summaryrefslogtreecommitdiffstats
path: root/core/device.cpp
blob: 23b477c67d27e25ef3e8ef5fbec8260cecbec56a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
// SPDX-License-Identifier: GPL-2.0
#include "ssrf.h"
#include "dive.h"
#include "subsurface-string.h"
#include "qthelper.h" // for copy_qstring
#include "device.h"
#include "errorhelper.h" // for verbose flag
#include "selection.h"
#include "core/settings/qPrefDiveComputer.h"

/*
 * Good fake dive profiles are hard.
 *
 * "depthtime" is the integral of the dive depth over
 * time ("area" of the dive profile). We want that
 * area to match the average depth (avg_d*max_t).
 *
 * To do that, we generate a 6-point profile:
 *
 *  (0, 0)
 *  (t1, max_d)
 *  (t2, max_d)
 *  (t3, d)
 *  (t4, d)
 *  (max_t, 0)
 *
 * with the same ascent/descent rates between the
 * different depths.
 *
 * NOTE: avg_d, max_d and max_t are given constants.
 * The rest we can/should play around with to get a
 * good-looking profile.
 *
 * That six-point profile gives a total area of:
 *
 *   (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
 *
 * And the "same ascent/descent rates" requirement
 * gives us (time per depth must be same):
 *
 *   t1 / max_d = (t3-t2) / (max_d-d)
 *   t1 / max_d = (max_t-t4) / d
 *
 * We also obviously require:
 *
 *   0 <= t1 <= t2 <= t3 <= t4 <= max_t
 *
 * Let us call 'd_frac = d / max_d', and we get:
 *
 * Total area must match average depth-time:
 *
 *   (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
 *      max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
 *             max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
 *                   t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
 *
 * and descent slope must match ascent slopes:
 *
 *   t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
 *           t1 = (t3-t2)/(1-d_frac)
 *
 * and
 *
 *   t1 / max_d = (max_t-t4) / (max_d*d_frac)
 *           t1 = (max_t-t4)/d_frac
 *
 * In general, we have more free variables than we have constraints,
 * but we can aim for certain basics, like a good ascent slope.
 */
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
{
	double t_frac = max_t * (1 - avg_d / (double)max_d);
	int t1 = lrint(max_d / slope);
	int t4 = lrint(max_t - t1 * d_frac);
	int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
	int t2 = lrint(t3 - t1 * (1 - d_frac));

	if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
		return 0;

	s[1].time.seconds = t1;
	s[1].depth.mm = max_d;
	s[2].time.seconds = t2;
	s[2].depth.mm = max_d;
	s[3].time.seconds = t3;
	s[3].depth.mm = lrint(max_d * d_frac);
	s[4].time.seconds = t4;
	s[4].depth.mm = lrint(max_d * d_frac);

	return 1;
}

/* we have no average depth; instead of making up a random average depth
 * we should assume either a PADI rectangular profile (for short and/or
 * shallow dives) or more reasonably a six point profile with a 3 minute
 * safety stop at 5m */
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
{
	// shallow or short dives are just trapecoids based on the given slope
	if (max_d < 10000 || max_t < 600) {
		s[1].time.seconds = lrint(max_d / slope);
		s[1].depth.mm = max_d;
		s[2].time.seconds = max_t - lrint(max_d / slope);
		s[2].depth.mm = max_d;
	} else {
		s[1].time.seconds = lrint(max_d / slope);
		s[1].depth.mm = max_d;
		s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
		s[2].depth.mm = max_d;
		s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
		s[3].depth.mm = 5000;
		s[4].time.seconds = max_t - lrint(5000 / slope);
		s[4].depth.mm = 5000;
	}
}

extern "C" void fake_dc(struct divecomputer *dc)
{
	alloc_samples(dc, 6);
	struct sample *fake = dc->sample;
	int i;

	dc->samples = 6;

