/* profile.c */ /* creates all the necessary data for drawing the dive profile * uses cairo to draw it */ #include #include #include #include #include #include "dive.h" #include "display.h" #include "divelist.h" int selected_dive = 0; typedef enum { STABLE, SLOW, MODERATE, FAST, CRAZY } velocity_t; /* Plot info with smoothing, velocity indication * and one-, two- and three-minute minimums and maximums */ struct plot_info { int nr; int maxtime; int meandepth, maxdepth; int minpressure, maxpressure; int endpressure; /* start pressure better be max pressure */ int mintemp, maxtemp; struct plot_data { unsigned int same_cylinder:1; unsigned int cylinderindex; int sec; /* pressure[0] is sensor pressure * pressure[1] is interpolated pressure */ int pressure[2]; int temperature; /* Depth info */ int depth; int smoothed; velocity_t velocity; struct plot_data *min[3]; struct plot_data *max[3]; int avg[3]; } entry[]; }; #define SENSOR_PR 0 #define INTERPOLATED_PR 1 #define SENSOR_PRESSURE(_entry) (_entry)->pressure[SENSOR_PR] #define INTERPOLATED_PRESSURE(_entry) (_entry)->pressure[INTERPOLATED_PR] /* convert velocity to colors */ typedef struct { double r, g, b; } rgb_t; static const rgb_t rgb[] = { [STABLE] = {0.0, 0.4, 0.0}, [SLOW] = {0.4, 0.8, 0.0}, [MODERATE] = {0.8, 0.8, 0.0}, [FAST] = {0.8, 0.5, 0.0}, [CRAZY] = {1.0, 0.0, 0.0}, }; #define plot_info_size(nr) (sizeof(struct plot_info) + (nr)*sizeof(struct plot_data)) /* Scale to 0,0 -> maxx,maxy */ #define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx) #define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy) #define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y) static void move_to(struct graphics_context *gc, double x, double y) { cairo_move_to(gc->cr, SCALE(gc, x, y)); } static void line_to(struct graphics_context *gc, double x, double y) { cairo_line_to(gc->cr, SCALE(gc, x, y)); } static void set_source_rgba(struct graphics_context *gc, double r, double g, double b, double a) { /* * For printers, we still honor 'a', but ignore colors * for now. Black is white and white is black */ if (gc->printer) { double sum = r+g+b; if (sum > 0.8) r = g = b = 0; else r = g = b = 1; } cairo_set_source_rgba(gc->cr, r, g, b, a); } void set_source_rgb(struct graphics_context *gc, double r, double g, double b) { set_source_rgba(gc, r, g, b, 1); } #define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y)) /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such. * we also need to add 180 seconds at the end so the min/max * plots correctly */ static int get_maxtime(struct plot_info *pi) { int seconds = pi->maxtime; /* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */ return MAX(30*60, ROUND_UP(seconds+150, 60*5)); } static int get_maxdepth(struct plot_info *pi) { unsigned mm = pi->maxdepth; /* Minimum 30m, rounded up to 10m, with at least 3m to spare */ return MAX(30000, ROUND_UP(mm+3000, 10000)); } typedef struct { int size; double r,g,b; double hpos, vpos; } text_render_options_t; #define RIGHT (-1.0) #define CENTER (-0.5) #define LEFT (0.0) #define TOP (1) #define MIDDLE (0) #define BOTTOM (-1) static void plot_text(struct graphics_context *gc, const text_render_options_t *tro, double x, double y, const char *fmt, ...) { cairo_t *cr = gc->cr; cairo_font_extents_t fe; cairo_text_extents_t extents; double dx, dy; char buffer[80]; va_list args; va_start(args, fmt); vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); cairo_set_font_size(cr, tro->size); cairo_font_extents(cr, &fe); cairo_text_extents(cr, buffer, &extents); dx = tro->hpos * extents.width + extents.x_bearing; dy = tro->vpos * extents.height + fe.descent; move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); cairo_text_path(cr, buffer); set_source_rgb(gc, 0, 0, 