summaryrefslogtreecommitdiffstats
path: root/core/exif.cpp
blob: 8c47a514f51d0efb3f3e1d0b2b97edac3f973704 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
// SPDX-License-Identifier: BSD-2-CLAUSE
/**************************************************************************
  exif.cpp  -- A simple ISO C++ library to parse basic EXIF
               information from a JPEG file.

  Copyright (c) 2010-2015 Mayank Lahiri
  mlahiri@gmail.com
  All rights reserved (BSD License).

  See exif.h for version history.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are met:

  -- Redistributions of source code must retain the above copyright notice,
     this list of conditions and the following disclaimer.
  -- Redistributions in binary form must reproduce the above copyright notice,
     this list of conditions and the following disclaimer in the documentation
     and/or other materials provided with the distribution.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESS
  OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  NO EVENT SHALL THE FREEBSD PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
  INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
  OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "exif.h"

#include <algorithm>
#include <cstdint>
#include <stdio.h>
#include <vector>
#include "dive.h"

using std::string;

namespace {

struct Rational {
  uint32_t numerator, denominator;
  operator double() const {
    if (denominator < 1e-20) {
      return 0;
    }
    return static_cast<double>(numerator) / static_cast<double>(denominator);
  }
};

// IF Entry
class IFEntry {
 public:
  using byte_vector = std::vector<uint8_t>;
  using ascii_vector = std::string;
  using short_vector = std::vector<uint16_t>;
  using long_vector = std::vector<uint32_t>;
  using rational_vector = std::vector<Rational>;

  IFEntry()
      : tag_(0xFF), format_(0xFF), data_(0), length_(0), val_byte_(nullptr) {}
  IFEntry(const IFEntry &) = delete;
  IFEntry &operator=(const IFEntry &) = delete;
  IFEntry(IFEntry &&other)
      : tag_(other.tag_),
        format_(other.format_),
        data_(other.data_),
        length_(other.length_),
        val_byte_(other.val_byte_) {
    other.tag_ = 0xFF;
    other.format_ = 0xFF;
    other.data_ = 0;
    other.length_ = 0;
    other.val_byte_ = nullptr;
  }
  ~IFEntry() { delete_union(); }
  unsigned short tag() const { return tag_; }
  void tag(unsigned short tag) { tag_ = tag; }
  unsigned short format() const { return format_; }
  bool format(unsigned short format) {
    switch (format) {
      case 0x01:
      case 0x02:
      case 0x03:
      case 0x04:
      case 0x05:
      case 0x07:
      case 0x09:
      case 0x0a:
      case 0xff:
        break;
      default:
        return false;
    }
    delete_union();
    format_ = format;
    new_union();
    return true;
  }
  unsigned data() const { return data_; }
  void data(unsigned data) { data_ = data; }
  unsigned length() const { return length_; }
  void length(unsigned length) { length_ = length; }

  // functions to access the data
  //
  // !! it's CALLER responsibility to check that format !!
  // !! is correct before accessing it's field          !!
  //
  // - getters are use here to allow future addition
  //   of checks if format is correct
  byte_vector &val_byte() { return *val_byte_; }
  ascii_vector &val_string() { return *val_string_; }
  short_vector &val_short() { return *val_short_; }
  long_vector &val_long() { return *val_long_; }
  rational_vector &val_rational() { return *val_rational_; }

 private:
  // Raw fields
  unsigned short tag_;
  unsigned short format_;
  unsigned data_;
  unsigned length_;

  // Parsed fields
  union {
    byte_vector *val_byte_;
    ascii_vector *val_string_;
    short_vector *val_short_;
    long_vector *val_long_;
    rational_vector *val_rational_;
  };

  void delete_union() {
    switch (format_) {
      case 0x1:
        delete val_byte_;
        val_byte_ = nullptr;
        break;
      case 0x2:
        delete val_string_;
        val_string_ = nullptr;
        break;
      case 0x3:
        delete val_short_;
        val_short_ = nullptr;
        break;
      case 0x4:
        delete val_long_;
        val_long_ = nullptr;
        break;
      case 0x5:
        delete val_rational_;
        val_rational_ = nullptr;
        break;
      case 0xff:
        break;
      default:
        // should not get here
        // should I throw an exception or ...?
        break;
    }
  }
  void new_union() {
    switch (format_) {
      case 0x1:
        val_byte_ = new byte_vector();
        break;
      case 0x2:
        val_string_ = new ascii_vector();
        break;
      case 0x3:
        val_short_ = new short_vector();
        break;
      case 0x4:
        val_long_ = new long_vector();
        break;
      case 0x5:
        val_rational_ = new rational_vector();
        break;
      case 0xff:
        break;
      default:
        // should not get here
        // should I throw an exception or ...?
        break;
    }
  }
};

