go back 'seconds' in time */ while (p > first) { if (p[-1].sec < time - seconds) break; p--; } /* Then go forward until we hit an entry past the time */ min = max = p; avg = p->depth; nr = 1; while (++p < last) { int depth = p->depth; if (p->sec > time + seconds) break; avg += depth; nr ++; if (depth < min->depth) min = p; if (depth > max->depth) max = p; } entry->min[index] = min; entry->max[index] = max; entry->avg[index] = (avg + nr/2) / nr; } static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last) { analyze_plot_info_minmax_minute(entry, first, last, 0); analyze_plot_info_minmax_minute(entry, first, last, 1); analyze_plot_info_minmax_minute(entry, first, last, 2); } static velocity_t velocity(int speed) { velocity_t v; if (speed < -304) /* ascent faster than -60ft/min */ v = CRAZY; else if (speed < -152) /* above -30ft/min */ v = FAST; else if (speed < -76) /* -15ft/min */ v = MODERATE; else if (speed < -25) /* -5ft/min */ v = SLOW; else if (speed < 25) /* very hard to find data, but it appears that the recommendations for descent are usually about 2x ascent rate; still, we want stable to mean stable */ v = STABLE; else if (speed < 152) /* between 5 and 30ft/min is considered slow */ v = SLOW; else if (speed < 304) /* up to 60ft/min is moderate */ v = MODERATE; else if (speed < 507) /* up to 100ft/min is fast */ v = FAST; else /* more than that is just crazy - you'll blow your ears out */ v = CRAZY; return v; } static struct plot_info *analyze_plot_info(struct plot_info *pi) { int i; int nr = pi->nr; /* Smoothing function: 5-point triangular smooth */ for (i = 2; i < nr; i++) { struct plot_data *entry = pi->entry+i; int depth; if (i < nr-2) { depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth; entry->smoothed = (depth+4) / 9; } /* vertical velocity in mm/sec */ /* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */ if (entry[0].sec - entry[-1].sec) { entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec)); /* if our samples are short and we aren't too FAST*/ if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) { int past = -2; while (i+past > 0 && entry[0].sec - entry[past].sec < 15) past--; entry->velocity = velocity((entry[0].depth - entry[past].depth) / (entry[0].sec - entry[past].sec)); } } else { entry->velocity = STABLE; } } /* One-, two- and three-minute minmax data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry +i; analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr); } return pi; } /* * simple structure to track the beginning and end tank pressure as * well as the integral of depth over time spent while we have no * pressure reading from the tank */ typedef struct pr_track_struct pr_track_t; struct pr_track_struct { int start; int end; int t_start; int t_end; int pressure_time; pr_track_t *next; }; static pr_track_t *pr_track_alloc(int start, int t_start) { pr_track_t *pt = malloc(sizeof(pr_track_t)); pt->start = start; pt->t_start = t_start; pt->end = 0; pt->t_end = 0; pt->pressure_time = 0; pt->next = NULL; return pt; } /* poor man's linked list */ static pr_track_t *list_last(pr_track_t *list) { pr_track_t *tail = list; if (!tail) return NULL; while (tail->next) { tail = tail->next; } return tail; } static pr_track_t *list_add(pr_track_t *list, pr_track_t *element) { pr_track_t *tail = list_last(list); if (!tail) return element; tail->next = element; return list; } static void list_free(pr_track_t *list) { if (!list) return; list_free(list->next); free(list); } static void dump_pr_track(pr_track_t **track_pr) { int cyl; pr_track_t *list; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { list = track_pr[cyl]; while (list) { printf("cyl%d: start %d end %d t_start %d t_end %d pt %d\n", cyl, list->start, list->end, list->t_start, list->t_end, list->pressure_time); list = list->next; } } } /* * This looks at the pressures for one cylinder, and * calculates any missing beginning/end pressures for * each segment by taking the over-all SAC-rate into * account for that cylinder. * * NOTE! Many segments have full pressure information * (both beginning and ending pressure). But if we have * switched away from a cylinder, we will have the * beginning pressure for the first segment with a * missing end pressure. We may then have one or more * segments without beginning or end pressures, until * we finally have a segment with an end pressure. * * We want to spread out the pressure over these missing * segments according to how big