0); cairo_stroke(cr); move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); set_source_rgb(gc, tro->r, tro->g, tro->b); cairo_show_text(cr, buffer); } struct ev_select { char *ev_name; gboolean plot_ev; }; static struct ev_select *ev_namelist; static int evn_allocated; static int evn_used; void remember_event(const char *eventname) { int i=0, len; if (!eventname || (len = strlen(eventname)) == 0) return; while (i < evn_used) { if (!strncmp(eventname,ev_namelist[i].ev_name,len)) return; i++; } if (evn_used == evn_allocated) { evn_allocated += 10; ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select)); if (! ev_namelist) /* we are screwed, but let's just bail out */ return; } ev_namelist[evn_used].ev_name = strdup(eventname); ev_namelist[evn_used].plot_ev = TRUE; evn_used++; } static void plot_one_event(struct graphics_context *gc, struct plot_info *pi, struct event *event, const text_render_options_t *tro) { int i, depth = 0; int x,y; /* is plotting this event disabled? */ if (event->name) { for (i = 0; i < evn_used; i++) { if (! strcmp(event->name, ev_namelist[i].ev_name)) { if (ev_namelist[i].plot_ev) break; else return; } } } for (i = 0; i < pi->nr; i++) { struct plot_data *data = pi->entry + i; if (event->time.seconds < data->sec) break; depth = data->depth; } /* draw a little tirangular marker and attach tooltip */ x = SCALEX(gc, event->time.seconds); y = SCALEY(gc, depth); set_source_rgba(gc, 1.0, 1.0, 0.1, 0.8); cairo_move_to(gc->cr, x-15, y+6); cairo_line_to(gc->cr, x-3 , y+6); cairo_line_to(gc->cr, x-9, y-6); cairo_line_to(gc->cr, x-15, y+6); cairo_stroke_preserve(gc->cr); cairo_fill(gc->cr); set_source_rgba(gc, 0.0, 0.0, 0.0, 0.8); cairo_move_to(gc->cr, x-9, y-3); cairo_line_to(gc->cr, x-9, y+1); cairo_move_to(gc->cr, x-9, y+4); cairo_line_to(gc->cr, x-9, y+4); cairo_stroke(gc->cr); attach_tooltip(x-15, y-6, 12, 12, event->name); } static void plot_events(struct graphics_context *gc, struct plot_info *pi, struct dive *dive) { static const text_render_options_t tro = {14, 1.0, 0.2, 0.2, CENTER, TOP}; struct event *event = dive->events; if (gc->printer) return; while (event) { plot_one_event(gc, pi, event, &tro); event = event->next; } } static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro) { int sec = entry->sec, decimals; double d; d = get_depth_units(entry->depth, &decimals, NULL); plot_text(gc, tro, sec, entry->depth, "%.*f", decimals, d); } static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi) { static const text_render_options_t deep = {14, 1.0, 0.2, 0.2, CENTER, TOP}; static const text_render_options_t shallow = {14, 1.0, 0.2, 0.2, CENTER, BOTTOM}; int i; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; if (entry->depth < 2000) continue; if (entry == entry->max[2]) render_depth_sample(gc, entry, &deep); if (entry == entry->min[2]) render_depth_sample(gc, entry, &shallow); } } static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi) { int maxtime, maxdepth; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = maxdepth; plot_text_samples(gc, pi); } static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi) { int i; struct plot_data *entry = pi->entry; set_source_rgba(gc, 1, 0.2, 0.2, 0.20); move_to(gc, entry->sec, entry->smoothed); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->smoothed); } cairo_stroke(gc->cr); } static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi, int index, double a) { int i; struct plot_data *entry = pi->entry; set_source_rgba(gc, 1, 0.2, 1, a); move_to(gc, entry->sec, entry->min[index]->depth); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->min[index]->depth); } for (i = 1; i < pi->nr; i++) { line_to(gc, entry->sec, entry->max[index]->depth); entry--; } cairo_close_path(gc->cr); cairo_fill(gc->cr); } static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi) { if (gc->printer) return; plot_minmax_profile_minute(gc, pi, 2, 0.1); plot_minmax_profile_minute(gc, pi, 