// Helper functions
template <typename T, bool alignIntel>
T parse(const unsigned char *buf);

template <>
uint8_t parse<uint8_t, false>(const unsigned char *buf) {
  return *buf;
}

template <>
uint8_t parse<uint8_t, true>(const unsigned char *buf) {
  return *buf;
}

template <>
uint16_t parse<uint16_t, false>(const unsigned char *buf) {
  return (static_cast<uint16_t>(buf[0]) << 8) | buf[1];
}

template <>
uint16_t parse<uint16_t, true>(const unsigned char *buf) {
  return (static_cast<uint16_t>(buf[1]) << 8) | buf[0];
}

template <>
uint32_t parse<uint32_t, false>(const unsigned char *buf) {
  return (static_cast<uint32_t>(buf[0]) << 24) |
         (static_cast<uint32_t>(buf[1]) << 16) |
         (static_cast<uint32_t>(buf[2]) << 8) | buf[3];
}

template <>
uint32_t parse<uint32_t, true>(const unsigned char *buf) {
  return (static_cast<uint32_t>(buf[3]) << 24) |
         (static_cast<uint32_t>(buf[2]) << 16) |
         (static_cast<uint32_t>(buf[1]) << 8) | buf[0];
}

template <>
Rational parse<Rational, true>(const unsigned char *buf) {
  Rational r;
  r.numerator = parse<uint32_t, true>(buf);
  r.denominator = parse<uint32_t, true>(buf + 4);
  return r;
}

template <>
Rational parse<Rational, false>(const unsigned char *buf) {
  Rational r;
  r.numerator = parse<uint32_t, false>(buf);
  r.denominator = parse<uint32_t, false>(buf + 4);
  return r;
}

/**
 * Try to read entry.length() values for this entry.
 *
 * Returns:
 *  true  - entry.length() values were read
 *  false - something went wrong, vec's content was not touched
 */
template <typename T, bool alignIntel, typename C>
bool extract_values(C &container, const unsigned char *buf, const unsigned base,
                    const unsigned len, const IFEntry &entry) {
  const unsigned char *data;
  uint32_t reversed_data;
  // if data fits into 4 bytes, they are stored directly in
  // the data field in IFEntry
  if (sizeof(T) * entry.length() <= 4) {
    if (alignIntel) {
      reversed_data = entry.data();
    } else {
      reversed_data = entry.data();
      // this reversing works, but is ugly
      unsigned char *data = reinterpret_cast<unsigned char *>(&reversed_data);
      unsigned char tmp;
      tmp = data[0];
      data[0] = data[3];
      data[3] = tmp;
      tmp = data[1];
      data[1] = data[2];
      data[2] = tmp;
    }
    data = reinterpret_cast<const unsigned char *>(&(reversed_data));
  } else {
    data = buf + base + entry.data();
    if (data + sizeof(T) * entry.length() > buf + len) {
      return false;
    }
  }
  container.resize(entry.length());
  for (size_t i = 0; i < entry.length(); ++i) {
    container[i] = parse<T, alignIntel>(data + sizeof(T) * i);
  }
  return true;
}

template <bool alignIntel>
void parseIFEntryHeader(const unsigned char *buf, unsigned short &tag,
                        unsigned short &format, unsigned &length,
                        unsigned &data) {
  // Each directory entry is composed of:
  // 2 bytes: tag number (data field)
  // 2 bytes: data format
  // 4 bytes: number of components
  // 4 bytes: data value or offset to data value
  tag = parse<uint16_t, alignIntel>(buf);
  format = parse<uint16_t, alignIntel>(buf + 2);
  length = parse<uint32_t, alignIntel>(buf + 4);
  data = parse<uint32_t, alignIntel>(buf + 8);
}

