1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
|
// SPDX-License-Identifier: GPL-2.0
/* profile.c */
/* creates all the necessary data for drawing the dive profile
*/
#include "ssrf.h"
#include "gettext.h"
#include <limits.h>
#include <string.h>
#include <assert.h>
#include "dive.h"
#include "display.h"
#include "divelist.h"
#include "event.h"
#include "interpolate.h"
#include "sample.h"
#include "subsurface-string.h"
#include "profile.h"
#include "gaspressures.h"
#include "deco.h"
#include "libdivecomputer/parser.h"
#include "libdivecomputer/version.h"
#include "membuffer.h"
#include "qthelper.h"
#include "format.h"
//#define DEBUG_GAS 1
#define MAX_PROFILE_DECO 7200
extern int ascent_velocity(int depth, int avg_depth, int bottom_time);
struct dive *current_dive = NULL;
unsigned int dc_number = 0;
#ifdef DEBUG_PI
/* debugging tool - not normally used */
static void dump_pi(struct plot_info *pi)
{
int i;
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
" maxpressure:%d mintemp:%d maxtemp:%d\n",
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
pi->maxpressure, pi->mintemp, pi->maxtemp);
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = &pi->entry[i];
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
i, entry->sensor[0], entry->sec,
entry->pressure[0], entry->pressure[1],
entry->sec / 60, entry->sec % 60,
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
entry->pressures.o2, entry->pressures.he, entry->pressures.n2,
entry->pressures.o2 + entry->pressures.he + entry->pressures.n2);
}
printf(" }\n");
}
#endif
#define ROUND_UP(x, y) ((((x) + (y) - 1) / (y)) * (y))
#define DIV_UP(x, y) (((x) + (y) - 1) / (y))
/*
* When showing dive profiles, we scale things to the
* current dive. However, we don't scale past less than
* 30 minutes or 90 ft, just so that small dives show
* up as such unless zoom is enabled.
* We also need to add 180 seconds at the end so the min/max
* plots correctly
*/
int get_maxtime(const struct plot_info *pi)
{
int seconds = pi->maxtime;
int DURATION_THR = (pi->dive_type == FREEDIVING ? 60 : 600);
int CEILING = (pi->dive_type == FREEDIVING ? 30 : 60);
if (prefs.zoomed_plot) {
/* Rounded up to one minute, with at least 2.5 minutes to
* spare.
* For dive times shorter than 10 minutes, we use seconds/4 to
* calculate the space dynamically.
* This is seamless since 600/4 = 150.
*/
if (seconds < DURATION_THR)
return ROUND_UP(seconds + seconds / 4, CEILING);
else
return ROUND_UP(seconds + DURATION_THR/4, CEILING);
} else {
#ifndef SUBSURFACE_MOBILE
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
return MAX(30 * 60, ROUND_UP(seconds + DURATION_THR/4, CEILING * 5));
#else
/* just add 2.5 minutes so we have a consistant right margin */
return seconds + DURATION_THR / 4;
#endif
}
}
/* get the maximum depth to which we want to plot
* take into account the additional vertical space needed to plot
* partial pressure graphs */
int get_maxdepth(const struct plot_info *pi)
{
unsigned mm = pi->maxdepth;
int md;
if (prefs.zoomed_plot) {
/* Rounded up to 10m, with at least 3m to spare */
md = ROUND_UP(mm + 3000, 10000);
} else {
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
md = MAX((unsigned)30000, ROUND_UP(mm + 3000, 10000));
}
md += lrint(pi->maxpp * 9000);
return md;
}
/* UNUSED! */
static int get_local_sac(struct plot_info *pi, int idx1, int idx2, struct dive *dive) __attribute__((unused));
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
static int get_local_sac(struct plot_info *pi, int idx1, int idx2, struct dive *dive)
{
int index = 0;
cylinder_t *cyl;
struct plot_data *entry1 = pi->entry + idx1;
struct plot_data *entry2 = pi->entry + idx2;
int duration = entry2->sec - entry1->sec;
int depth, airuse;
pressure_t a, b;
double atm;
if (duration <= 0)
return 0;
a.mbar = get_plot_pressure(pi, idx1, 0);
b.mbar = get_plot_pressure(pi, idx2, 0);
if (!b.mbar || a.mbar <= b.mbar)
return 0;
/* Mean pressure in ATM */
depth = (entry1->depth + entry2->depth) / 2;
atm = depth_to_atm(depth, dive);
cyl = get_cylinder(dive, index);
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
/* milliliters per minute */
return lrint(airuse / atm * 60 / duration);
}
#define HALF_INTERVAL 9 * 30
/*
* Run the min/max calculations: over a 9 minute interval
* around the entry point (indices 0, 1, 2 respectively).
