/* profile.c */ /* creates all the necessary data for drawing the dive profile */ #include "gettext.h" #include #include #include "dive.h" #include "display.h" #include "divelist.h" #include "profile.h" #include "deco.h" #include "libdivecomputer/parser.h" #include "libdivecomputer/version.h" #include "membuffer.h" int selected_dive = -1; /* careful: 0 is a valid value */ char zoomed_plot = 0; char dc_number = 0; static struct plot_data *last_pi_entry = NULL, *last_pi_entry_new = NULL; #ifdef DEBUG_PI /* debugging tool - not normally used */ static void dump_pi (struct plot_info *pi) { int i; printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n" " maxpressure:%d mintemp:%d maxtemp:%d\n", pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth, pi->maxpressure, pi->mintemp, pi->maxtemp); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = &pi->entry[i]; printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n" " time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n", i, entry->cylinderindex, entry->sec, entry->pressure[0], entry->pressure[1], entry->sec / 60, entry->sec % 60, entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed, entry->po2, entry->phe, entry->pn2, entry->po2 + entry->phe + entry->pn2); } printf(" }\n"); } #endif #define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y)) #define DIV_UP(x,y) (((x)+(y)-1)/(y)) /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such unless zoom is enabled. * We also need to add 180 seconds at the end so the min/max * plots correctly */ int get_maxtime(struct plot_info *pi) { int seconds = pi->maxtime; if (zoomed_plot) { /* Rounded up to one minute, with at least 2.5 minutes to * spare. * For dive times shorter than 10 minutes, we use seconds/4 to * calculate the space dynamically. * This is seamless since 600/4 = 150. */ if (seconds < 600) return ROUND_UP(seconds+seconds/4, 60); else return ROUND_UP(seconds+150, 60); } else { /* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */ return MAX(30*60, ROUND_UP(seconds+150, 60*5)); } } /* get the maximum depth to which we want to plot * take into account the additional vertical space needed to plot * partial pressure graphs */ int get_maxdepth(struct plot_info *pi) { unsigned mm = pi->maxdepth; int md; if (zoomed_plot) { /* Rounded up to 10m, with at least 3m to spare */ md = ROUND_UP(mm+3000, 10000); } else { /* Minimum 30m, rounded up to 10m, with at least 3m to spare */ md = MAX((unsigned)30000, ROUND_UP(mm+3000, 10000)); } md += pi->maxpp * 9000; return md; } /* collect all event names and whether we display them */ struct ev_select *ev_namelist; int evn_allocated; int evn_used; #if WE_DONT_USE_THIS /* we need to implement event filters in Qt */ int evn_foreach(void (*callback)(const char *, bool *, void *), void *data) { int i; for (i = 0; i < evn_used; i++) { /* here we display an event name on screen - so translate */ callback(translate("gettextFromC",ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data); } return i; } #endif /* WE_DONT_USE_THIS */ void clear_events(void) { evn_used = 0; } void remember_event(const char *eventname) { int i = 0, len; if (!eventname || (len = strlen(eventname)) == 0) return; while (i < evn_used) { if (!strncmp(eventname, ev_namelist[i].ev_name, len)) return; i++; } if (evn_used == evn_allocated) { evn_allocated += 10; ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select)); if (! ev_namelist) /* we are screwed, but let's just bail out */ return; } ev_namelist[evn_used].ev_name = strdup(eventname); ev_namelist[evn_used].plot_ev = true; evn_used++; } int setup_temperature_limits(struct graphics_context *gc) { int maxtime, mintemp, maxtemp, delta; struct plot_info *pi = &gc->pi; /* Get plot scaling limits */ maxtime = get_maxtime(pi); mintemp = pi->mintemp; maxtemp = pi->maxtemp; gc->leftx = 0; gc->rightx = maxtime; /* Show temperatures in roughly the lower third, but make sure the scale is at least somewhat reasonable */ delta = maxtemp - mintemp; if (delta < 3000) /* less than 3K in fluctuation */ delta = 3000; gc->topy = maxtemp + delta*2; if (PP_GRAPHS_ENABLED) gc->bottomy = mintemp - delta * 2; else gc->bottomy = mintemp - delta / 3; pi->endtempcoord = SCALEY(gc, pi->mintemp); return maxtemp && maxtemp >= mintemp; } void setup_pp_limits(struct graphics_context *gc) { int maxdepth; gc->leftx = 0; gc->rightx = get_maxtime(&gc->pi); /* the maxdepth already includes extra vertical space - and if * we use 1.5 times the corresponding pressure as maximum partial * pressure the graph seems to look fine*/ maxdepth = get_maxdepth(&gc->pi); gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * SURFACE_PRESSURE / 1000; gc->bottomy = -gc->topy / 20; } int get_cylinder_pressure_range(struct graphics_context *gc) { gc->leftx = 0; gc->rightx = get_maxtime(&gc->pi); if (PP_GRAPHS_ENABLED) gc->bottomy = -gc->pi.maxpressure * 0.75; else gc->bottomy = 0; gc->topy = gc->pi.maxpressure * 1.5; if (!gc->pi.maxpressure) return false; while (gc->pi.endtempcoord <= SCALEY(gc, gc->pi.minpressure - (gc->topy) * 0.1)) gc->bottomy -= gc->topy * 0.1 * gc->maxy/abs(gc->maxy); return true; } /* Get local sac-rate (in ml/min) between entry1 and entry2 */ static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive) { int index = entry1->cylinderindex; cylinder_t *cyl; int duration = entry2->sec - entry1->sec; int depth, airuse; pressure_t a, b; double atm; if (entry2->cylinderindex != index) return 0; if (duration <= 0) return 0; a.mbar = GET_PRESSURE(entry1); b.mbar = GET_PRESSURE(entry2); if (!a.mbar || !b.mbar) return 0; /* Mean pressure in ATM */ depth = (entry1->depth + entry2->depth) / 2; atm = depth_to_atm(depth, dive); cyl = dive->cylinder + index; airuse = gas_volume(cyl, a) - gas_volume(cyl, b); /* milliliters per minute */ return airuse / atm * 60 / duration; } static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index) { struct plot_data *p = entry; int time = entry->sec; int seconds = 90*(index+1); struct plot_data *min, *max; int avg, nr; /* Go back 'seconds' in time */ while (p > first) { if (p[-1].sec < time - seconds) break; p--; } /* Then go forward until we hit an entry past the time */ min = max = p; avg = p->depth; nr = 1; while (++p < last) { int depth = p->depth; if (p->sec > time + seconds) break; avg += depth; nr ++; if (depth < min->depth) min = p; if (depth > max->depth) max = p; } entry->min[index] = min; entry->max[index] = max; entry->avg[index] = (avg + nr/2) / nr; } static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last) { analyze_plot_info_minmax_minute(entry, first, last, 0); analyze_plot_info_minmax_minute(entry, first, last, 1); analyze_plot_info_minmax_minute(entry, first, last, 2); } static velocity_t velocity(int speed) { velocity_t v; if (speed < -304) /* ascent faster than -60ft/min */ v = CRAZY; else if (speed < -152) /* above -30ft/min */ v = FAST; else if (speed < -76) /* -15ft/min */ v = MODERATE; else if (speed < -25) /* -5ft/min */ v = SLOW; else if (speed < 25) /* very hard to find data, but it appears that the recommendations for descent are usually about 2x ascent rate; still, we want stable to mean stable */ v = STABLE; else if (speed < 152) /* between 5 and 30ft/min is considered slow */ v = SLOW; else if (speed < 304) /* up to 60ft/min is moderate */ v = MODERATE; else if (speed < 507) /* up to 100ft/min is fast */ v = FAST; else /* more than that is just crazy - you'll blow your ears out */ v = CRAZY; return v; } struct plot_info *analyze_plot_info(struct plot_info *pi) { int i; int nr = pi->nr; /* Smoothing function: 5-point triangular smooth */ for (i = 2; i < nr; i++) { struct plot_data *entry = pi->entry+i; int depth; if (i < nr-2) { depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth; entry->smoothed = (depth+4) / 9; } /* vertical velocity in mm/sec */ /* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */ if (entry[0].sec - entry[-1].sec) { entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec); entry->velocity = velocity(entry->speed); /* if our samples are short and we aren't too FAST*/ if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) { int past = -2; while (i+past > 0 && entry[0].sec - entry[past].sec < 15) past--; entry->velocity = velocity((entry[0].depth - entry[past].depth) / (entry[0].sec - entry[past].sec)); } } else { entry->velocity = STABLE; entry->speed = 0; } } /* One-, two- and three-minute minmax data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry +i; analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr); } return pi; } /* * simple structure to track the beginning and end tank pressure as * well as the integral of depth over time spent while we have no * pressure reading from the tank */ typedef struct pr_track_struct pr_track_t; struct pr_track_struct { int start; int end; int t_start; int t_end; int pressure_time; pr_track_t *next; }; static pr_track_t *pr_track_alloc(int start, int t_start) { pr_track_t *pt = malloc(sizeof(pr_track_t)); pt->start = start; pt->end = 0; pt->t_start = pt->t_end = t_start; pt->pressure_time = 0; pt->next = NULL; return pt; } /* poor man's linked list */ static pr_track_t *list_last(pr_track_t *list) { pr_track_t *tail = list; if (!tail) return NULL; while (tail->next) { tail = tail->next; } return tail; } static pr_track_t *list_add(pr_track_t *list, pr_track_t *element) { pr_track_t *tail = list_last(list); if (!tail) return element; tail->next = element; return list; } static void list_free(pr_track_t *list) { if (!list) return; list_free(list->next); free(list); } #ifdef DEBUG_PR_TRACK static void dump_pr_track(pr_track_t **track_pr) { int cyl; pr_track_t *list; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { list = track_pr[cyl]; while (list) { printf("cyl%d: start %d end %d t_start %d t_end %d pt %d\n", cyl, list->start, list->end, list->t_start, list->t_end, list->pressure_time); list = list->next; } } } #endif typedef struct pr_interpolate_struct pr_interpolate_t; struct pr_interpolate_struct { int start; int end; int pressure_time; int acc_pressure_time; }; #ifdef DEBUG_PR_INTERPOLATE static void dump_pr_interpolate(int i, pr_interpolate_t interpolate_pr) { printf("Interpolate for entry %d: start %d - end %d - pt %d - acc_pt %d\n", i, interpolate_pr.start, interpolate_pr.end, interpolate_pr.pressure_time, interpolate_pr.acc_pressure_time); } #endif /* * This looks at the pressures for one cylinder, and * calculates any missing beginning/end pressures for * each segment by taking the over-all SAC-rate into * account for that cylinder. * * NOTE! Many segments have full pressure information * (both beginning and ending pressure). But if we have * switched away from a cylinder, we will have the * beginning pressure for the first segment with a * missing end pressure. We may then have one or more * segments without beginning or end pressures, until * we finally have a segment with an end pressure. * * We want to spread out the pressure over these missing * segments according to how big of a time_pressure area * they have. */ static void fill_missing_segment_pressures(pr_track_t *list) { while (list) { int start = list->start, end; pr_track_t *tmp = list; int pt_sum = 0, pt = 0; for (;;) { pt_sum += tmp->pressure_time; end = tmp->end; if (end) break; end = start; if (!tmp->next) break; tmp = tmp->next; } if (!start) start = end; /* * Now 'start' and 'end' contain the pressure values * for the set of segments described by 'list'..'tmp'. * pt_sum is the sum of all the pressure-times of the * segments. * * Now dole out the pressures relative to pressure-time. */ list->start = start; tmp->end = end; for (;;) { int pressure; pt += list->pressure_time; pressure = start; if (pt_sum) pressure -= (start-end)*(double)pt/pt_sum; list->end = pressure; if (list == tmp) break; list = list->next; list->start = pressure; } /* Ok, we've done that set of segments */ list = list->next; } } /* * What's the pressure-time between two plot data entries? * We're calculating the integral of pressure over time by * adding these up. * * The units won't matter as long as everybody agrees about * them, since they'll cancel out - we use this to calculate * a constant SAC-rate-equivalent, but we only use it to * scale pressures, so it ends up being a unitless scaling * factor. */ static inline int pressure_time(struct dive *dive, struct divecomputer *dc, struct plot_data *a, struct plot_data *b) { int time = b->sec - a->sec; int depth = (a->depth + b->depth)/2; if (depth <= SURFACE_THRESHOLD) return 0; return depth_to_mbar(depth, dive) * time; } static struct pr_interpolate_struct get_pr_interpolate_data(pr_track_t *segment, struct plot_info *pi, int cur) { struct pr_interpolate_struct interpolate; int i; struct plot_data *entry; interpolate.start = segment->start; interpolate.end = segment->end; interpolate.acc_pressure_time = 0; interpolate.pressure_time = 0; for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; if (entry->sec < segment->t_start) continue; if (entry->sec >= segment->t_end) { interpolate.pressure_time += entry->pressure_time; break; } if (entry->sec == segment->t_start) { interpolate.acc_pressure_time = 0; interpolate.pressure_time = 0; if (SENSOR_PRESSURE(entry)) interpolate.start = SENSOR_PRESSURE(entry); continue; } if (i < cur) { if (SENSOR_PRESSURE(entry)) { interpolate.start = SENSOR_PRESSURE(entry); interpolate.acc_pressure_time = 0; interpolate.pressure_time = 0; } else { interpolate.acc_pressure_time += entry->pressure_time; interpolate.pressure_time += entry->pressure_time; } continue; } if (i == cur) { interpolate.acc_pressure_time += entry->pressure_time; interpolate.pressure_time += entry->pressure_time; continue; } interpolate.pressure_time += entry->pressure_time; if (SENSOR_PRESSURE(entry)) { interpolate.end = SENSOR_PRESSURE(entry); break; } } return interpolate; } static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t **track_pr) { int cyl, i; struct plot_data *entry; int cur_pr[MAX_CYLINDERS]; #ifdef DEBUG_PR_TRACK /* another great debugging tool */ dump_pr_track(track_pr); #endif for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { if (!track_pr[cyl]) continue; fill_missing_segment_pressures(track_pr[cyl]); cur_pr[cyl] = track_pr[cyl]->start; } /* The first two are "fillers", but in case we don't have a sample * at time 0 we need to process the second of them here */ for (i = 1; i < pi->nr; i++) { double magic; pr_track_t *segment; pr_interpolate_t interpolate; entry = pi->entry + i; cyl = entry->cylinderindex; if (SENSOR_PRESSURE(entry)) { cur_pr[cyl] = SENSOR_PRESSURE(entry); continue; } /* Find the right pressure segment for this entry.. */ segment = track_pr[cyl]; while (segment && segment->t_end < entry->sec) segment = segment->next; /* No (or empty) segment? Just use our current pressure */ if (!segment || !segment->pressure_time) { SENSOR_PRESSURE(entry) = cur_pr[cyl]; continue; } interpolate = get_pr_interpolate_data(segment, pi, i); #ifdef DEBUG_PR_INTERPOLATE dump_pr_interpolate(i, interpolate); #endif /* if this segment has pressure time, calculate a new interpolated pressure */ if (interpolate.pressure_time) { /* Overall pressure change over total pressure-time for this segment*/ magic = (interpolate.end - interpolate.start) / (double) interpolate.pressure_time; /* Use that overall pressure change to update the current pressure */ cur_pr[cyl] = rint(interpolate.start + magic * interpolate.acc_pressure_time); } INTERPOLATED_PRESSURE(entry) = cur_pr[cyl]; } } int get_cylinder_index(struct dive *dive, struct event *ev) { int i; int best = 0, score = INT_MAX; int target_o2, target_he; /* * Crazy gas change events give us odd encoded o2/he in percent. * Decode into our internal permille format. */ target_o2 = (ev->value & 0xFFFF) * 10; target_he = (ev->value >> 16) * 10; /* * Try to find a cylinder that best matches the target gas * mix. */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder+i; int delta_o2, delta_he, distance; if (cylinder_nodata(cyl)) continue; delta_o2 = get_o2(&cyl->gasmix) - target_o2; delta_he = get_he(&cyl->gasmix) - target_he; distance = delta_o2 * delta_o2; /* Check the event type to figure out if we should care about the he part. * 11 is SAMPLE_EVENT_GASCHANGE, aka without he * 25 is SAMPLE_EVENT_GASCHANGE2, aka with he */ if (ev->type == 25) distance += delta_he * delta_he; if (distance >= score) continue; score = distance; best = i; } return best; } struct event *get_next_event(struct event *event, char *name) { if (!name || !