template <bool alignIntel>
void parseIFEntryHeader(const unsigned char *buf, IFEntry &result) {
  unsigned short tag;
  unsigned short format;
  unsigned length;
  unsigned data;

  parseIFEntryHeader<alignIntel>(buf, tag, format, length, data);

  result.tag(tag);
  result.format(format);
  result.length(length);
  result.data(data);
}

template <bool alignIntel>
IFEntry parseIFEntry_temp(const unsigned char *buf, const unsigned offs,
                          const unsigned base, const unsigned len) {
  IFEntry result;

  // check if there even is enough data for IFEntry in the buffer
  if (buf + offs + 12 > buf + len) {
    result.tag(0xFF);
    return result;
  }

  parseIFEntryHeader<alignIntel>(buf + offs, result);

  // Parse value in specified format
  switch (result.format()) {
    case 1:
      if (!extract_values<uint8_t, alignIntel>(result.val_byte(), buf, base,
                                               len, result)) {
        result.tag(0xFF);
      }
      break;
    case 2:
      // string is basically sequence of uint8_t (well, according to EXIF even
      // uint7_t, but
      // we don't have that), so just read it as bytes
      if (!extract_values<uint8_t, alignIntel>(result.val_string(), buf, base,
                                               len, result)) {
        result.tag(0xFF);
      }
      // and cut zero byte at the end, since we don't want that in the
      // std::string
      if (result.val_string()[result.val_string().length() - 1] == '\0') {
        result.val_string().resize(result.val_string().length() - 1);
      }
      break;
    case 3:
      if (!extract_values<uint16_t, alignIntel>(result.val_short(), buf, base,
                                                len, result)) {
        result.tag(0xFF);
      }
      break;
    case 4:
      if (!extract_values<uint32_t, alignIntel>(result.val_long(), buf, base,
                                                len, result)) {
        result.tag(0xFF);
      }
      break;
    case 5:
      if (!extract_values<Rational, alignIntel>(result.val_rational(), buf,
                                                base, len, result)) {
        result.tag(0xFF);
      }
      break;
    case 7:
    case 9:
    case 10:
      break;
    default:
      result.tag(0xFF);
  }
  return result;
}

// helper functions for convinience
template <typename T>
T parse_value(const unsigned char *buf, bool alignIntel) {
  if (alignIntel) {
    return parse<T, true>(buf);
  } else {
    return parse<T, false>(buf);
  }
}

void parseIFEntryHeader(const unsigned char *buf, bool alignIntel,
                        unsigned short &tag, unsigned short &format,
                        unsigned &length, unsigned &data) {
  if (alignIntel) {
    parseIFEntryHeader<true>(buf, tag, format, length, data);
  } else {
    parseIFEntryHeader<false>(buf, tag, format, length, data);
  }
}

IFEntry parseIFEntry(const unsigned char *buf, const unsigned offs,
                     const bool alignIntel, const unsigned base,
                     const unsigned len) {
  if (alignIntel) {
    return parseIFEntry_temp<true>(buf, offs, base, len);
  } else {
    return parseIFEntry_temp<false>(buf, offs, base, len);
  }
}
}

//
// Locates the EXIF segment and parses it using parseFromEXIFSegment
//
int easyexif::EXIFInfo::parseFrom(const unsigned char *buf, unsigned len) {
  // Sanity check: all JPEG files start with 0xFFD8.
  if (!buf || len < 4) return PARSE_EXIF_ERROR_NO_JPEG;
  if (buf[0] != 0xFF || buf[1] != 0xD8) return PARSE_EXIF_ERROR_NO_JPEG;

  clear();