1, 0.1); plot_minmax_profile_minute(gc, pi, 0, 0.1); } static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi) { int i, incr; cairo_t *cr = gc->cr; int sec, depth; struct plot_data *entry; int maxtime, maxdepth, marker; int increments[4] = { 5*60, 10*60, 15*60, 30*60 }; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); /* Time markers: at most every 5 min, but no more than 12 markers * and for convenience we do 5, 10, 15 or 30 min intervals. * This allows for 6h dives - enough (I hope) for even the craziest * divers - but just in case, for those 8h depth-record-breaking dives, * we double the interval if this still doesn't get us to 12 or fewer * time markers */ i = 0; while (maxtime / increments[i] > 12 && i < 4) i++; incr = increments[i]; while (maxtime / incr > 12) incr *= 2; gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = 1.0; set_source_rgba(gc, 1, 1, 1, 0.5); for (i = incr; i < maxtime; i += incr) { move_to(gc, i, 0); line_to(gc, i, 1); } cairo_stroke(cr); /* now the text on every second time marker */ text_render_options_t tro = {10, 0.2, 1.0, 0.2, CENTER, TOP}; for (i = incr; i < maxtime; i += 2 * incr) plot_text(gc, &tro, i, 1, "%d", i/60); /* Depth markers: every 30 ft or 10 m*/ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = maxdepth; switch (output_units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } set_source_rgba(gc, 1, 1, 1, 0.5); for (i = marker; i < maxdepth; i += marker) { move_to(gc, 0, i); line_to(gc, 1, i); } cairo_stroke(cr); /* Show mean depth */ if (! gc->printer) { set_source_rgba(gc, 1, 0.2, 0.2, 0.40); move_to(gc, 0, pi->meandepth); line_to(gc, 1, pi->meandepth); cairo_stroke(cr); } gc->leftx = 0; gc->rightx = maxtime; /* * These are good for debugging text placement etc, * but not for actual display.. */ if (0) { plot_smoothed_profile(gc, pi); plot_minmax_profile(gc, pi); } set_source_rgba(gc, 1, 0.2, 0.2, 0.80); /* Do the depth profile for the neat fill */ gc->topy = 0; gc->bottomy = maxdepth; set_source_rgba(gc, 1, 0.2, 0.2, 0.20); entry = pi->entry; move_to(gc, 0, 0); for (i = 0; i < pi->nr; i++, entry++) line_to(gc, entry->sec, entry->depth); cairo_close_path(gc->cr); if (gc->printer) { set_source_rgba(gc, 1, 1, 1, 0.2); cairo_fill_preserve(cr); set_source_rgb(gc, 1, 1, 1); cairo_stroke(cr); return; } cairo_fill(gc->cr); /* Now do it again for the velocity colors */ entry = pi->entry; for (i = 1; i < pi->nr; i++) { entry++; sec = entry->sec; /* we want to draw the segments in different colors * representing the vertical velocity, so we need to * chop this into short segments */ rgb_t color = rgb[entry->velocity]; depth = entry->depth; set_source_rgb(gc, color.r, color.g, color.b); move_to(gc, entry[-1].sec, entry[-1].depth); line_to(gc, sec, depth); cairo_stroke(cr); } } static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi) { int maxtime, mintemp, maxtemp, delta; /* Get plot scaling limits */ maxtime = get_maxtime(pi); mintemp = pi->mintemp; maxtemp = pi->maxtemp; gc->leftx = 0; gc->rightx = maxtime; /* Show temperatures in roughly the lower third, but make sure the scale is at least somewhat reasonable */ delta = maxtemp - mintemp; if (delta > 3000) { /* more than 3K in fluctuation */ gc->topy = maxtemp + delta*2; gc->bottomy = mintemp - delta/2; } else { gc->topy = maxtemp + 1500 + delta*2; gc->bottomy = mintemp - delta/2; } return maxtemp > mintemp; } static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin) { int deg; const char *unit; static const text_render_options_t tro = {12, 0.2, 0.2, 1.0, LEFT, TOP}; temperature_t temperature = { mkelvin }; if (output_units.temperature == FAHRENHEIT) { deg = to_F(temperature); unit = UTF8_DEGREE "F"; } else { deg = to_C(temperature); unit = UTF8_DEGREE "C"; } plot_text(gc, &tro, sec, temperature.mkelvin, "%d%s", deg, unit); } static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi) { int