	/* The dive has no samples, so create a few fake ones */
	int max_t = dc->duration.seconds;
	int max_d = dc->maxdepth.mm;
	int avg_d = dc->meandepth.mm;

	memset(fake, 0, 6 * sizeof(struct sample));
	fake[5].time.seconds = max_t;
	for (i = 0; i < 6; i++) {
		fake[i].bearing.degrees = -1;
		fake[i].ndl.seconds = -1;
	}
	if (!max_t || !max_d) {
		dc->samples = 0;
		return;
	}

	/* Set last manually entered time to the total dive length */
	dc->last_manual_time = dc->duration;

	/*
	 * We want to fake the profile so that the average
	 * depth ends up correct. However, in the absence of
	 * a reasonable average, let's just make something
	 * up. Note that 'avg_d == max_d' is _not_ a reasonable
	 * average.
	 * We explicitly treat avg_d == 0 differently */
	if (avg_d == 0) {
		/* we try for a sane slope, but bow to the insanity of
		 * the user supplied data */
		fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
		if (fake[3].time.seconds == 0) { // just a 4 point profile
			dc->samples = 4;
			fake[3].time.seconds = max_t;
		}
		return;
	}
	if (avg_d < max_d / 10 || avg_d >= max_d) {
		avg_d = (max_d + 10000) / 3;
		if (avg_d > max_d)
			avg_d = max_d * 2 / 3;
	}
	if (!avg_d)
		avg_d = 1;

	/*
	 * Ok, first we try a basic profile with a specific ascent
	 * rate (5 meters per minute) and d_frac (1/3).
	 */
	if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
		return;

	/*
	 * Ok, assume that didn't work because we cannot make the
	 * average come out right because it was a quick deep dive
	 * followed by a much shallower region
	 */
	if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
		return;

	/*
	 * Uhhuh. That didn't work. We'd need to find a good combination that
	 * satisfies our constraints. Currently, we don't, we just give insane
	 * slopes.
	 */
	if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
		return;

	/* Even that didn't work? Give up, there's something wrong */
}

DiveComputerList dcList;

bool DiveComputerNode::operator==(const DiveComputerNode &a) const
{
	return model == a.model &&
	       deviceId == a.deviceId &&
	       firmware == a.firmware &&
	       serialNumber == a.serialNumber &&
	       nickName == a.nickName;
}

bool DiveComputerNode::operator!=(const DiveComputerNode &a) const
{
	return !(*this == a);
}

bool DiveComputerNode::operator<(const DiveComputerNode &a) const
{
	return std::tie(model, deviceId) < std::tie(a.model, a.deviceId);
}

static const DiveComputerNode *getDCExact(const QVector<DiveComputerNode> &dcs, const divecomputer *dc)
{
	auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{dc->model, dc->deviceid, {}, {}, {}});
	return it != dcs.end() && it->model == dc->model && it->deviceId == dc->deviceid ? &*it : NULL;
}

static const DiveComputerNode *getDC(const QVector<DiveComputerNode> &dcs, const divecomputer *dc)
{
	auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{dc->model, 0, {}, {}, {}});
	return it != dcs.end() && it->model == dc->model ? &*it : NULL;
}

/*
 * When setting the device ID, we also fill in the
 * serial number and firmware version data
 */
extern "C" void set_dc_deviceid(struct divecomputer *dc, unsigned int deviceid)
{
	if (!deviceid)
		return;

	dc->deviceid = deviceid;

	// Serial and firmware can only be deduced if we know the model
	if (!dc->model)
		return;

	const DiveComputerNode *node = getDCExact(dcList.dcs, dc);
	if (!node)
		return;

	if (!node->serialNumber.isEmpty() && empty_string(dc->serial))
		dc->serial = copy_qstring(node->serialNumber);
	if (!node->firmware.isEmpty() && empty_string(dc->fw_version))
		dc->fw_version = copy_qstring(node->firmware);
}