  // Scan for EXIF header (bytes 0xFF 0xE1) and do a sanity check by
  // looking for bytes "Exif\0\0". The marker length data is in Motorola
  // byte order, which results in the 'false' parameter to parse16().
  // The marker has to contain at least the TIFF header, otherwise the
  // EXIF data is corrupt. So the minimum length specified here has to be:
  //   2 bytes: section size
  //   6 bytes: "Exif\0\0" string
  //   2 bytes: TIFF header (either "II" or "MM" string)
  //   2 bytes: TIFF magic (short 0x2a00 in Motorola byte order)
  //   4 bytes: Offset to first IFD
  // =========
  //  16 bytes
  unsigned offs = 0;  // current offset into buffer
  for (offs = 0; offs < len - 1; offs++)
    if (buf[offs] == 0xFF && buf[offs + 1] == 0xE1) break;
  if (offs + 4 > len) return PARSE_EXIF_ERROR_NO_EXIF;
  offs += 2;
  unsigned short section_length = parse_value<uint16_t>(buf + offs, false);
  if (offs + section_length > len || section_length < 16)
    return PARSE_EXIF_ERROR_CORRUPT;
  offs += 2;

  return parseFromEXIFSegment(buf + offs, len - offs);
}

int easyexif::EXIFInfo::parseFrom(const string &data) {
  return parseFrom(
      reinterpret_cast<const unsigned char *>(data.data()), static_cast<unsigned>(data.length()));
}

//
// Main parsing function for an EXIF segment.
//
// PARAM: 'buf' start of the EXIF TIFF, which must be the bytes "Exif\0\0".
// PARAM: 'len' length of buffer
//
int easyexif::EXIFInfo::parseFromEXIFSegment(const unsigned char *buf,
                                             unsigned len) {
  bool alignIntel = true;  // byte alignment (defined in EXIF header)
  unsigned offs = 0;       // current offset into buffer
  if (!buf || len < 6) return PARSE_EXIF_ERROR_NO_EXIF;

  if (!std::equal(buf, buf + 6, "Exif\0\0")) return PARSE_EXIF_ERROR_NO_EXIF;
  offs += 6;

  // Now parsing the TIFF header. The first two bytes are either "II" or
  // "MM" for Intel or Motorola byte alignment. Sanity check by parsing
  // the unsigned short that follows, making sure it equals 0x2a. The
  // last 4 bytes are an offset into the first IFD, which are added to
  // the global offset counter. For this block, we expect the following
  // minimum size:
  //  2 bytes: 'II' or 'MM'
  //  2 bytes: 0x002a
  //  4 bytes: offset to first IDF
  // -----------------------------
  //  8 bytes
  if (offs + 8 > len) return PARSE_EXIF_ERROR_CORRUPT;
  unsigned tiff_header_start = offs;
  if (buf[offs] == 'I' && buf[offs + 1] == 'I')
    alignIntel = true;
  else {
    if (buf[offs] == 'M' && buf[offs + 1] == 'M')
      alignIntel = false;
    else
      return PARSE_EXIF_ERROR_UNKNOWN_BYTEALIGN;
  }
  this->ByteAlign = alignIntel;
  offs += 2;
  if (0x2a != parse_value<uint16_t>(buf + offs, alignIntel))
    return PARSE_EXIF_ERROR_CORRUPT;
  offs += 2;
  unsigned first_ifd_offset = parse_value<uint32_t>(buf + offs, alignIntel);
  offs += first_ifd_offset - 4;
  if (offs >= len) return PARSE_EXIF_ERROR_CORRUPT;

  // Now parsing the first Image File Directory (IFD0, for the main image).
  // An IFD consists of a variable number of 12-byte directory entries. The
  // first two bytes of the IFD section contain the number of directory
  // entries in the section. The last 4 bytes of the IFD contain an offset
  // to the next IFD, which means this IFD must contain exactly 6 + 12 * num
  // bytes of data.
  if (offs + 2 > len) return PARSE_EXIF_ERROR_CORRUPT;
  int num_entries = parse_value<uint16_t>(buf + offs, alignIntel);
  if (offs + 6 + 12 * num_entries > len) return PARSE_EXIF_ERROR_CORRUPT;
  offs += 2;
  unsigned exif_sub_ifd_offset = len;
  unsigned gps_sub_ifd_offset = len;
  while (--num_entries >= 0) {
    IFEntry result =
        parseIFEntry(buf, offs, alignIntel, tiff_header_start, len);
    offs += 12;
    switch (result.tag()) {
      case 0x102:
        // Bits per sample
        if (result.format() == 3 && result.val_short().size())
          this->BitsPerSample = result.val_short().front();
        break;