*name) return NULL; while (event) { if (!strcmp(event->name, name)) return event; event = event->next; } return event; } static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end) { while (i < pi->nr) { struct plot_data *entry = pi->entry+i; if (entry->sec > end) break; if (entry->cylinderindex != cylinderindex) { entry->cylinderindex = cylinderindex; entry->pressure[0] = 0; } i++; } return i; } static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i = 0, cylinderindex = 0; struct event *ev = get_next_event(dc->events, "gaschange"); if (!ev) return; do { i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds); cylinderindex = get_cylinder_index(dive, ev); ev = get_next_event(ev->next, "gaschange"); } while (ev); set_cylinder_index(pi, i, cylinderindex, ~0u); } struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *dc) { static struct plot_info pi; int maxdepth = dive->maxdepth.mm; int maxtime = 0; int maxpressure = 0, minpressure = INT_MAX; int mintemp = dive->mintemp.mkelvin; int maxtemp = dive->maxtemp.mkelvin; int cyl; /* Get the per-cylinder maximum pressure if they are manual */ for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { unsigned int mbar = dive->cylinder[cyl].start.mbar; if (mbar > maxpressure) maxpressure = mbar; } /* Then do all the samples from all the dive computers */ do { int i = dc->samples; int lastdepth = 0; struct sample *s = dc->sample; while (--i >= 0) { int depth = s->depth.mm; int pressure = s->cylinderpressure.mbar; int temperature = s->temperature.mkelvin; if (!mintemp && temperature < mintemp) mintemp = temperature; if (temperature > maxtemp) maxtemp = temperature; if (pressure && pressure < minpressure) minpressure = pressure; if (pressure > maxpressure) maxpressure = pressure; if (depth > maxdepth) maxdepth = s->depth.mm; if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) && s->time.seconds > maxtime) maxtime = s->time.seconds; lastdepth = depth; s++; } } while ((dc = dc->next) != NULL); if (minpressure > maxpressure) minpressure = 0; memset(&pi, 0, sizeof(pi)); pi.maxdepth = maxdepth; pi.maxtime = maxtime; pi.maxpressure = maxpressure; pi.minpressure = minpressure; pi.mintemp = mintemp; pi.maxtemp = maxtemp; return pi; } void calculate_max_limits(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc) { struct plot_info *pi; int maxdepth; int maxtime = 0; int maxpressure = 0, minpressure = INT_MAX; int mintemp, maxtemp; int cyl; /* The plot-info is embedded in the graphics context */ pi = &gc->pi; memset(pi, 0, sizeof(*pi)); maxdepth = dive->maxdepth.mm; mintemp = dive->mintemp.mkelvin; maxtemp = dive->maxtemp.mkelvin; /* Get the per-cylinder maximum pressure if they are manual */ for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { unsigned int mbar = dive->cylinder[cyl].start.mbar; if (mbar > maxpressure) maxpressure = mbar; } /* Then do all the samples from all the dive computers */ do { int i = dc->samples; int lastdepth = 0; struct sample *s = dc->sample; while (--i >= 0) { int depth = s->depth.mm; int pressure = s->cylinderpressure.mbar; int temperature = s->temperature.mkelvin; if (!mintemp && temperature < mintemp) mintemp = temperature; if (temperature > maxtemp) maxtemp = temperature; if (pressure && pressure < minpressure) minpressure = pressure; if (pressure > maxpressure) maxpressure = pressure; if (depth > maxdepth) maxdepth = s->depth.mm; if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) && s->time.seconds > maxtime) maxtime = s->time.seconds; lastdepth = depth; s++; } } while ((dc = dc->next) != NULL); if (minpressure > maxpressure) minpressure = 0; pi->maxdepth = maxdepth; pi->maxtime = maxtime; pi->maxpressure = maxpressure; pi->minpressure = minpressure; pi->mintemp = mintemp; pi->maxtemp = maxtemp; } struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int idx, maxtime, nr, i; int lastdepth, lasttime, lasttemp = 0; struct plot_data *plot_data; maxtime = pi->maxtime; /* * We want to have a plot_info event at least every 10s (so "maxtime/10+1"), * but samples could be more dense than that (so add in dc->samples), and * additionally we want two surface events around the whole thing (thus the * additional 4). */ nr = dc->samples + 5 + maxtime / 10; plot_data = calloc(nr, sizeof(struct plot_data)); pi->entry = plot_data; if (!plot_data) return NULL; pi->nr = nr; idx = 2; /* the two extra events at the start */ lastdepth = 0; lasttime = 0; for (i = 0; i < dc->samples; i++) { struct plot_data *entry = plot_data + idx; struct sample *sample = dc->sample+i; int time = sample->time.seconds; int depth = sample->depth.mm; int offset, delta; /* Add intermediate plot entries if required */ delta = time - lasttime; if (delta < 0) { time = lasttime; delta = 0; } for (offset = 10; offset < delta; offset += 10) { if (lasttime + offset > maxtime) break; /* Use the data from the previous plot entry */ *entry = entry[-1]; /* .. but update depth and time, obviously */ entry->sec = lasttime + offset; entry->depth = interpolate(lastdepth, depth, offset, delta); /* And clear out the sensor pressure, since we'll interpolate */ SENSOR_PRESSURE(entry) = 0; idx++; entry++; } if (time > maxtime) break; entry->sec = time; entry->depth = depth; entry->stopdepth = sample->stopdepth.mm; entry->stoptime = sample->stoptime.seconds; entry->ndl = sample->ndl.seconds; pi->has_ndl |= sample->ndl.seconds; entry->in_deco = sample->in_deco; entry->cns = sample->cns; entry->po2 = sample->po2 / 1000.0; /* FIXME! sensor index -> cylinder index translation! */ entry->cylinderindex = sample->sensor; SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar; if (sample->temperature.mkelvin) entry->temperature = lasttemp = sample->temperature.mkelvin; else entry->temperature = lasttemp; entry->heartbeat = sample->heartbeat; entry->bearing = sample->bearing; lasttime = time; lastdepth = depth; idx++; } /* Add two