of a time_pressure area * they have. */ static void fill_missing_segment_pressures(pr_track_t *list) { while (list) { int start = list->start, end; pr_track_t *tmp = list; int pt_sum = 0, pt = 0; for (;;) { pt_sum += tmp->pressure_time; end = tmp->end; if (end) break; end = start; if (!tmp->next) break; tmp = tmp->next; } if (!start) start = end; /* * Now 'start' and 'end' contain the pressure values * for the set of segments described by 'list'..'tmp'. * pt_sum is the sum of all the pressure-times of the * segments. * * Now dole out the pressures relative to pressure-time. */ list->start = start; tmp->end = end; for (;;) { int pressure; pt += list->pressure_time; pressure = start; if (pt_sum) pressure -= (start-end)*(double)pt/pt_sum; list->end = pressure; if (list == tmp) break; list = list->next; list->start = pressure; } /* Ok, we've done that set of segments */ list = list->next; } } /* * What's the pressure-time between two plot data entries? * We're calculating the integral of pressure over time by * adding these up. * * The units won't matter as long as everybody agrees about * them, since they'll cancel out - we use this to calculate * a constant SAC-rate-equivalent, but we only use it to * scale pressures, so it ends up being a unitless scaling * factor. */ static inline int pressure_time(struct dive *dive, struct divecomputer *dc, struct plot_data *a, struct plot_data *b) { int time = b->sec - a->sec; int depth = (a->depth + b->depth)/2; return depth_to_mbar(depth, dive) * time; } static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t **track_pr) { int cyl, i; struct plot_data *entry; int cur_pr[MAX_CYLINDERS]; if (0) { /* another great debugging tool */ dump_pr_track(track_pr); } for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { fill_missing_segment_pressures(track_pr[cyl]); cur_pr[cyl] = track_pr[cyl]->start; } /* The first two are "fillers", but in case we don't have a sample * at time 0 we need to process the second of them here */ for (i = 1; i < pi->nr; i++) { double magic, cur_pt; pr_track_t *segment; int pressure; entry = pi->entry + i; cyl = entry->cylinderindex; if (SENSOR_PRESSURE(entry)) { cur_pr[cyl] = SENSOR_PRESSURE(entry); continue; } /* Find the right pressure segment for this entry.. */ segment = track_pr[cyl]; while (segment && segment->t_end < entry->sec) segment = segment->next; /* No (or empty) segment? Just use our current pressure */ if (!segment || !segment->pressure_time) { SENSOR_PRESSURE(entry) = cur_pr[cyl]; continue; } /* Overall pressure change over total pressure-time for this segment*/ magic = (segment->end - segment->start) / (double) segment->pressure_time; /* Use that overall pressure change to update the current pressure */ cur_pt = pressure_time(dive, &dive->dc, entry-1, entry); pressure = cur_pr[cyl] + cur_pt * magic + 0.5; INTERPOLATED_PRESSURE(entry) = pressure; cur_pr[cyl] = pressure; } } static int get_cylinder_index(struct dive *dive, struct event *ev) { int i; /* * Try to find a cylinder that matches the O2 percentage * in the gas change event 'value' field. * * Crazy suunto gas change events. We really should do * this in libdivecomputer or something. * * There are two different gas change events that can get * us here - GASCHANGE2 has the He value in the high 16 * bits; looking at the possible values we can actually * handle them with the same code since the high 16 bits * will be 0 with the GASCHANGE event - and that means no He */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder+i; int o2 = (cyl->gasmix.o2.permille + 5) / 10; int he = (cyl->gasmix.he.permille + 5) / 10; if (o2 == (ev->value & 0xFFFF) && he == (ev->value >> 16)) return i; } return 0; } static struct event *get_next_event(struct event *event, char *name) { if (!name || !*name) return NULL; while (event) { if (!strcmp(event->name, name)) return event; event = event->next; } return event; } static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end) { while (i < pi->nr) { struct plot_data *entry = pi->entry+i; if (entry->sec > end) break; if (entry->cylinderindex != cylinderindex) { entry->cylinderindex = cylinderindex; entry->pressure[0] = 0; } i++; } return i; } static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i = 0, cylinderindex = 0; struct event *ev = get_next_event(dc->events, "gaschange"); if (!ev) return; do { i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds); cylinderindex = get_cylinder_index(dive, ev); ev = get_next_event(ev->next, "gaschange"); } while (ev); set_cylinder_index(pi, i, cylinderindex, ~0u); } static void calculate_max_limits(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc) { struct plot_info *pi; int maxdepth; int maxtime = 0; int maxpressure = 0, minpressure = INT_MAX; int mintemp, maxtemp; int cyl; /* The plot-info is embedded in the graphics context */ pi = &gc->pi; memset(pi, 0, sizeof(*pi)); maxdepth = dive->maxdepth.mm; mintemp = dive->mintemp.mkelvin; maxtemp = dive->maxtemp.mkelvin; /* Get the per-cylinder maximum pressure if they are manual */ for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { unsigned int mbar = dive->cylinder[cyl].start.mbar; if (mbar > maxpressure) maxpressure = mbar; } /* Then do all the samples from all the dive computers */ do { int i = dc->samples; int lastdepth = 0; struct sample *s = dc->sample; while (--i >= 0) { int depth = s->depth.mm; int pressure = s->cylinderpressure.mbar; int temperature = s->temperature.mkelvin; if (!mintemp && temperature < mintemp) mintemp = temperature; if (temperature > maxtemp) maxtemp = temperature; if (pressure && pressure < minpressure) minpressure = pressure; if (pressure > maxpressure) maxpressure = pressure; if (depth > maxdepth) maxdepth = s->depth.mm; if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) && s->time.seconds > maxtime) maxtime = s->time.seconds; lastdepth = depth; s++; } } while ((dc = dc->next) != NULL); if (minpressure > maxpressure) minpressure = 0; pi->maxdepth = maxdepth; pi->maxtime = maxtime; pi->maxpressure = maxpressure; pi->minpressure = minpressure; pi->mintemp = mintemp; pi->maxtemp = maxtemp; } static struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int idx, maxtime, nr, i; int lastdepth, lasttime; struct plot_data *plot_data; maxtime = pi->maxtime; /* * We want to have a plot_info event at least every 10s (so "maxtime/10+1"), * but samples could be more dense than that (so add in dc->samples), and * additionally we want two surface events around the whole thing (thus the * additional 4). */ nr = dc->samples + 5 + maxtime / 10; plot_data = calloc(nr, sizeof(struct plot_data)); pi->entry = plot_data; if (!plot_data) return NULL; pi->nr = nr; idx = 2; /* the two extra events at the start */ lastdepth = 0; lasttime = 0; for (i = 0; i < dc->samples; i++) { struct plot_data *entry = plot_data + idx; struct sample *sample = dc->sample+i; int time = sample->time.seconds; int depth = sample->depth.mm; int offset, delta; /* Add intermediate plot entries if required */ delta = time - lasttime; if (delta < 0) { time = lasttime; delta = 0; } for (offset = 10; offset < delta; offset += 10) { if (lasttime + offset > maxtime) break; /* Use the data from the previous plot entry */ *entry = entry[-1]; /* .. but update depth and time, obviously */ entry->sec = lasttime + offset; entry->depth = interpolate(lastdepth, depth, offset, delta); /* And clear out the sensor pressure, since we'll interpolate */ SENSOR_PRESSURE(entry) = 0; idx++; entry++; } if (time > maxtime) break; entry->sec = time; entry->depth = depth; entry->stopdepth = sample->stopdepth.mm; entry->stoptime = sample->stoptime.seconds; entry->ndl = sample->ndl.seconds; pi->has_ndl |= sample->ndl.seconds; entry->in_deco = sample->in_deco; entry->cns = sample->cns; entry->po2 = sample->po2 / 1000.0; /* FIXME! sensor index -> cylinder index translation! */ entry->cylinderindex = sample->sensor; SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar; entry->temperature = sample->temperature.mkelvin; lasttime = time; lastdepth = depth; idx++; } /* Add two final surface events */ plot_data[idx++].sec = lasttime+10; plot_data[idx++].sec = lasttime+20; pi->nr = idx; return plot_data; } static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi) { int i; /* First: check that none of the entries has sensor pressure for this cylinder index */ for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; if (entry->cylinderindex != idx) continue; if (SENSOR_PRESSURE(entry)) return; } /* Then: populate the first entry with the beginning cylinder pressure */ for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; if (entry->cylinderindex != idx) continue; SENSOR_PRESSURE(entry) = start; break; } /* .. and the last entry with the ending cylinder pressure */ for (i = pi->nr; --i >= 0; /* nothing */) { struct plot_data *entry = pi->entry+i; if (entry->cylinderindex != idx) continue; SENSOR_PRESSURE(entry) = end; break; } } static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi) { /* We should try to see if it has interesting pressure data here */ } static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i; struct divecomputer *secondary; /* First, populate the pressures with the manual cylinder data.. */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder+i; int start = cyl->start.mbar ? : cyl->sample_start.mbar; int end = cyl->end.mbar ? : cyl->sample_end.mbar; if (!start || !end) continue; populate_cylinder_pressure_data(i, start, end, pi); } /* * Here, we should try to walk through all the dive computers, * and try to see if they have sensor data different from the * primary dive computer (dc). */ secondary = &dive->dc; do { if (secondary == dc) continue; populate_secondary_sensor_data(dc, pi); } while ((secondary = secondary->next) != NULL); } static void populate_pressure_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i, cylinderindex; pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, }; pr_track_t *current; gboolean missing_pr = FALSE; /* Set up the pressure tracking data structures */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; int mbar = cyl->start.mbar ? : cyl->sample_start.mbar; track_pr[i] = pr_track_alloc(mbar, 0); } cylinderindex = pi->entry[0].cylinderindex; current = track_pr[cylinderindex]; for (i = 1; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; /* discrete integration of pressure over time to get the SAC rate equivalent */ current->pressure_time += pressure_time(dive, dc, entry-1, entry); /* track the segments per cylinder and their pressure/time integral */ if (entry->cylinderindex != cylinderindex) { cylinderindex = entry->cylinderindex; current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); } else { /* same cylinder */ if (SENSOR_PRESSURE(entry) && !SENSOR_PRESSURE(entry-1)) { /* transmitter changed its working status */ current->end = SENSOR_PRESSURE(entry); current->t_end = entry->sec; current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); } } /* finally, do the discrete integration to get the SAC rate equivalent */ if (SENSOR_PRESSURE(entry)) { current->end = SENSOR_PRESSURE(entry); current->t_end = entry->sec; } missing_pr |= !SENSOR_PRESSURE(entry); } /* initialize the end pressures */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; int pr = cyl->end.mbar ? : cyl->sample_end.mbar; if (pr && track_pr[i]) { pr_track_t *pr_track = list_last(track_pr[i]); pr_track->end = pr; } } if (missing_pr) { fill_missing_tank_pressures(dive, pi, track_pr); } for (i = 0; i < MAX_CYLINDERS; i++) list_free(track_pr[i]); } static void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i; double amb_pressure; double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, TRUE)) / 1000.0; for (i = 1; i < pi->nr; i++) { int fo2, fhe, j, t0, t1; double tissue_tolerance; struct plot_data *entry = pi->entry + i; int cylinderindex = entry->cylinderindex; amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0; fo2 = dive->cylinder[cylinderindex].gasmix.o2.permille ? : O2_IN_AIR; fhe = dive->cylinder[cylinderindex].gasmix.he.permille; double ratio = (double)fhe / (1000.0 - fo2); if (entry->po2) { /* we have an O2 partial pressure in the sample - so this * is likely a CC dive... use that instead of the value * from the cylinder info */ double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2; entry->po2 = po2; entry->phe = (amb_pressure - po2) * ratio; entry->pn2 = amb_pressure - po2 - entry->phe; } else { entry->po2 = fo2 / 1000.0 * amb_pressure; entry->phe = fhe / 1000.0 * amb_pressure; entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure; } /* Calculate MOD, EAD, END and EADD based on partial pressures calculated before * so there is no difference in calculating between OC and CC * EAD takes O2 + N2 (air) into account * END just uses N2 */ entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000; entry->ead = (entry->depth + 10000) * (entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000; entry->end = (entry->depth + 10000) * (amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000; entry->eadd = (entry->depth + 10000) * (entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure * N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) / (O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000; if (entry->mod < 0) entry->mod = 0; if (entry->ead < 0) entry->ead = 0; if (entry->end < 0) entry->end = 0; if (entry->eadd < 0) entry->eadd = 0; if (entry->po2 > pi->maxpp && prefs.pp_graphs.po2) pi->maxpp = entry->po2; if (entry->phe > pi->maxpp && prefs.pp_graphs.phe) pi->maxpp = entry->phe; if (entry->pn2 > pi->maxpp && prefs.pp_graphs.pn2) pi->maxpp = entry->pn2; /* and now let's try to do some deco calculations */ t0 = (entry - 1)->sec; t1 = entry->sec; tissue_tolerance = 0; for (j = t0+1; j <= t1; j++) { int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0); double min_pressure = add_segment(depth_to_mbar(depth, dive) / 1000.0, &dive->cylinder[cylinderindex].gasmix, 1, entry->po2 * 1000, dive); tissue_tolerance = min_pressure; } if (t0 == t1) entry->ceiling = (entry - 1)->ceiling; else entry->ceiling = deco_allowed_depth(tissue_tolerance, surface_pressure, dive, !prefs.calc_ceiling_3m_incr); } #if DECO_CALC_DEBUG & 1 dump_tissues(); #endif } /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. */ static struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc) { struct plot_info *pi; /* The plot-info is embedded in the graphics context */ pi = &gc->pi; /* reset deco information to start the calculation */ init_decompression(dive); /* Create the new plot data */ if (last_pi_entry) free((void *)last_pi_entry); last_pi_entry = populate_plot_entries(dive, dc, pi); /* Populate the gas index from the gas change events */ check_gas_change_events(dive, dc, pi); /* Try to populate our gas pressure knowledge */ setup_gas_sensor_pressure(dive, dc, pi); /* .. calculate missing pressure entries */ populate_pressure_information(dive, dc, pi); /* Then, calculate partial pressures and deco information */ calculate_deco_information(dive, dc, pi); pi->meandepth = dive->dc.meandepth.mm; if (0) /* awesome for debugging - not useful otherwise */ dump_pi(pi); return analyze_plot_info(pi); } static void plot_set_scale(scale_mode_t scale) { switch (scale) { default: case SC_SCREEN: plot_scale = SCALE_SCREEN; break; case SC_PRINT: plot_scale = SCALE_PRINT; break; } } /* make sure you pass this the FIRST dc - it just walks the list */ static int nr_dcs(struct divecomputer *main) { int i = 1; struct divecomputer *dc = main; while ((dc = dc->next) != NULL) i++; return i; } struct divecomputer *select_dc(struct divecomputer *main) { int i = dc_number; struct divecomputer *dc = main; while (i < 0) i += nr_dcs(main); do { if (--i < 0) return dc; } while ((dc = dc->next) != NULL); /* If we switched dives to one with fewer DC's, reset the dive computer counter */ dc_number = 0; return main; } void plot(struct graphics_context *gc, struct dive *dive, scale_mode_t scale) { struct plot_info *pi; struct divecomputer *dc = &dive->dc; cairo_rectangle_t *drawing_area = &gc->drawing_area; const char *nickname; plot_set_scale(scale); if (!dc->samples) { static struct sample fake[4]; static struct divecomputer fakedc; fakedc = dive->dc; fakedc.sample = fake; fakedc.samples = 4; /* The dive has no samples, so create a few fake ones. This assumes an ascent/descent rate of 9 m/min, which is just below the limit for FAST. */ int duration = dive->dc.duration.seconds; int maxdepth = dive->dc.maxdepth.mm; int asc_desc_time = dive->dc.maxdepth.mm*60/9000; if (asc_desc_time * 2 >= duration) asc_desc_time = duration / 2; fake[1].time.seconds = asc_desc_time; fake[1].depth.mm = maxdepth; fake[2].time.seconds = duration - asc_desc_time; fake[2].depth.mm = maxdepth; fake[3].time.seconds = duration * 1.00; fakedc.events = dc->events; dc = &fakedc; } /* * Set up limits that are independent of * the dive computer */ calculate_max_limits(dive, dc, gc); /* shift the drawing area so we have a nice margin around it */ cairo_translate(gc->cr, drawing_area->x, drawing_area->y); cairo_set_line_width_scaled(gc->cr, 1); cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND); cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND); /* * We don't use "cairo_translate()" because that doesn't * scale line width etc. But the actual scaling we need * do set up ourselves.. * * Snif. What a pity. */ gc->maxx = (drawing_area->width - 2*drawing_area->x); gc->maxy = (drawing_area->height - 2*drawing_area->y); dc = select_dc(dc); /* This is per-dive-computer. Right now we just do the first one */ pi = create_plot_info(dive, dc, gc); /* Depth profile */ plot_depth_profile(gc, pi); plot_events(gc, pi, dc); /* Temperature profile */ plot_temperature_profile(gc, pi); /* Cylinder pressure plot */ plot_cylinder_pressure(gc, pi, dive, dc); /* Text on top