      case 0x10E:
        // Image description
        if (result.format() == 2) this->ImageDescription = result.val_string();
        break;

      case 0x10F:
        // Digicam make
        if (result.format() == 2) this->Make = result.val_string();
        break;

      case 0x110:
        // Digicam model
        if (result.format() == 2) this->Model = result.val_string();
        break;

      case 0x112:
        // Orientation of image
        if (result.format() == 3 && result.val_short().size())
          this->Orientation = result.val_short().front();
        break;

      case 0x131:
        // Software used for image
        if (result.format() == 2) this->Software = result.val_string();
        break;

      case 0x132:
        // EXIF/TIFF date/time of image modification
        if (result.format() == 2) this->DateTime = result.val_string();
        break;

      case 0x8298:
        // Copyright information
        if (result.format() == 2) this->Copyright = result.val_string();
        break;

      case 0x8825:
        // GPS IFS offset
        gps_sub_ifd_offset = tiff_header_start + result.data();
        break;

      case 0x8769:
        // EXIF SubIFD offset
        exif_sub_ifd_offset = tiff_header_start + result.data();
        break;
    }
  }

  // Jump to the EXIF SubIFD if it exists and parse all the information
  // there. Note that it's possible that the EXIF SubIFD doesn't exist.
  // The EXIF SubIFD contains most of the interesting information that a
  // typical user might want.
  if (exif_sub_ifd_offset + 4 <= len) {
    offs = exif_sub_ifd_offset;
    int num_entries = parse_value<uint16_t>(buf + offs, alignIntel);
    if (offs + 6 + 12 * num_entries > len) return PARSE_EXIF_ERROR_CORRUPT;
    offs += 2;
    while (--num_entries >= 0) {
      IFEntry result =
          parseIFEntry(buf, offs, alignIntel, tiff_header_start, len);
      switch (result.tag()) {
        case 0x829a:
          // Exposure time in seconds
          if (result.format() == 5 && result.val_rational().size())
            this->ExposureTime = result.val_rational().front();
          break;

        case 0x829d:
          // FNumber
          if (result.format() == 5 && result.val_rational().size())
            this->FNumber = result.val_rational().front();
          break;

        case 0x8827:
          // ISO Speed Rating
          if (result.format() == 3 && result.val_short().size())
            this->ISOSpeedRatings = result.val_short().front();
          break;

        case 0x9003:
          // Original date and time
          if (result.format() == 2)
            this->DateTimeOriginal = result.val_string();
          break;

        case 0x9004:
          // Digitization date and time
          if (result.format() == 2)
            this->DateTimeDigitized = result.val_string();
          break;

        case 0x9201:
          // Shutter speed value
          if (result.format() == 5 && result.val_rational().size())
            this->ShutterSpeedValue = result.val_rational().front();
          break;

        case 0x9204:
          // Exposure bias value
          if (result.format() == 5 && result.val_rational().size())
            this->ExposureBiasValue = result.val_rational().front();
          break;

        case 0x9206:
          // Subject distance
          if (result.format() == 5 && result.val_rational().size())
            this->SubjectDistance = result.val_rational().front();
          break;

        case 0x9209:
          // Flash used
          if (result.format() == 3) this->Flash = result.data() ? 1 : 0;
          break;

        case 0x920a:
          // Focal length
          if (result.format() == 5 && result.val_rational().size())
            this->FocalLength = result.val_rational().front();
          break;

        case 0x9207:
          // Metering mode
          if (result.format() == 3 && result.val_short().size())
            this->MeteringMode = result.val_short().front();
          break;

        case 0x9291:
          // Subsecond original time
          if (result.format() == 2)
            this->SubSecTimeOriginal = result.val_string();
          break;

        case 0xa002:
          // EXIF Image width
          if (result.format() == 4 && result.val_long().size())
            this->ImageWidth = result.val_long().front();
          if (result.format() == 3 && result.val_short().size())
            this->ImageWidth = result.val_short().front();
          break;

        case 0xa003:
          // EXIF Image height
          if (result.format() == 4 && result.val_long().size())
            this->ImageHeight = result.val_long().front();
          if (result.format() == 3 && result.val_short().size())
            this->ImageHeight = result.val_short().front();
          break;