*/
static void analyze_plot_info_minmax(struct plot_info *pi, int entry_index)
{
struct plot_data *plot_entry = pi->entry + entry_index; // fixed
struct plot_data *p = plot_entry; // moves with 'entry'
int start = p->sec - HALF_INTERVAL, end = p->sec + HALF_INTERVAL;
int min, max;
/* Go back 'seconds' in time */
while (entry_index > 0) {
if (p[-1].sec < start)
break;
entry_index--;
p--;
}
// indices to the min/max entries
min = max = entry_index;
/* Then go forward until we hit an entry past the time */
while (entry_index < pi->nr) {
int time = p->sec;
int depth = p->depth;
if (time > end)
break;
if (depth < pi->entry[min].depth)
min = entry_index;
if (depth > pi->entry[max].depth)
max = entry_index;
p++;
entry_index++;
}
plot_entry->min = min;
plot_entry->max = max;
}
static velocity_t velocity(int speed)
{
velocity_t v;
if (speed < -304) /* ascent faster than -60ft/min */
v = CRAZY;
else if (speed < -152) /* above -30ft/min */
v = FAST;
else if (speed < -76) /* -15ft/min */
v = MODERATE;
else if (speed < -25) /* -5ft/min */
v = SLOW;
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
for descent are usually about 2x ascent rate; still, we want
stable to mean stable */
v = STABLE;
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
v = SLOW;
else if (speed < 304) /* up to 60ft/min is moderate */
v = MODERATE;
else if (speed < 507) /* up to 100ft/min is fast */
v = FAST;
else /* more than that is just crazy - you'll blow your ears out */
v = CRAZY;
return v;
}
static void analyze_plot_info(struct plot_info *pi)
{
int i;
int nr = pi->nr;
/* Smoothing function: 5-point triangular smooth */
for (i = 2; i < nr; i++) {
struct plot_data *entry = pi->entry + i;
int depth;
if (i < nr - 2) {
depth = entry[-2].depth + 2 * entry[-1].depth + 3 * entry[0].depth + 2 * entry[1].depth + entry[2].depth;
entry->smoothed = (depth + 4) / 9;
}
/* vertical velocity in mm/sec */
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
if (entry[0].sec - entry[-1].sec) {
entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
entry->velocity = velocity(entry->speed);
/* if our samples are short and we aren't too FAST*/
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
int past = -2;
while (i + past > 0 && entry[0].sec - entry[past].sec < 15)
past--;
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
(entry[0].sec - entry[past].sec));
}
} else {
entry->velocity = STABLE;
entry->speed = 0;
}
}
/* get minmax data */
for (i = 0; i < nr; i++)
analyze_plot_info_minmax(pi, i);
}
/*
* If the event has an explicit cylinder index,
* we return that. If it doesn't, we return the best
* match based on the gasmix.
*
* Some dive computers give cylinder indices, some
* give just the gas mix.
*/
int get_cylinder_index(const struct dive *dive, const struct event *ev)
{
int best;
struct gasmix mix;
if (ev->gas.index >= 0)
return ev->gas.index;
/*
* This should no longer happen!