final surface events */ plot_data[idx++].sec = lasttime+1; plot_data[idx++].sec = lasttime+2; pi->nr = idx; return plot_data; } static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi) { int i; /* First: check that none of the entries has sensor pressure for this cylinder index */ for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; if (entry->cylinderindex != idx) continue; if (SENSOR_PRESSURE(entry)) return; } /* Then: populate the first entry with the beginning cylinder pressure */ for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; if (entry->cylinderindex != idx) continue; SENSOR_PRESSURE(entry) = start; break; } /* .. and the last entry with the ending cylinder pressure */ for (i = pi->nr; --i >= 0; /* nothing */) { struct plot_data *entry = pi->entry+i; if (entry->cylinderindex != idx) continue; SENSOR_PRESSURE(entry) = end; break; } } static void calculate_sac(struct dive *dive, struct plot_info *pi) { int i = 0, last = 0; struct plot_data *last_entry = NULL; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; if (!last_entry || last_entry->cylinderindex != entry->cylinderindex) { last = i; last_entry = entry; entry->sac = get_local_sac(entry, pi->entry + i + 1, dive); } else { int j; entry->sac = 0; for (j = last; j < i; j++) entry->sac += get_local_sac(pi->entry + j, pi->entry + j + 1, dive); entry->sac /= (i - last); if (entry->sec - last_entry->sec >= SAC_WINDOW) { last++; last_entry = pi->entry + last; } } } } static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi) { /* We should try to see if it has interesting pressure data here */ } static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i; struct divecomputer *secondary; /* First, populate the pressures with the manual cylinder data.. */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder+i; int start = cyl->start.mbar ? : cyl->sample_start.mbar; int end = cyl->end.mbar ? : cyl->sample_end.mbar; if (!start || !end) continue; populate_cylinder_pressure_data(i, start, end, pi); } /* * Here, we should try to walk through all the dive computers, * and try to see if they have sensor data different from the * primary dive computer (dc). */ secondary = &dive->dc; do { if (secondary == dc) continue; populate_secondary_sensor_data(dc, pi); } while ((secondary = secondary->next) != NULL); } static void populate_pressure_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i, cylinderindex; pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, }; pr_track_t *current; bool missing_pr = false; cylinderindex = -1; current = NULL; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; unsigned pressure = SENSOR_PRESSURE(entry); /* discrete integration of pressure over time to get the SAC rate equivalent */ if (current) { entry->pressure_time = pressure_time(dive, dc, entry-1, entry); current->pressure_time += entry->pressure_time; current->t_end = entry->sec; } /* track the segments per cylinder and their pressure/time integral */ if (entry->cylinderindex != cylinderindex) { cylinderindex = entry->cylinderindex; current = pr_track_alloc(pressure, entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); continue; } if (!pressure) { missing_pr = 1; continue; } current->end = pressure; /* Was it continuous? */ if (SENSOR_PRESSURE(entry-1)) continue; /* transmitter changed its working status */ current = pr_track_alloc(pressure, entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); } if (missing_pr) { fill_missing_tank_pressures(dive, pi, track_pr); } for (i = 0; i < MAX_CYLINDERS; i++) list_free(track_pr[i]); } /* calculate DECO STOP / TTS / NDL */ static void calculate_ndl_tts(double tissue_tolerance, struct plot_data *entry, struct dive *dive, double surface_pressure) { /* FIXME: This should be configurable */ /* ascent speed up to first deco stop */ const int ascent_s_per_step = 1; const int ascent_mm_per_step = 200; /* 12 m/min */ /* ascent speed between deco stops */ const int ascent_s_per_deco_step = 1; const int ascent_mm_per_deco_step = 16; /* 1 m/min */ /* how long time steps in deco calculations? */ const int time_stepsize = 10; const int deco_stepsize = 3000; /* at what depth is the current deco-step? */ int next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize); int ascent_depth = entry->depth; /* at what time should we give up and say that we got enuff NDL? */ const int max_ndl = 7200; int cylinderindex = entry->cylinderindex; /* If we don't have a ceiling yet, calculate ndl. Don't try to calculate * a ndl for lower values than 3m it would take forever */ if (next_stop == 0) { if (entry->depth < 3000) { entry->ndl = max_ndl; return; } /* stop if the ndl is above max_ndl seconds, and call it plenty of time */ while (entry->ndl_calc < max_ndl && deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= 0) { entry->ndl_calc += time_stepsize; tissue_tolerance = add_segment(depth_to_mbar(entry->depth, dive) / 1000.0, &dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive); } /* we don't need to calculate anything else */ return; } /* We are in deco */ entry->in_deco_calc = true; /* Add segments for movement to stopdepth */ for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_step, entry->tts_calc += ascent_s_per_step) { tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0, &dive->cylinder[cylinderindex].gasmix, ascent_s_per_step, entry->po2 * 1000, dive); next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize); } ascent_depth = next_stop; /* And how long is the current deco-step? */ entry->stoptime_calc = 0; entry->stopdepth_calc = next_stop; next_stop -= deco_stepsize; /* And