        case 0xa20e:
          // EXIF Focal plane X-resolution
          if (result.format() == 5) {
            this->LensInfo.FocalPlaneXResolution = result.val_rational()[0];
          }
          break;

        case 0xa20f:
          // EXIF Focal plane Y-resolution
          if (result.format() == 5) {
            this->LensInfo.FocalPlaneYResolution = result.val_rational()[0];
          }
          break;

        case 0xa405:
          // Focal length in 35mm film
          if (result.format() == 3 && result.val_short().size())
            this->FocalLengthIn35mm = result.val_short().front();
          break;

        case 0xa432:
          // Focal length and FStop.
          if (result.format() == 5) {
            int sz = static_cast<unsigned>(result.val_rational().size());
            if (sz)
              this->LensInfo.FocalLengthMin = result.val_rational()[0];
            if (sz > 1)
              this->LensInfo.FocalLengthMax = result.val_rational()[1];
            if (sz > 2)
              this->LensInfo.FStopMin = result.val_rational()[2];
            if (sz > 3)
              this->LensInfo.FStopMax = result.val_rational()[3];
          }
          break;

        case 0xa433:
          // Lens make.
          if (result.format() == 2) {
            this->LensInfo.Make = result.val_string();
          }
          break;

        case 0xa434:
          // Lens model.
          if (result.format() == 2) {
            this->LensInfo.Model = result.val_string();
          }
          break;
      }
      offs += 12;
    }
  }

  // Jump to the GPS SubIFD if it exists and parse all the information
  // there. Note that it's possible that the GPS SubIFD doesn't exist.
  if (gps_sub_ifd_offset + 4 <= len) {
    offs = gps_sub_ifd_offset;
    int num_entries = parse_value<uint16_t>(buf + offs, alignIntel);
    if (offs + 6 + 12 * num_entries > len) return PARSE_EXIF_ERROR_CORRUPT;
    offs += 2;
    while (--num_entries >= 0) {
      unsigned short tag, format;
      unsigned length, data;
      parseIFEntryHeader(buf + offs, alignIntel, tag, format, length, data);
      switch (tag) {
        case 1:
          // GPS north or south
          this->GeoLocation.LatComponents.direction = *(buf + offs + 8);
          if (this->GeoLocation.LatComponents.direction == 0) {
            this->GeoLocation.LatComponents.direction = '?';
          }
          if ('S' == this->GeoLocation.LatComponents.direction) {
            this->GeoLocation.Latitude = -this->GeoLocation.Latitude;
          }
          break;

        case 2:
          // GPS latitude
          if ((format == 5 || format == 10) && length == 3) {
            this->GeoLocation.LatComponents.degrees = parse_value<Rational>(
                buf + data + tiff_header_start, alignIntel);
            this->GeoLocation.LatComponents.minutes = parse_value<Rational>(
                buf + data + tiff_header_start + 8, alignIntel);
            this->GeoLocation.LatComponents.seconds = parse_value<Rational>(
                buf + data + tiff_header_start + 16, alignIntel);
            this->GeoLocation.Latitude =
                this->GeoLocation.LatComponents.degrees +
                this->GeoLocation.LatComponents.minutes / 60 +
                this->GeoLocation.LatComponents.seconds / 3600;
            if ('S' == this->GeoLocation.LatComponents.direction) {
              this->GeoLocation.Latitude = -this->GeoLocation.Latitude;
            }
          }
          break;

        case 3:
          // GPS east or west
          this->GeoLocation.LonComponents.direction = *(buf + offs + 8);
          if (this->GeoLocation.LonComponents.direction == 0) {
            this->GeoLocation.LonComponents.direction = '?';
          }
          if ('W' == this->GeoLocation.LonComponents.direction) {
            this->GeoLocation.Longitude = -this->GeoLocation.Longitude;
          }
          break;

