1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
// SPDX-License-Identifier: GPL-2.0
#include "metadata.h"
#include "exif.h"
#include "qthelper.h"
#include <QString>
#include <QFile>
#include <QDateTime>
// Weirdly, android builds fail owing to undefined UINT64_MAX
#ifndef UINT64_MAX
#define UINT64_MAX (~0ULL)
#endif
// The following two functions fetch an arbitrary-length _unsigned_ integer from either
// a file or a memory location in big-endian mode. The size of the integer is passed
// via a template argument [e.g. getBE<uint16_t>(...)].
// The function doing file access returns a default value on IO error or end-of-file.
// Warning: This code works properly only for unsigned integers. The template parameter
// is not checked and passing a signed integer will silently fail!
template <typename T>
static inline T getBE(const char *buf_in)
{
constexpr size_t size = sizeof(T);
// Interpret raw bytes as unsigned char to avoid sign extension for
// characters in the 0x80...0xff range.
auto buf = (unsigned const char *)buf_in;
T ret = 0;
for (size_t i = 0; i < size; ++i)
ret = (ret << 8) | buf[i];
return ret;
}
template <typename T>
static inline T getBE(QFile &f, T def=0)
{
constexpr size_t size = sizeof(T);
char buf[size];
if (f.read(buf, size) != size)
return def;
return getBE<T>(buf);
}
static bool parseExif(QFile &f, struct metadata *metadata)
{
f.seek(0);
if (getBE<uint16_t>(f) != 0xffd8)
return false;
for (;;) {
switch (getBE<uint16_t>(f)) {
case 0xffc0:
case 0xffc2:
case 0xffc4:
case 0xffd0 ... 0xffd7:
case 0xffdb:
case 0xffdd:
case 0xffe0:
case 0xffe2 ... 0xffef:
case 0xfffe: {
uint16_t len = getBE<uint16_t>(f);
if (len < 2)
return false;
f.seek(f.pos() + len - 2); // TODO: switch to QFile::skip()
break;
}
case 0xffe1: {
uint16_t len = getBE<uint16_t>(f);
if (len < 2)
return false;
len -= 2;
QByteArray data = f.read(len);
if (data.size() != len)
return false;
easyexif::EXIFInfo exif;
if (exif.parseFromEXIFSegment(reinterpret_cast<const unsigned char *>(data.constData()), len) != PARSE_EXIF_SUCCESS)
return false;
metadata->longitude.udeg = lrint(1000000.0 * exif.GeoLocation.Longitude);
metadata->latitude.udeg = lrint(1000000.0 * exif.GeoLocation.Latitude);
metadata->timestamp = exif.epoch();
return true;
}
case 0xffda:
case 0xffd9:
// We expect EXIF data before any scan data
return false;
default:
return false;
}
}
}
static bool parseMP4(QFile &f, metadata *metadata)
{
f.seek(0);
// MP4s and related formats are hierarchical, being made up of "atoms", which can
// contain other atoms (an interesting interpretation of the term atom).
// To parse the file, the remaining to-be-parsed bytes of the upper atoms in
// the parse-tree are tracked in a stack-like structure. This is not strictly
// necessary, since the level at which an atom is found is insubstantial.
// Nevertheless, it is an effective and simple way of sanity-checking the file and the
// parsing routine.
std::vector<uint64_t> atom_stack;
atom_stack.reserve(10);
// For the outmost level, set the atom-size the the maximum value representable in
// 64-bits, which effectively means parse to the end of file.
atom_stack.push_back(UINT64_MAX);
// The first atom of an MP4 or related video is supposed to be of the "ftyp" kind.
// If such an atom is found as first atom, this function will return true, indicating
// that the file is a video.
bool found_ftyp = false;
while (!f.atEnd() && !atom_stack.empty()) {
// Parse atom header. The header can have two forms (each character stands for a byte):
// lllltttt
// or
// 0001ttttllllllll
// where "l" stands for length in big-endian mode and "t" for type of the atom.
// The length includes the 8- or 16-bytes header.
uint64_t atom_size = getBE<uint32_t>(f, 2);
int atom_header_size = 8;
if (atom_size > 1 && atom_size < 8)
break;
char type[4];
if (f.read(type, 4) != 4)
break;
if (atom_size == 1) {
atom_size = getBE<uint64_t>(f);
atom_header_size = 16;
if (atom_size < 16)
break;
}
if (atom_size == 0)
atom_size = atom_stack.back();
if (atom_size > atom_stack.back())
break;
atom_stack.back() -= atom_size;
atom_size -= atom_header_size;
// The first atom must be "ftyp"
if (!found_ftyp) {
found_ftyp = !memcmp(type, "ftyp", 4);
if (!found_ftyp)
break;
}
if (!memcmp(type, "moov", 4) ||
!memcmp(type, "trak", 4) ||
!memcmp(type, "mdia", 4)) {
// Recurse into "moov", "trak" and "mdia" atoms
atom_stack.push_back(atom_size);
continue;
} else if (!memcmp(type, "mdhd", 4) && atom_size >= 24 && atom_size < 4096) {
// Parse "mdhd" (media header).
// Sanity check: size between 24 and 4096
std::vector<char> data(atom_size);
if (f.read(&data[0], atom_size) != static_cast<int>(atom_size))
break;
uint64_t timestamp = 0;
uint32_t timescale = 0;
uint64_t duration = 0;
// First byte is version. We know version 0 and 1
switch (data[0]) {
case 0:
timestamp = getBE<uint32_t>(&data[4]);
timescale = getBE<uint32_t>(&data[12]);
duration = getBE<uint32_t>(&data[16]);
break;
case 1:
timestamp = getBE<uint64_t>(&data[4]);
timescale = getBE<uint32_t>(&data[20]);
duration = getBE<uint64_t>(&data[24]);
break;
default:
// For unknown versions: ignore -> maybe we find a parseable "mdhd" atom later in this file
break;
}
if (timescale > 0)
metadata->duration.seconds = lrint((double)duration / timescale);
// Timestamp is given as seconds since midnight 1904/1/1. To be convertible to the UNIX epoch
// it must be larger than 2082844800.
if (timestamp >= 2082844800) {
metadata->timestamp = timestamp - 2082844800;
// Currently, we only know how to extract timestamps, so we might just quit parsing here.
break;
}
} else {
// Jump over unknown atom
if (!f.seek(f.pos() + atom_size)) // TODO: switch to QFile::skip()
break;
}
// If end of atom is reached, return to outer atom
while (!atom_stack.empty() && atom_stack.back() == 0)
atom_stack.pop_back();
}
return found_ftyp;
}
extern "C" mediatype_t get_metadata(const char *filename_in, metadata *data)
{
data->timestamp = 0;
data->duration.seconds = 0;
data->latitude.udeg = 0;
data->longitude.udeg = 0;
QString filename = localFilePath(QString(filename_in));
QFile f(filename);
if (!f.open(QIODevice::ReadOnly))
return MEDIATYPE_IO_ERROR;
if (parseExif(f, data)) {
return MEDIATYPE_PICTURE;
} else if(parseMP4(f, data)) {
return MEDIATYPE_VIDEO;
} else {
// If we couldn't parse EXIF or MP4 data, use file creation date.
// TODO: QFileInfo::created is deprecated in newer Qt versions.
data->timestamp = QFileInfo(filename).created().toMSecsSinceEpoch() / 1000;
return MEDIATYPE_UNKNOWN;
}
}
extern "C" timestamp_t picture_get_timestamp(const char *filename)
{
struct metadata data;
get_metadata(filename, &data);
return data.timestamp;
}
|