/* * libdivecomputer * * Copyright (C) 2008 Jef Driesen * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include // malloc, free #include // strerror #include // errno #include // gettimeofday #include // nanosleep #include #include #include #include "serial.h" #include "context-private.h" #define MODEM_DCD 0b10000000 #define MODEM_RNG 0b01000000 #define MODEM_DSR 0b00100000 #define MODEM_CTS 0b00010000 #define VID 0x0403 // Vendor ID of FTDI #define MAX_BACKOFF 500 // Max milliseconds to wait before timing out. struct serial_t { /* Library ftdi_ctx. */ dc_context_t *context; /* * The file descriptor corresponding to the serial port. * Also a libftdi_ftdi_ctx could be used? */ struct ftdi_context *ftdi_ctx; long timeout; /* * Serial port settings are saved into this variable immediately * after the port is opened. These settings are restored when the * serial port is closed. * Saving this using libftdi context or libusb. Search further. * Custom implementation using libftdi functions could be done. */ /* Half-duplex settings */ int halfduplex; unsigned int baudrate; unsigned int nbits; }; // Used internally for opening ftdi devices int open_ftdi_device (struct ftdi_context *ftdi_ctx) { int accepted_pids[] = { 0x6001, 0x6010, 0x6011, // Suunto (Smart Interface), Heinrichs Weikamp 0xF460, // Oceanic 0xF680, // Suunto 0x87D0, // Cressi (Leonardo) }; int num_accepted_pids = 6; int i, pid, ret; for (i = 0; i < num_accepted_pids; i++) { pid = accepted_pids[i]; ret = ftdi_usb_open (ftdi_ctx, VID, pid); if (ret == -3) // Device not found continue; else return ret; } // No supported devices are attached. return ret; } int serial_enumerate (serial_callback_t callback, void *userdata) { // Unimplemented. return -1; } // // Open the serial port. // Initialise ftdi_context and use it to open the device // int serial_open (serial_t **out, dc_context_t *context, const char* name) { if (out == NULL) return -1; // EINVAL (Invalid argument) INFO (context, "Open: name=%s", name ? name : ""); // Allocate memory. serial_t *device = (serial_t *) malloc (sizeof (serial_t)); if (device == NULL) { SYSERROR (context, errno); return -1; // ENOMEM (Not enough space) } struct ftdi_context *ftdi_ctx = ftdi_new(); if (ftdi_ctx == NULL) { SYSERROR (context, errno); return -1; // ENOMEM (Not enough space) } // Library context. device->context = context; // Default to blocking reads. device->timeout = -1; // Default to full-duplex. device->halfduplex = 0; device->baudrate = 0; device->nbits = 0; // Initialize device ftdi context ftdi_init(ftdi_ctx); if (ftdi_set_interface(ftdi_ctx,INTERFACE_ANY)) { ERROR (context, ftdi_get_error_string(ftdi_ctx)); return -1; } if (open_ftdi_device(ftdi_ctx) < 0) { ERROR (context, ftdi_get_error_string(ftdi_ctx)); return -1; } if (ftdi_usb_reset(ftdi_ctx)) { ERROR (context, ftdi_get_error_string(ftdi_ctx)); return -1; } if (ftdi_usb_purge_buffers(ftdi_ctx)) { ERROR (context, ftdi_get_error_string(ftdi_ctx)); return -1; } device->ftdi_ctx = ftdi_ctx; *out = device; return 0; } // // Close the serial port. // int serial_close (serial_t *device) { if (device == NULL) return 0; // Restore the initial terminal attributes. // See if it is possible using libusb or libftdi int ret = ftdi_usb_close(device->ftdi_ctx); if (ret < 0) { ERROR (device->context, "Unable to close the ftdi device : %d (%s)\n", ret, ftdi_get_error_string(device->ftdi_ctx)); return ret; } ftdi_free(device->ftdi_ctx); // Free memory. free (device); return 0; } // // Configure the serial port (baudrate, databits, parity, stopbits and flowcontrol). // int serial_configure (serial_t *device, int baudrate, int databits, int parity, int stopbits, int flowcontrol) { if (device == NULL) return -1; // EINVAL (Invalid argument) INFO (device->context, "Configure: baudrate=%i, databits=%i, parity=%i, stopbits=%i, flowcontrol=%i", baudrate, databits, parity, stopbits, flowcontrol); enum ftdi_bits_type ft_bits; enum ftdi_stopbits_type ft_stopbits; enum ftdi_parity_type ft_parity; if (ftdi_set_baudrate(device->ftdi_ctx, baudrate) < 0) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } // Set the character size. switch (databits) { case 7: ft_bits = BITS_7; break; case 8: ft_bits = BITS_8; break; default: return -1; } // Set the parity type. switch (parity) { case SERIAL_PARITY_NONE: // No parity ft_parity = NONE; break; case SERIAL_PARITY_EVEN: // Even parity