i; int last = 0, sec = 0; int last_temperature = 0, last_printed_temp = 0; if (!setup_temperature_limits(gc, pi)) return; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; int mkelvin = entry->temperature; if (!mkelvin) continue; last_temperature = mkelvin; sec = entry->sec; if (sec < last + 300) continue; last = sec; plot_single_temp_text(gc,sec,mkelvin); last_printed_temp = mkelvin; } /* it would be nice to print the end temperature, if it's different */ if (abs(last_temperature - last_printed_temp) > 500) plot_single_temp_text(gc, sec, last_temperature); } static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi) { int i; cairo_t *cr = gc->cr; int last = 0; if (!setup_temperature_limits(gc, pi)) return; set_source_rgba(gc, 0.2, 0.2, 1.0, 0.8); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; int mkelvin = entry->temperature; int sec = entry->sec; if (!mkelvin) { if (!last) continue; mkelvin = last; } if (last) line_to(gc, sec, mkelvin); else move_to(gc, sec, mkelvin); last = mkelvin; } cairo_stroke(cr); } /* gets both the actual start and end pressure as well as the scaling factors */ static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi) { gc->leftx = 0; gc->rightx = get_maxtime(pi); gc->bottomy = 0; gc->topy = pi->maxpressure * 1.5; return pi->maxpressure != 0; } static void plot_pressure_helper(struct graphics_context *gc, struct plot_info *pi, int type) { int i; int lift_pen = FALSE; for (i = 0; i < pi->nr; i++) { int mbar; struct plot_data *entry = pi->entry + i; mbar = entry->pressure[type]; if (!entry->same_cylinder) lift_pen = TRUE; if (!mbar) { lift_pen = TRUE; continue; } if (lift_pen) { if (i > 0 && entry->same_cylinder) { /* if we have a previous event from the same tank, * draw at least a short line . * This uses the implementation detail that the * type is either 0 or 1 */ int prev_pr; prev_pr = (entry-1)->pressure[type] ? : (entry-1)->pressure[1 - type]; move_to(gc, (entry-1)->sec, prev_pr); line_to(gc, entry->sec, mbar); } else move_to(gc, entry->sec, mbar); lift_pen = FALSE; } else line_to(gc, entry->sec, mbar); } cairo_stroke(gc->cr); } static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi) { if (!get_cylinder_pressure_range(gc, pi)) return; /* first plot the pressure readings we have from the dive computer */ set_source_rgba(gc, 0.2, 1.0, 0.2, 0.80); plot_pressure_helper(gc, pi, SENSOR_PR); /* then, in a different color, the interpolated values */ set_source_rgba(gc, 1.0, 1.0, 0.2, 0.80); plot_pressure_helper(gc, pi, INTERPOLATED_PR); } static int mbar_to_PSI(int mbar) { pressure_t p = {mbar}; return to_PSI(p); } static void plot_pressure_value(struct graphics_context *gc, int mbar, int sec, int xalign, int yalign) { int pressure; const char *unit; switch (output_units.pressure) { case PASCAL: pressure = mbar * 100; unit = "pascal"; break; case BAR: pressure = (mbar + 500) / 1000; unit = "bar"; break; case PSI: pressure = mbar_to_PSI(mbar); unit = "psi"; break; } text_render_options_t tro = {10, 0.2, 1.0, 0.2, xalign, yalign}; plot_text(gc, &tro, sec, mbar, "%d %s", pressure, unit); } static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi) { int i; int mbar, cyl; int seen_cyl[MAX_CYLINDERS] = { FALSE, }; int last_pressure[MAX_CYLINDERS] = { 0, }; int last_time[MAX_CYLINDERS] = { 0, }; struct plot_data *entry; if (!get_cylinder_pressure_range(gc, pi)) return; /* only loop over the actual events from the dive computer */ for (i = 2; i < pi->nr - 2; i++) { entry = pi->entry + i; if (!entry->same_cylinder) { cyl = entry->cylinderindex; if (!seen_cyl[cyl]) { mbar = SENSOR_PRESSURE(entry) ? : INTERPOLATED_PRESSURE(entry); plot_pressure_value(gc, mbar, entry->sec, LEFT, BOTTOM); seen_cyl[cyl] = TRUE; } if (i > 2) { /* remember the last pressure and time of * the previous cylinder */ cyl = (entry - 1)->cylinderindex; last_pressure[cyl] = SENSOR_PRESSURE(entry - 1) ? : INTERPOLATED_PRESSURE(entry - 1); last_time[cyl] = (entry - 1)->sec; } } } cyl = entry->cylinderindex; last_pressure[cyl] = SENSOR_PRESSURE(entry) ? : INTERPOLATED_PRESSURE(entry); last_time[cyl] = entry->sec; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { if (last_time[cyl]) { plot_pressure_value(gc, last_pressure[cyl], last_time[cyl], CENTER, TOP); } } } static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index) { struct plot_data *p = entry; int time = entry->sec; int seconds = 90*(index+1); struct plot_data *min, *max; int avg, nr; /* Go back 'seconds' in time */ while (p > first) { if (p[-1].sec < time - seconds) break; p--; } /* Then go forward until we hit an entry past the time */ min = max = p; avg = p->depth; nr = 1; while (++p < last) { int depth = p->depth; if (p->sec > time + seconds) break; avg += depth; nr ++; if (depth < min->depth) min = p; if (depth > max->depth) max = p; } entry->min[index] = min; entry->max[index] = max; entry->avg[index] = (avg + nr/2) / nr; } static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last) { analyze_plot_info_minmax_minute(entry, first, last, 0); analyze_plot_info_minmax_minute(entry, first, last, 1); analyze_plot_info_minmax_minute(entry, first, last, 2); } static velocity_t velocity(int speed) { velocity_t v; if (speed < -304) /* ascent faster than -60ft/min */ v = CRAZY; else if (speed < -152) /* above -30ft/min */ v = FAST; else if (speed < -76) /* -15ft/min */ v = MODERATE; else if (speed < -25) /* -5ft/min */ v = SLOW; else if (speed < 25) /* very hard to find data, but it appears that the recommendations for descent are usually about 2x ascent rate; still, we want stable to mean stable */ v = STABLE; else if (speed < 152) /* between 5 and 30ft/min is considered slow */ v = SLOW; else if (speed < 304) /* up to 60ft/min is moderate */ v = MODERATE; else if (speed < 507) /* up to 100ft/min is fast */ v = FAST; else /* more than that is just crazy - you'll blow your ears out */ v = CRAZY; return v; } static struct plot_info *analyze_plot_info(struct plot_info *pi) { int i; int nr = pi->nr; /* Do pressure min/max based on the non-surface data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry+i; int pressure = SENSOR_PRESSURE(entry) ? : INTERPOLATED_PRESSURE(entry); int temperature = entry->temperature; if (pressure) { if (!pi->minpressure || pressure < pi->minpressure) pi->minpressure = pressure; if (pressure > pi->maxpressure) pi->maxpressure = pressure; } if (temperature) { if (!pi->mintemp || temperature < pi->mintemp) pi->mintemp = temperature; if (temperature > pi->maxtemp) pi->maxtemp = temperature; } } /* Smoothing function: 5-point triangular smooth */ for (i = 2; i < nr; i++) { struct plot_data *entry = pi->entry+i; int depth; if (i < nr-2) { depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth; entry->smoothed = (depth+4) / 9; } /* vertical velocity in mm/sec */ /* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */ if (entry[0].sec - entry[-1].sec) { entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec)); /* if our samples are short and we aren't too FAST*/ if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) { int past = -2; while (i+past > 0 && entry[0].sec - entry[past].sec < 15) past--; entry->velocity = velocity((entry[0].depth - entry[past].depth) / (entry[0].sec - entry[past].sec)); } } else entry->velocity = STABLE; } /* One-, two- and three-minute minmax data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry +i; analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr); } return pi; } /* * simple structure to track the beginning and end tank pressure as * well as the integral of depth over time spent while we have no * pressure reading from