void DiveComputerNode::showchanges(const QString &n, const QString &s, const QString &f) const
{
	if (nickName != n && !n.isEmpty())
		qDebug("new nickname %s for DC model %s deviceId 0x%x", qPrintable(n), qPrintable(model), deviceId);
	if (serialNumber != s && !s.isEmpty())
		qDebug("new serial number %s for DC model %s deviceId 0x%x", qPrintable(s), qPrintable(model), deviceId);
	if (firmware != f && !f.isEmpty())
		qDebug("new firmware version %s for DC model %s deviceId 0x%x", qPrintable(f), qPrintable(model), deviceId);
}

static void addDC(QVector<DiveComputerNode> &dcs, const QString &m, uint32_t d, const QString &n, const QString &s, const QString &f)
{
	if (m.isEmpty() || d == 0)
		return;
	auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{m, d, {}, {}, {}});
	if (it != dcs.end() && it->model == m && it->deviceId == d) {
		// debugging: show changes
		if (verbose)
			it->showchanges(n, s, f);
		// Update any non-existent fields from the old entry
		if (!n.isEmpty())
			it->nickName = n;
		if (!s.isEmpty())
			it->serialNumber = s;
		if (!f.isEmpty())
			it->firmware = f;
	} else {
		dcs.insert(it, DiveComputerNode{m, d, s, f, n});
	}
}

extern "C" void create_device_node(const char *model, uint32_t deviceid, const char *serial, const char *firmware, const char *nickname)
{
	addDC(dcList.dcs, model, deviceid, nickname, serial, firmware);
}

extern "C" void clear_device_nodes()
{
	dcList.dcs.clear();
}

static bool compareDCById(const DiveComputerNode &a, const DiveComputerNode &b)
{
	return a.deviceId < b.deviceId;
}

extern "C" void call_for_each_dc (void *f, void (*callback)(void *, const char *, uint32_t, const char *, const char *, const char *),
				  bool select_only)
{
	QVector<DiveComputerNode> values = dcList.dcs;
	std::sort(values.begin(), values.end(), compareDCById);
	for (const DiveComputerNode &node : values) {
		bool found = false;
		if (select_only) {
			for (dive *d: getDiveSelection()) {
				struct divecomputer *dc;
				for_each_dc (d, dc) {
					if (dc->deviceid == node.deviceId) {
						found = true;
						break;
					}
				}
				if (found)
					break;
			}
		} else {
			found = true;
		}
		if (found)
			callback(f, qPrintable(node.model), node.deviceId, qPrintable(node.nickName),
						 qPrintable(node.serialNumber), qPrintable(node.firmware));
	}
}

extern "C" int is_default_dive_computer(const char *vendor, const char *product)
{
	return qPrefDiveComputer::vendor() == vendor && qPrefDiveComputer::product() == product;
}

extern "C" int is_default_dive_computer_device(const char *name)
{
	return qPrefDiveComputer::device() == name;
}

extern "C" void set_dc_nickname(struct dive *dive)
{
	if (!dive)
		return;

	struct divecomputer *dc;

	for_each_dc (dive, dc) {
		if (!empty_string(dc->model) && dc->deviceid &&
		    !getDCExact(dcList.dcs, dc)) {
			// we don't have this one, yet
			const DiveComputerNode *existNode = getDC(dcList.dcs, dc);
			if (existNode) {
				// we already have this model but a different deviceid
				QString simpleNick(dc->model);
				if (dc->deviceid == 0)
					simpleNick.append(" (unknown deviceid)");
				else
					simpleNick.append(" (").append(QString::number(dc->deviceid, 16)).append(")");
				addDC(dcList.dcs, dc->model, dc->deviceid, simpleNick, {}, {});
			} else {
				addDC(dcList.dcs, dc->model, dc->deviceid, {}, {}, {});
			}
		}
	}
}

QString get_dc_nickname(const struct divecomputer *dc)
{
	const DiveComputerNode *existNode = getDCExact(dcList.dcs, dc);

	if (existNode && !existNode->nickName.isEmpty())
		return existNode->nickName;
	else
		return dc->model;
}