how long is the total TTS */ while(next_stop >= 0) { /* save the time for the first stop to show in the graph */ if (ascent_depth == entry->stopdepth_calc) entry->stoptime_calc += time_stepsize; entry->tts_calc += time_stepsize; tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0, &dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->po2 * 1000, dive); if (deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= next_stop) { /* move to the next stop and add the travel between stops */ for (; ascent_depth > next_stop ; ascent_depth -= ascent_mm_per_deco_step, entry->tts_calc += ascent_s_per_deco_step) tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0, &dive->cylinder[cylinderindex].gasmix, ascent_s_per_deco_step, entry->po2 * 1000, dive); ascent_depth = next_stop; next_stop -= deco_stepsize; } } } /* Let's try to do some deco calculations. * Needs to be run before calculate_gas_information so we know that if we have a po2, where in ccr-mode. */ void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool print_mode) { int i; double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0; double tissue_tolerance = 0; for (i = 1; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; int j, t0 = (entry - 1)->sec, t1 = entry->sec; for (j = t0+1; j <= t1; j++) { int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0); double min_pressure = add_segment(depth_to_mbar(depth, dive) / 1000.0, &dive->cylinder[entry->cylinderindex].gasmix, 1, entry->po2 * 1000, dive); tissue_tolerance = min_pressure; } if (t0 == t1) entry->ceiling = (entry - 1)->ceiling; else entry->ceiling = deco_allowed_depth(tissue_tolerance, surface_pressure, dive, !prefs.calc_ceiling_3m_incr); for (j=0; j<16; j++) entry->ceilings[j] = deco_allowed_depth(tolerated_by_tissue[j], surface_pressure, dive, 1); /* should we do more calculations? * We don't for print-mode because this info doesn't show up there */ if (prefs.calc_ndl_tts && !print_mode) { /* We are going to mess up deco state, so store it for later restore */ char *cache_data = NULL; cache_deco_state(tissue_tolerance, &cache_data); calculate_ndl_tts(tissue_tolerance, entry, dive, surface_pressure); /* Restore "real" deco state for next real time step */ tissue_tolerance = restore_deco_state(cache_data); free(cache_data); } } #if DECO_CALC_DEBUG & 1 dump_tissues(); #endif } static void calculate_gas_information(struct dive *dive, struct plot_info *pi) { int i; double amb_pressure; for (i = 1; i < pi->nr; i++) { int fo2, fhe; struct plot_data *entry = pi->entry + i; int cylinderindex = entry->cylinderindex; amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0; fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix); fhe = get_he(&dive->cylinder[cylinderindex].gasmix); double ratio = (double)fhe / (1000.0 - fo2); if (entry->po2) { /* we have an O2 partial pressure in the sample - so this * is likely a CC dive... use that instead of the value * from the cylinder info */ double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2; entry->po2 = po2; entry->phe = (amb_pressure - po2) * ratio; entry->pn2 = amb_pressure - po2 - entry->phe; } else { entry->po2 = fo2 / 1000.0 * amb_pressure; entry->phe = fhe / 1000.0 * amb_pressure; entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure; } /* Calculate MOD, EAD, END and EADD based on partial pressures calculated before * so there is no difference in calculating between OC and CC * EAD takes O2 + N2 (air) into account * END just uses N2 */ entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000; entry->ead = (entry->depth + 10000) * (entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000; entry->end = (entry->depth + 10000) * (amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000; entry->eadd = (entry->depth + 10000) * (entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure * N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) / (O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000; if (entry->mod < 0) entry->mod = 0; if (entry->ead < 0) entry->ead = 0; if (entry->end < 0) entry->end = 0; if (entry->eadd < 0) entry->eadd = 0; if (entry->po2 > pi->maxpp && prefs.pp_graphs.po2) pi->maxpp = entry->po2; if (entry->phe > pi->maxpp && prefs.pp_graphs.phe) pi->maxpp = entry->phe; if (entry->pn2 > pi->maxpp && prefs.pp_graphs.pn2) pi->maxpp = entry->pn2; } } static void calculate_gas_information_new(struct dive *dive, struct plot_info *pi) { int i; double amb_pressure; for (i = 1; i < pi->nr; i++) { int fo2, fhe; struct plot_data *entry = pi->entry + i; int cylinderindex = entry->cylinderindex; amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0; fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix); fhe = get_he(&dive->cylinder[cylinderindex].gasmix); double ratio = (double)fhe / (1000.0 - fo2); if (entry->po2) { /* we have an O2 partial pressure in the sample - so this * is likely a CC dive... use that instead of the value * from the cylinder info */ double po2 = entry->po2 > amb_pressure ? amb_pressure : entry->po2; entry->po2 = po2; entry->phe = (amb_pressure - po2) * ratio; entry->pn2 = amb_pressure - po2 - entry->phe; } else { entry->po2 = fo2 / 1000.0 * amb_pressure; entry->phe = fhe / 1000.0 * amb_pressure; entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure; } /* Calculate MOD, EAD, END and EADD based on partial pressures calculated before * so there is no difference in calculating between OC and CC * EAD takes O2 + N2 (air) into account * END just uses N2 */ entry->mod = (prefs.mod_ppO2 / fo2 * 1000 - 1) * 10000; entry->ead = (entry->depth + 10000) * (entry->po2 + (amb_pressure - entry->po2) * (1 - ratio)) / amb_pressure - 10000; entry->end = (entry->depth + 10000) * (amb_pressure - entry->po2) * (1 - ratio) / amb_pressure / N2_IN_AIR * 1000 - 10000; entry->eadd = (entry->depth + 10000) * (entry->po2 / amb_pressure * O2_DENSITY + entry->pn2 / amb_pressure * N2_DENSITY + entry->phe / amb_pressure * HE_DENSITY) / (O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 -10000; if (entry->mod < 0) entry->mod = 0; if (entry->ead < 0) entry->ead = 0; if (entry->end < 0) entry->end = 0; if (entry->eadd < 0) entry->eadd = 0; } } /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. */ struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc, bool print_mode) { struct plot_info *pi; /* The plot-info is embedded in the graphics context */ pi = &gc->pi; /* reset deco information to start the calculation */ if (prefs.profile_calc_ceiling) init_decompression(dive); /* Create the new plot data */ if (last_pi_entry) free((void *)last_pi_entry); last_pi_entry = populate_plot_entries(dive, dc, pi); /* Populate the gas index from the gas change events */ check_gas_change_events(dive, dc, pi); /* Try to populate our gas pressure knowledge */ setup_gas_sensor_pressure(dive, dc, pi); /* .. calculate missing pressure entries */ populate_pressure_information(dive, dc, pi); /* Calculate sac */ calculate_sac(dive, pi); /* Then, calculate deco information */ if (prefs.profile_calc_ceiling) calculate_deco_information(dive, dc, pi, print_mode); /* And finaly calculate gas partial pressures */ calculate_gas_information(dive, pi); pi->meandepth = dive->dc.meandepth.mm; #ifdef DEBUG_PI /* awesome for debugging - not useful otherwise */ dump_pi(pi); #endif return analyze_plot_info(pi); } void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { init_decompression(dive); if (last_pi_entry_new) /* Create the new plot data */ free((void *)last_pi_entry_new); last_pi_entry_new = populate_plot_entries(dive, dc, pi); check_gas_change_events(dive, dc, pi); /* Populate the gas index from the gas change events */ setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */ populate_pressure_information(dive, dc, pi);/* .. calculate missing pressure entries */ calculate_sac(dive, pi); /* Calculate sac */ calculate_deco_information(dive, dc, pi, false); calculate_gas_information_new(dive, pi); /* And finaly calculate gas partial pressures */ pi->meandepth = dive->dc.meandepth.mm; analyze_plot_info(pi); } /* make sure you pass this the FIRST dc - it just walks the list */ static int nr_dcs(struct divecomputer *main) { int i = 1; struct divecomputer *dc = main; while ((dc = dc->next) != NULL) i++; return i; } struct divecomputer *select_dc(struct divecomputer *main) { int i = dc_number; struct divecomputer *dc = main; while (i < 0) i += nr_dcs(main); do { if (--i < 0) return dc; } while ((dc = dc->next) != NULL); /* If we switched dives to one with fewer DC's, reset the dive computer counter */ dc_number = 0; return main; } static void plot_string(struct plot_data *entry, struct membuffer *b, bool has_ndl) { int pressurevalue, mod, ead, end, eadd; const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit; double depthvalue, tempvalue, speedvalue; depthvalue = get_depth_units(entry->depth, NULL, &depth_unit); put_format(b, translate("gettextFromC","@:%d:%02d\nD:%.1f %s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit); if (GET_PRESSURE(entry)) { pressurevalue = get_pressure_units(GET_PRESSURE(entry), &pressure_unit); put_format(b, translate("gettextFromC","P:%d %s\n"), pressurevalue, pressure_unit); } if (entry->temperature) { tempvalue = get_temp_units(entry->temperature, &temp_unit); put_format(b, translate("gettextFromC","T:%.1f %s\n"), tempvalue, temp_unit); } speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit); /* Ascending speeds are positive, descending are negative */ if (entry->speed > 0) speedvalue *= -1; put_format(b, translate("gettextFromC","V:%.2f %s\n"), speedvalue, vertical_speed_unit); if (entry->sac && prefs.show_sac) put_format(b, translate("gettextFromC","SAC:%2.1fl/min\n"), entry->sac / 1000.0); if (entry->cns) put_format(b, translate("gettextFromC","CNS:%u%%\n"), entry->cns); if (prefs.pp_graphs.po2) put_format(b, translate("gettextFromC","pO%s:%.2fbar\n"), UTF8_SUBSCRIPT_2, entry->po2); if (prefs.pp_graphs.pn2) put_format(b, translate("gettextFromC","pN%s:%.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pn2); if (prefs.pp_graphs.phe) put_format(b, translate("gettextFromC","pHe:%.2fbar\n"), entry->phe); if (prefs.mod) { mod = (int)get_depth_units(entry->mod, NULL, &depth_unit); put_format(b, translate("gettextFromC","MOD:%d%s\n"), mod, depth_unit); } if (prefs.ead) { ead = (int)get_depth_units(entry->ead, NULL, &depth_unit); end = (int)get_depth_units(entry->end, NULL, &depth_unit); eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit); put_format(b, translate("gettextFromC","EAD:%d%s\nEND:%d%s\nEADD:%d%s\n"), ead, depth_unit, end, depth_unit, eadd, depth_unit); } if (entry->stopdepth) { depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit); if (entry->ndl) { /* this is a safety stop as we still have ndl */ if (entry->stoptime) put_format(b, translate("gettextFromC","Safetystop:%umin @ %.0f %s\n"), DIV_UP(entry->stoptime, 60), depthvalue, depth_unit); else put_format(b, translate("gettextFromC","Safetystop:unkn time @ %.0f %s\n"), depthvalue, depth_unit); } else { /* actual deco stop */ if (entry->stoptime) put_format(b, translate("gettextFromC","Deco:%umin @ %.0f %s\n"), DIV_UP(entry->stoptime, 60), depthvalue, depth_unit); else