ft_parity = EVEN; break; case SERIAL_PARITY_ODD: // Odd parity ft_parity = ODD; break; default: return -1; } // Set the number of stop bits. switch (stopbits) { case 1: // One stopbit ft_stopbits = STOP_BIT_1; break; case 2: // Two stopbits ft_stopbits = STOP_BIT_2; break; default: return -1; } // Set the attributes if (ftdi_set_line_property(device->ftdi_ctx, ft_bits, ft_stopbits, ft_parity)) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } // Set the flow control. switch (flowcontrol) { case SERIAL_FLOWCONTROL_NONE: // No flow control. if (ftdi_setflowctrl(device->ftdi_ctx, SIO_DISABLE_FLOW_CTRL) < 0) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } break; case SERIAL_FLOWCONTROL_HARDWARE: // Hardware (RTS/CTS) flow control. if (ftdi_setflowctrl(device->ftdi_ctx, SIO_RTS_CTS_HS) < 0) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } break; case SERIAL_FLOWCONTROL_SOFTWARE: // Software (XON/XOFF) flow control. if (ftdi_setflowctrl(device->ftdi_ctx, SIO_XON_XOFF_HS) < 0) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } break; default: return -1; } device->baudrate = baudrate; device->nbits = 1 + databits + stopbits + (parity ? 1 : 0); return 0; } // // Configure the serial port (timeouts). // int serial_set_timeout (serial_t *device, long timeout) { if (device == NULL) return -1; // EINVAL (Invalid argument) INFO (device->context, "Timeout: value=%li", timeout); device->timeout = timeout; return 0; } // // Configure the serial port (recommended size of the input/output buffers). // int serial_set_queue_size (serial_t *device, unsigned int input, unsigned int output) { if (device == NULL) return -1; // ERROR_INVALID_PARAMETER (The parameter is incorrect) ftdi_read_data_set_chunksize(device->ftdi_ctx, output); ftdi_write_data_set_chunksize(device->ftdi_ctx, input); return 0; } int serial_set_halfduplex (serial_t *device, int value) { if (device == NULL) return -1; // EINVAL (Invalid argument) // Most ftdi chips support full duplex operation. ft232rl does. // Crosscheck other chips. device->halfduplex = value; return 0; } int serial_set_latency (serial_t *device, unsigned int milliseconds) { if (device == NULL) return -1; // EINVAL (Invalid argument) // Default for ftdi device is 16ms and can be set in the range // 1 - 255 ms with 1ms least count. if (milliseconds < 1 || milliseconds > 255) return -1; ftdi_set_latency_timer(device->ftdi_ctx, milliseconds); return 0; } int serial_read (serial_t *device, void *data, unsigned int size) { if (device == NULL) return -1; // EINVAL (Invalid argument) // The total timeout. long timeout = device->timeout; // The absolute target time. struct timeval tve; static int backoff = 1; int init = 1; unsigned int nbytes = 0; while (nbytes < size) { struct timeval tvt; if (timeout > 0) { struct timeval now; if (gettimeofday (&now, NULL) != 0) { SYSERROR (device->context, errno); return -1; } if (init) { // Calculate the initial timeout. tvt.tv_sec = (timeout / 1000); tvt.tv_usec = (timeout % 1000) * 1000; // Calculate the target time. timeradd (&now, &tvt, &tve); } else { // Calculate the remaining timeout. if (timercmp (&now, &tve, <)) timersub (&tve, &now, &tvt); else timerclear (&tvt); } init = 0; } else if (timeout == 0) { timerclear (&tvt); } int n = ftdi_read_data (device->ftdi_ctx, (char *) data + nbytes, size - nbytes); if (n < 0) { if (n == LIBUSB_ERROR_INTERRUPTED) continue; //Retry. ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; //Error during read call. } else if (n == 0) { // Exponential backoff. if (backoff > MAX_BACKOFF) { ERROR(device->context, "FTDI read timed out."); return -1; } serial_sleep(device, backoff); backoff *= 2; } else { // Reset backoff to 1 on success. backoff = 1; } nbytes += n; } HEXDUMP (device->context, DC_LOGLEVEL_INFO, "Read", (unsigned char *) data, nbytes); return nbytes; } int serial_write (serial_t *device, const void *data, unsigned int size) { if (device == NULL) return -1; // EINVAL (Invalid argument) struct timeval tve, tvb; if (device->halfduplex) { // Get the current time. if (gettimeofday (&tvb, NULL) != 0) { SYSERROR (device->context, errno); return -1; } } unsigned int nbytes = 0; while (nbytes < size) { int n = ftdi_write_data (device->ftdi_ctx, (char *) data + nbytes, size - nbytes); if (n < 0) { if (n == LIBUSB_ERROR_INTERRUPTED) continue; // Retry. ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; // Error during write call. } else if (n == 0) { break; // EOF. } nbytes += n; } if (device->halfduplex) { // Get the current time. if (gettimeofday (&tve, NULL) != 0) { SYSERROR (device->context, errno); return -1; } // Calculate the elapsed time (microseconds). struct timeval tvt; timersub (&tve, &tvb, &tvt); unsigned long elapsed = tvt.tv_sec * 1000000 + tvt.tv_usec; // Calculate the expected duration (microseconds). A 2 millisecond fudge // factor is added because it improves the success rate significantly. unsigned long expected = 1000000.0 * device->nbits / device->baudrate * size + 0.5 + 2000; // Wait for the remaining time. if (elapsed < expected) { unsigned long remaining = expected - elapsed; // The remaining time is rounded up to the nearest millisecond to // match the Windows implementation. The higher resolution is // pointless anyway, since we already added a fudge factor above. serial_sleep (device, (remaining + 999) / 1000); } } HEXDUMP (device->context, DC_LOGLEVEL_INFO, "Write", (unsigned char *) data, nbytes); return nbytes; } int serial_flush (serial_t *device, int queue) { if (device == NULL) return -1; // EINVAL (Invalid argument) INFO (device->context, "Flush: queue=%u, input=%i, output=%i", queue, serial_get_received (device), serial_get_transmitted (device)); switch (queue) { case SERIAL_QUEUE_INPUT: if (ftdi_usb_purge_tx_buffer(device->ftdi_ctx)) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } break; case SERIAL_QUEUE_OUTPUT: if (ftdi_usb_purge_rx_buffer(device->ftdi_ctx)) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } break; default: if (ftdi_usb_purge_buffers(device->ftdi_ctx)) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } break; } return 0; } int serial_send_break (serial_t *device) { if (device == NULL) return -1; // EINVAL (Invalid argument)a INFO (device->context, "Break : One time period."); // no direct functions for sending break signals in libftdi. // there is a suggestion to lower the baudrate and sending NUL // and resetting the baudrate up again. But it has flaws. // Not implementing it before researching more. return -1; } int serial_set_break (serial_t *device, int level) { if (device == NULL) return -1; // EINVAL (Invalid argument) INFO (device->context, "Break: value=%i", level); // Not implemented in libftdi yet. Research it further. return -1; } int serial_set_dtr (serial_t *device, int level) { if (device == NULL) return -1; // EINVAL (Invalid argument) INFO (device->context, "DTR: value=%i", level); if (ftdi_setdtr(device->ftdi_ctx, level)) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } return 0; } int serial_set_rts (serial_t *device, int level) { if (device == NULL) return -1; // EINVAL (Invalid argument) INFO (device->context, "RTS: value=%i", level); if (ftdi_setrts(device->ftdi_ctx, level)) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } return 0; } int serial_get_received (serial_t *device) { if (device == NULL) return -1; // EINVAL (Invalid argument) // Direct access is not encouraged. But function implementation // is not available. The return quantity might be anything. // Find out further about its possible values and correct way of // access. int bytes = device->ftdi_ctx->readbuffer_remaining; return bytes; } int serial_get_transmitted (serial_t *device) { if (device == NULL) return -1; // EINVAL (Invalid argument) // This is not possible using libftdi. Look further into it. return -1; } int serial_get_line (serial_t *device, int line) { if (device == NULL) return -1; // EINVAL (Invalid argument) unsigned short int status[2] = {0}; if(ftdi_poll_modem_status(device->ftdi_ctx, status)) { ERROR (device->context, ftdi_get_error_string(device->ftdi_ctx)); return -1; } switch (line) { case SERIAL_LINE_DCD: return (status[0] & MODEM_DCD) == MODEM_DCD; case SERIAL_LINE_CTS: return (status[0] & MODEM_CTS) == MODEM_CTS; case SERIAL_LINE_DSR: return (status[0] & MODEM_DSR) == MODEM_DSR; case SERIAL_LINE_RNG: return (status[0] & MODEM_RNG) == MODEM_RNG; default: return -1; } return 0; } int serial_sleep (serial_t *device, unsigned long timeout) { if (device == NULL) return -1; INFO (device->context, "Sleep: value=%lu", timeout); struct timespec ts; ts.tv_sec = (timeout / 1000); ts.tv_nsec = (timeout % 1000) * 1000000; while (nanosleep (&ts, &ts) != 0) { if (errno != EINTR ) { SYSERROR (device->context, errno); return -1; } } return 0; }