*
* We now match up gas change events with their cylinders at dive
* event fixup time.
*/
SSRF_INFO("Still looking up cylinder based on gas mix in get_cylinder_index()!\n");
mix = get_gasmix_from_event(dive, ev);
best = find_best_gasmix_match(mix, &dive->cylinders);
return best < 0 ? 0 : best;
}
struct event *get_next_event_mutable(struct event *event, const char *name)
{
if (!name || !*name)
return NULL;
while (event) {
if (same_string(event->name, name))
return event;
event = event->next;
}
return event;
}
const struct event *get_next_event(const struct event *event, const char *name)
{
return get_next_event_mutable((struct event *)event, name);
}
static int count_events(struct divecomputer *dc)
{
int result = 0;
struct event *ev = dc->events;
while (ev != NULL) {
result++;
ev = ev->next;
}
return result;
}
static int set_setpoint(struct plot_info *pi, int i, int setpoint, int end)
{
while (i < pi->nr) {
struct plot_data *entry = pi->entry + i;
if (entry->sec > end)
break;
entry->o2pressure.mbar = setpoint;
i++;
}
return i;
}
static void check_setpoint_events(const struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
UNUSED(dive);
int i = 0;
pressure_t setpoint;
setpoint.mbar = 0;
const struct event *ev = get_next_event(dc->events, "SP change");
if (!ev)
return;
do {
i = set_setpoint(pi, i, setpoint.mbar, ev->time.seconds);
setpoint.mbar = ev->value;
if (setpoint.mbar)
dc->divemode = CCR;
ev = get_next_event(ev->next, "SP change");
} while (ev);
set_setpoint(pi, i, setpoint.mbar, INT_MAX);
}
static void calculate_max_limits_new(struct dive *dive, struct divecomputer *given_dc, struct plot_info *pi, bool in_planner)
{
struct divecomputer *dc = &(dive->dc);
bool seen = false;
bool found_sample_beyond_last_event = false;
int maxdepth = dive->maxdepth.mm;
int maxtime = 0;
int maxpressure = 0, minpressure = INT_MAX;
int maxhr = 0, minhr = INT_MAX;
int mintemp = dive->mintemp.mkelvin;
int maxtemp = dive->maxtemp.mkelvin;
int cyl;
/* Get the per-cylinder maximum pressure if they are manual */
for (cyl = 0; cyl < dive->cylinders.nr; cyl++) {
int mbar_start = get_cylinder(dive, cyl)->start.mbar;
int mbar_end = get_cylinder(dive, cyl)->end.mbar;
if (mbar_start > maxpressure)
maxpressure = mbar_start;
if (mbar_end < minpressure)
minpressure = mbar_end;
}
/* Then do all the samples from all the dive computers */
do {
if (dc == given_dc)
seen = true;
int i = dc->samples;
int lastdepth = 0;
struct sample *s = dc->sample;
struct event *ev;
/* Make sure we can fit all events */
ev = dc->events;
while (ev) {
if (ev->time.seconds > maxtime)
maxtime = ev->time.seconds;
ev = ev->next;
}
while (--i >= 0) {
int depth = s->depth.mm;
int pressure = s->pressure[0].mbar;
int temperature = s->temperature.mkelvin;
int heartbeat = s->heartbeat;
if (!mintemp && temperature < mintemp)
mintemp = temperature;
if (temperature > maxtemp)
maxtemp = temperature;
if (pressure && pressure < minpressure)
minpressure = pressure;
if (pressure > maxpressure)
maxpressure = pressure;
if (heartbeat > maxhr)
maxhr = heartbeat;
if (heartbeat && heartbeat < minhr)
minhr = heartbeat;
if (depth > maxdepth)
maxdepth = s->depth.mm;
/* Make sure that we get the first sample beyond the last event.