put_format(b, translate("gettextFromC","Deco:unkn time @ %.0f %s\n"), depthvalue, depth_unit); } } else if (entry->in_deco) { put_string(b, translate("gettextFromC","In deco\n")); } else if (has_ndl) { put_format(b, translate("gettextFromC","NDL:%umin\n"), DIV_UP(entry->ndl, 60)); } if (entry->stopdepth_calc && entry->stoptime_calc) { depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit); put_format(b, translate("gettextFromC","Deco:%umin @ %.0f %s (calc)\n"), DIV_UP(entry->stoptime_calc, 60), depthvalue, depth_unit); } else if (entry->in_deco_calc) { /* This means that we have no NDL left, * and we have no deco stop, * so if we just accend to the surface slowly * (ascent_mm_per_step / ascent_s_per_step) * everything will be ok. */ put_string(b, translate("gettextFromC","In deco (calc)\n")); } else if (prefs.calc_ndl_tts && entry->ndl_calc != 0) { put_format(b, translate("gettextFromC","NDL:%umin (calc)\n"), DIV_UP(entry->ndl_calc, 60)); } if (entry->tts_calc) put_format(b, translate("gettextFromC","TTS:%umin (calc)\n"), DIV_UP(entry->tts_calc, 60)); if (entry->ceiling) { depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit); put_format(b, translate("gettextFromC","Calculated ceiling %.0f %s\n"), depthvalue, depth_unit); if (prefs.calc_all_tissues) { int k; for (k=0; k<16; k++) { if (entry->ceilings[k]) { depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit); put_format(b, translate("gettextFromC","Tissue %.0fmin: %.0f %s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit); } } } } if (entry->heartbeat) put_format(b, translate("gettextFromC","heartbeat:%d\n"), entry->heartbeat); if (entry->bearing) put_format(b, translate("gettextFromC","bearing:%d\n"), entry->bearing); strip_mb(b); } void get_plot_details(struct graphics_context *gc, int time, struct membuffer *mb) { struct plot_info *pi = &gc->pi; struct plot_data *entry = NULL; int i; for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; if (entry->sec >= time) break; } if (entry) plot_string(entry, mb, pi->has_ndl); } void get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb) { struct plot_data *entry = NULL; int i; for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; if (entry->sec >= time) break; } if (entry) plot_string(entry, mb, pi->has_ndl); } /* Compare two plot_data entries and writes the results into a string */ void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum) { struct plot_data *start, *stop, *data; const char *depth_unit, *pressure_unit, *vertical_speed_unit; char *buf2 = malloc(bufsize); int avg_speed, max_asc_speed, max_desc_speed; int delta_depth, avg_depth, max_depth, min_depth; int bar_used, last_pressure, pressurevalue; int count, last_sec, delta_time; double depthvalue, speedvalue; if (bufsize > 0) buf[0] = '\0'; if (e1 == NULL || e2 == NULL) { free(buf2); return; } if (e1->sec < e2->sec) { start = e1; stop = e2; } else if (e1->sec > e2->sec) { start = e2; stop = e1; } else { free(buf2); return; } count = 0; avg_speed = 0; max_asc_speed = 0; max_desc_speed = 0; delta_depth = abs(start->depth-stop->depth); delta_time = abs(start->sec-stop->sec); avg_depth = 0; max_depth = 0; min_depth = INT_MAX; bar_used = 0; last_sec = start->sec; last_pressure = GET_PRESSURE(start); data = start; while (data != stop) { data = start+count; if (sum) avg_speed += abs(data->speed)*(data->sec-last_sec); else avg_speed += data->speed*(data->sec-last_sec); avg_depth += data->depth*(data->sec-last_sec); if (data->speed > max_desc_speed) max_desc_speed = data->speed; if (data->speed < max_asc_speed) max_asc_speed = data->speed; if (data->depth < min_depth) min_depth = data->depth; if (data->depth > max_depth) max_depth = data->depth; /* Try to detect gas changes */ if (GET_PRESSURE(data) < last_pressure+2000) bar_used += last_pressure-GET_PRESSURE(data); count+=1; last_sec = data->sec; last_pressure = GET_PRESSURE(data); } avg_depth /= stop->sec-start->sec; avg_speed /= stop->sec-start->sec; snprintf(buf, bufsize, translate("gettextFromC","%sT: %d:%02d min"), UTF8_DELTA, delta_time/60, delta_time%60); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(delta_depth, NULL, &depth_unit); snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DELTA, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(min_depth, NULL, &depth_unit); snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_DOWNWARDS_ARROW, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(max_depth, NULL, &depth_unit); snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s"), buf2, UTF8_UPWARDS_ARROW, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(avg_depth, NULL, &depth_unit); snprintf(buf, bufsize, translate("gettextFromC","%s %sD:%.1f%s\n"), buf2, UTF8_AVERAGE, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit); snprintf(buf, bufsize, translate("gettextFromC","%s%sV:%.2f%s"), buf2, UTF8_DOWNWARDS_ARROW, speedvalue, vertical_speed_unit); memcpy(buf2, buf, bufsize); speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit); snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_UPWARDS_ARROW, speedvalue, vertical_speed_unit); memcpy(buf2, buf, bufsize); speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit); snprintf(buf, bufsize, translate("gettextFromC","%s %sV:%.2f%s"), buf2, UTF8_AVERAGE, speedvalue, vertical_speed_unit); memcpy(buf2, buf, bufsize); /* Only print if gas has been used */ if (bar_used) { pressurevalue = get_pressure_units(bar_used, &pressure_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, translate("gettextFromC","%s %sP:%d %s"), buf2, UTF8_DELTA, pressurevalue, pressure_unit); } free(buf2); }