the tank */ typedef struct pr_track_struct pr_track_t; struct pr_track_struct { int start; int end; int t_start; int t_end; double pressure_time; pr_track_t *next; }; static pr_track_t *pr_track_alloc(int start, int t_start) { pr_track_t *pt = malloc(sizeof(pr_track_t)); pt->start = start; pt->t_start = t_start; pt->end = 0; pt->t_end = 0; pt->pressure_time = 0.0; pt->next = NULL; return pt; } /* poor man's linked list */ static pr_track_t *list_last(pr_track_t *list) { pr_track_t *tail = list; if (!tail) return NULL; while (tail->next) { tail = tail->next; } return tail; } static pr_track_t *list_add(pr_track_t *list, pr_track_t *element) { pr_track_t *tail = list_last(list); if (!tail) return element; tail->next = element; return list; } static void list_free(pr_track_t *list) { if (!list) return; list_free(list->next); free(list); } static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t **track_pr) { pr_track_t *list = NULL; pr_track_t *nlist = NULL; double pt, magic; int cyl, i; struct plot_data *entry; int cur_pr[MAX_CYLINDERS]; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { cur_pr[cyl] = track_pr[cyl]->start; } for (i = 0; i < dive->samples; i++) { entry = pi->entry + i + 2; if (SENSOR_PRESSURE(entry)) { cur_pr[entry->cylinderindex] = SENSOR_PRESSURE(entry); } else { if(!list || list->t_end < entry->sec) { nlist = track_pr[entry->cylinderindex]; list = NULL; while (nlist && nlist->t_start <= entry->sec) { list = nlist; nlist = list->next; } /* there may be multiple segments - so * let's assemble the length */ nlist = list; pt = list->pressure_time; while (!nlist->end) { nlist = nlist->next; if (!nlist) { /* oops - we have no end pressure, * so this means this is a tank without * gas consumption information */ break; } pt += nlist->pressure_time; } if (!nlist) { /* just continue without calculating * interpolated values */ list = NULL; continue; } magic = (nlist->end - cur_pr[entry->cylinderindex]) / pt; } if (pt != 0.0) { double cur_pt = (entry->sec - (entry-1)->sec) * (1 + entry->depth / 10000.0); INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex] + cur_pt * magic; cur_pr[entry->cylinderindex] = INTERPOLATED_PRESSURE(entry); } } } } static int get_cylinder_index(struct dive *dive, struct event *ev) { int i; /* * Try to find a cylinder that matches the O2 percentage * in the gas change event 'value' field. * * Crazy suunto gas change events. We really should do * this in libdivecomputer or something. */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder+i; int o2 = (cyl->gasmix.o2.permille + 5) / 10; if (o2 == ev->value) return i; } return 0; } static struct event *get_next_gaschange(struct event *event) { while (event) { if (!strcmp(event->name, "gaschange")) return event; event = event->next; } return event; } static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end) { while (i < pi->nr) { struct plot_data *entry = pi->entry+i; if (entry->sec > end) break; if (entry->cylinderindex != cylinderindex) { entry->cylinderindex = cylinderindex; entry->pressure[0] = 0; } i++; } return i; } static void check_gas_change_events(struct dive *dive, struct plot_info *pi) { int i = 0, cylinderindex = 0; struct event *ev = get_next_gaschange(dive->events); if (!ev) return; do { i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds); cylinderindex = get_cylinder_index(dive, ev); ev = get_next_gaschange(ev->next); } while (ev); set_cylinder_index(pi, i, cylinderindex, ~0u); } /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. */ static struct plot_info *create_plot_info(struct dive *dive) { int cylinderindex = -1; int lastdepth, lastindex; int i, nr = dive->samples + 4, sec, cyl; size_t alloc_size = plot_info_size(nr); struct plot_info *pi; pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, }; pr_track_t *pr_track, *current; gboolean