        case 4:
          // GPS longitude
          if ((format == 5 || format == 10) && length == 3) {
            this->GeoLocation.LonComponents.degrees = parse_value<Rational>(
                buf + data + tiff_header_start, alignIntel);
            this->GeoLocation.LonComponents.minutes = parse_value<Rational>(
                buf + data + tiff_header_start + 8, alignIntel);
            this->GeoLocation.LonComponents.seconds = parse_value<Rational>(
                buf + data + tiff_header_start + 16, alignIntel);
            this->GeoLocation.Longitude =
                this->GeoLocation.LonComponents.degrees +
                this->GeoLocation.LonComponents.minutes / 60 +
                this->GeoLocation.LonComponents.seconds / 3600;
            if ('W' == this->GeoLocation.LonComponents.direction)
              this->GeoLocation.Longitude = -this->GeoLocation.Longitude;
          }
          break;

        case 5:
          // GPS altitude reference (below or above sea level)
          this->GeoLocation.AltitudeRef = *(buf + offs + 8);
          if (1 == this->GeoLocation.AltitudeRef) {
            this->GeoLocation.Altitude = -this->GeoLocation.Altitude;
          }
          break;

        case 6:
          // GPS altitude
          if ((format == 5 || format == 10)) {
            this->GeoLocation.Altitude = parse_value<Rational>(
                buf + data + tiff_header_start, alignIntel);
            if (1 == this->GeoLocation.AltitudeRef) {
              this->GeoLocation.Altitude = -this->GeoLocation.Altitude;
            }
          }
          break;

        case 11:
          // GPS degree of precision (DOP)
          if ((format == 5 || format == 10)) {
            this->GeoLocation.DOP = parse_value<Rational>(
                buf + data + tiff_header_start, alignIntel);
          }
          break;
      }
      offs += 12;
    }
  }

  return PARSE_EXIF_SUCCESS;
}

void easyexif::EXIFInfo::clear() {
  // Strings
  ImageDescription = "";
  Make = "";
  Model = "";
  Software = "";
  DateTime = "";
  DateTimeOriginal = "";
  DateTimeDigitized = "";
  SubSecTimeOriginal = "";
  Copyright = "";

  // Shorts / unsigned / double
  ByteAlign = 0;
  Orientation = 0;

  BitsPerSample = 0;
  ExposureTime = 0;
  FNumber = 0;
  ISOSpeedRatings = 0;
  ShutterSpeedValue = 0;
  ExposureBiasValue = 0;
  SubjectDistance = 0;
  FocalLength = 0;
  FocalLengthIn35mm = 0;
  Flash = 0;
  MeteringMode = 0;
  ImageWidth = 0;
  ImageHeight = 0;

  // Geolocation
  GeoLocation.Latitude = 0;
  GeoLocation.Longitude = 0;
  GeoLocation.Altitude = 0;
  GeoLocation.AltitudeRef = 0;
  GeoLocation.DOP = 0;
  GeoLocation.LatComponents.degrees = 0;
  GeoLocation.LatComponents.minutes = 0;
  GeoLocation.LatComponents.seconds = 0;
  GeoLocation.LatComponents.direction = '?';
  GeoLocation.LonComponents.degrees = 0;
  GeoLocation.LonComponents.minutes = 0;
  GeoLocation.LonComponents.seconds = 0;
  GeoLocation.LonComponents.direction = '?';

  // LensInfo
  LensInfo.FocalLengthMax = 0;
  LensInfo.FocalLengthMin = 0;
  LensInfo.FStopMax = 0;
  LensInfo.FStopMin = 0;
  LensInfo.FocalPlaneYResolution = 0;
  LensInfo.FocalPlaneXResolution = 0;
  LensInfo.Make = "";
  LensInfo.Model = "";
}

time_t easyexif::EXIFInfo::epoch()
{
	struct tm tm;
	int year, month, day, hour, min, sec;

	if (DateTimeOriginal.size())
		sscanf(DateTimeOriginal.c_str(), "%d:%d:%d %d:%d:%d", &year, &month, &day, &hour, &min, &sec);
	else
		sscanf(DateTime.c_str(), "%d:%d:%d %d:%d:%d", &year, &month, &day, &hour, &min, &sec);
	tm.tm_year = year;
	tm.tm_mon = month - 1;
	tm.tm_mday = day;
	tm.tm_hour = hour;
	tm.tm_min = min;
	tm.tm_sec = sec;
	return (utc_mktime(&tm));
}