of all graphs.. */ plot_temperature_text(gc, pi); plot_depth_text(gc, pi); plot_cylinder_pressure_text(gc, pi); plot_deco_text(gc, pi); /* Bounding box last */ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = 1.0; set_source_rgba(gc, BOUNDING_BOX); cairo_set_line_width_scaled(gc->cr, 1); move_to(gc, 0, 0); line_to(gc, 0, 1); line_to(gc, 1, 1); line_to(gc, 1, 0); cairo_close_path(gc->cr); cairo_stroke(gc->cr); /* Put the dive computer name in the lower left corner */ nickname = get_dc_nickname(dc->model, dc->deviceid); if (!nickname || *nickname == '\0') nickname = dc->model; if (nickname) { static const text_render_options_t computer = {DC_TEXT_SIZE, TIME_TEXT, LEFT, MIDDLE}; plot_text(gc, &computer, 0, 1, "%s", nickname); } if (PP_GRAPHS_ENABLED) { plot_pp_gas_profile(gc, pi); plot_pp_text(gc, pi); } /* now shift the translation back by half the margin; * this way we can draw the vertical scales on both sides */ cairo_translate(gc->cr, -drawing_area->x / 2.0, 0); gc->maxx += drawing_area->x; gc->leftx = -(drawing_area->x / drawing_area->width) / 2.0; gc->rightx = 1.0 - gc->leftx; plot_depth_scale(gc, pi); if (gc->printer) { free(pi->entry); last_pi_entry = pi->entry = NULL; pi->nr = 0; } } static void plot_string(struct plot_data *entry, char *buf, size_t bufsize, int depth, int pressure, int temp, gboolean has_ndl) { int pressurevalue, mod, ead, end, eadd; const char *depth_unit, *pressure_unit, *temp_unit; char *buf2 = malloc(bufsize); double depthvalue, tempvalue; depthvalue = get_depth_units(depth, NULL, &depth_unit); snprintf(buf, bufsize, _("D:%.1f %s"), depthvalue, depth_unit); if (pressure) { pressurevalue = get_pressure_units(pressure, &pressure_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nP:%d %s"), buf2, pressurevalue, pressure_unit); } if (temp) { tempvalue = get_temp_units(temp, &temp_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nT:%.1f %s"), buf2, tempvalue, temp_unit); } if (entry->ceiling) { depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nCalculated ceiling %.0f %s"), buf2, depthvalue, depth_unit); } if (entry->stopdepth) { depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit); memcpy(buf2, buf, bufsize); if (entry->ndl) { /* this is a safety stop as we still have ndl */ if (entry->stoptime) snprintf(buf, bufsize, _("%s\nSafetystop:%umin @ %.0f %s"), buf2, entry->stoptime / 60, depthvalue, depth_unit); else snprintf(buf, bufsize, _("%s\nSafetystop:unkn time @ %.0f %s"), buf2, depthvalue, depth_unit); } else { /* actual deco stop */ if (entry->stoptime) snprintf(buf, bufsize, _("%s\nDeco:%umin @ %.0f %s"), buf2, entry->stoptime / 60, depthvalue, depth_unit); else snprintf(buf, bufsize, _("%s\nDeco:unkn time @ %.0f %s"), buf2, depthvalue, depth_unit); } } else if (entry->in_deco) { /* this means we had in_deco set but don't have a stop depth */ memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nIn deco"), buf2); } else if (has_ndl) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nNDL:%umin"), buf2, entry->ndl / 60); } if (entry->cns) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nCNS:%u%%"), buf2, entry->cns); } if (prefs.pp_graphs.po2) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\npO%s:%.2fbar"), buf2, UTF8_SUBSCRIPT_2, entry->po2); } if (prefs.pp_graphs.pn2) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\npN%s:%.2fbar"), buf2, UTF8_SUBSCRIPT_2, entry->pn2); } if (prefs.pp_graphs.phe) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\npHe:%.2fbar"), buf2, entry->phe); } if (prefs.mod) { mod = (int)get_depth_units(entry->mod, NULL, &depth_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nMOD:%d%s"), buf2, mod, depth_unit); } if (prefs.ead) { ead = (int)get_depth_units(entry->ead, NULL, &depth_unit); end = (int)get_depth_units(entry->end, NULL, &depth_unit); eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, _("%s\nEAD:%d%s\nEND:%d%s\nEADD:%d%s"), buf2, ead, depth_unit, end, depth_unit, eadd, depth_unit); } free(buf2); } void get_plot_details(struct graphics_context *gc, int time, char *buf, size_t bufsize) { struct plot_info *pi = &gc->pi; int pressure = 0, temp = 0; struct plot_data *entry = NULL; int i; for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; if (entry->temperature) temp = entry->temperature; if (GET_PRESSURE(entry)) pressure = GET_PRESSURE(entry); if (entry->sec >= time) break; } if (entry) plot_string(entry, buf, bufsize, entry->depth, pressure, temp, pi->has_ndl); }