missing_pr = FALSE; struct plot_data *entry; pi = malloc(alloc_size); if (!pi) return pi; memset(pi, 0, alloc_size); pi->nr = nr; sec = 0; lastindex = 0; lastdepth = -1; for (i = 0; i < dive->samples; i++) { int depth; struct sample *sample = dive->sample+i; entry = pi->entry + i + 2; sec = entry->sec = sample->time.seconds; depth = entry->depth = sample->depth.mm; entry->cylinderindex = sample->cylinderindex; SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar; entry->temperature = sample->temperature.mkelvin; if (depth || lastdepth) lastindex = i+2; lastdepth = depth; if (depth > pi->maxdepth) pi->maxdepth = depth; } check_gas_change_events(dive, pi); for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) /* initialize the start pressures */ track_pr[cyl] = pr_track_alloc(dive->cylinder[cyl].start.mbar, -1); current = track_pr[dive->sample[0].cylinderindex]; for (i = 0; i < dive->samples; i++) { entry = pi->entry + i + 2; entry->same_cylinder = entry->cylinderindex == cylinderindex; cylinderindex = entry->cylinderindex; /* track the segments per cylinder and their pressure/time integral */ if (!entry->same_cylinder) { current->end = SENSOR_PRESSURE(entry-1); current->t_end = (entry-1)->sec; current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); } else { /* same cylinder */ if ((!SENSOR_PRESSURE(entry) && SENSOR_PRESSURE(entry-1)) || (SENSOR_PRESSURE(entry) && !SENSOR_PRESSURE(entry-1))) { /* transmitter changed its working status */ current->end = SENSOR_PRESSURE(entry-1); current->t_end = (entry-1)->sec; current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); } } /* finally, do the discrete integration to get the SAC rate equivalent */ current->pressure_time += (entry->sec - (entry-1)->sec) * (1 + entry->depth / 10000.0); missing_pr |= !SENSOR_PRESSURE(entry); } current->t_end = entry->sec; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { /* initialize the end pressures */ int pr = dive->cylinder[cyl].end.mbar; if (pr && track_pr[cyl]) { pr_track = list_last(track_pr[cyl]); pr_track->end = pr; } } if (lastdepth) lastindex = i + 2; /* Fill in the last two entries with empty values but valid times */ i = dive->samples + 2; pi->entry[i].sec = sec + 20; pi->entry[i+1].sec = sec + 40; pi->nr = lastindex+1; pi->maxtime = pi->entry[lastindex].sec; pi->endpressure = pi->minpressure = dive->cylinder[0].end.mbar; pi->maxpressure = dive->cylinder[0].start.mbar; pi->meandepth = dive->meandepth.mm; if (missing_pr) { fill_missing_tank_pressures(dive, pi, track_pr); } for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) list_free(track_pr[cyl]); return analyze_plot_info(pi); } void plot(struct graphics_context *gc, cairo_rectangle_int_t *drawing_area, struct dive *dive) { struct plot_info *pi = create_plot_info(dive); cairo_translate(gc->cr, drawing_area->x, drawing_area->y); cairo_set_line_width(gc->cr, 2); cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND); cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND); /* * We can use "cairo_translate()" because that doesn't * scale line width etc. But the actual scaling we need * do set up ourselves.. * * Snif. What a pity. */ gc->maxx = (drawing_area->width - 2*drawing_area->x); gc->maxy = (drawing_area->height - 2*drawing_area->y); /* Temperature profile */ plot_temperature_profile(gc, pi); /* Cylinder pressure plot */ plot_cylinder_pressure(gc, pi); /* Depth profile */ plot_depth_profile(gc, pi); plot_events(gc, pi, dive); /* Text on top of all graphs.. */ plot_temperature_text(gc, pi); plot_depth_text(gc, pi); plot_cylinder_pressure_text(gc, pi); /* Bounding box last */ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = 1.0; set_source_rgb(gc, 1, 1, 1); move_to(gc, 0, 0); line_to(gc, 0, 1); line_to(gc, 1, 1); line_to(gc, 1, 0); cairo_close_path(gc->cr); cairo_stroke(gc->cr); free(pi); }