* If maxtime is somewhere in the middle of the last segment,
* populate_plot_entries() gets confused leading to display artifacts. */
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD || in_planner || !found_sample_beyond_last_event) &&
s->time.seconds > maxtime) {
found_sample_beyond_last_event = true;
maxtime = s->time.seconds;
}
lastdepth = depth;
s++;
}
dc = dc->next;
if (dc == NULL && !seen) {
dc = given_dc;
seen = true;
}
} while (dc != NULL);
if (minpressure > maxpressure)
minpressure = 0;
if (minhr > maxhr)
minhr = maxhr;
memset(pi, 0, sizeof(*pi));
pi->maxdepth = maxdepth;
pi->maxtime = maxtime;
pi->maxpressure = maxpressure;
pi->minpressure = minpressure;
pi->minhr = minhr;
pi->maxhr = maxhr;
pi->mintemp = mintemp;
pi->maxtemp = maxtemp;
}
/* copy the previous entry (we know this exists), update time and depth
* and zero out the sensor pressure (since this is a synthetic entry)
* increment the entry pointer and the count of synthetic entries. */
static void insert_entry(struct plot_info *pi, int idx, int time, int depth, int sac)
{
struct plot_data *entry = pi->entry + idx;
struct plot_data *prev = pi->entry + idx - 1;
*entry = *prev;
entry->sec = time;
entry->depth = depth;
entry->running_sum = prev->running_sum + (time - prev->sec) * (depth + prev->depth) / 2;
entry->sac = sac;
entry->ndl = -1;
entry->bearing = -1;
}
void free_plot_info_data(struct plot_info *pi)
{
free(pi->entry);
free(pi->pressures);
pi->entry = NULL;
pi->pressures = NULL;
}
static void populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
UNUSED(dive);
int idx, maxtime, nr, i;
int lastdepth, lasttime, lasttemp = 0;
struct plot_data *plot_data;
struct event *ev = dc->events;
maxtime = pi->maxtime;
/*
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
* but samples could be more dense than that (so add in dc->samples). We also
* need to have one for every event (so count events and add that) and
* additionally we want two surface events around the whole thing (thus the
* additional 4). There is also one extra space for a final entry
* that has time > maxtime (because there can be surface samples
* past "maxtime" in the original sample data)
*/
nr = dc->samples + 6 + maxtime / 10 + count_events(dc);
plot_data = calloc(nr, sizeof(struct plot_data));
pi->entry = plot_data;
pi->nr_cylinders = dive->cylinders.nr;
pi->pressures = calloc(nr * (size_t)pi->nr_cylinders, sizeof(struct plot_pressure_data));
if (!plot_data)
return;
pi->nr = nr;
idx = 2; /* the two extra events at the start */
lastdepth = 0;
lasttime = 0;
/* skip events at time = 0 */
while (ev && ev->time.seconds == 0)
ev = ev->next;
for (i = 0; i < dc->samples; i++) {
struct plot_data *entry = plot_data + idx;
struct sample *sample = dc->sample + i;
int time = sample->time.seconds;
int offset, delta;
int depth = sample->depth.mm;
int sac = sample->sac.mliter;
/* Add intermediate plot entries if required */
delta = time - lasttime;
if (delta <= 0) {
time = lasttime;
delta = 1; // avoid divide by 0
}
for (offset = 10; offset < delta; offset += 10) {
if (lasttime + offset > maxtime)
break;
/* Add events if they are between plot entries */
while (ev && (int)ev->time.seconds < lasttime + offset) {
insert_entry(pi, idx, ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
entry++;
idx++;
ev = ev->next;
}
/* now insert the time interpolated entry */
insert_entry(pi, idx, lasttime + offset, interpolate(lastdepth, depth, offset, delta), sac);
entry++;
idx++;
/* skip events that happened at this time */
while (ev && (int)ev->time.seconds == lasttime + offset)
ev = ev->next;
}
/* Add events if they are between plot entries */
while (ev && (int)ev->time.seconds < time) {
insert_entry(pi, idx, ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
entry++;
idx++;
ev = ev->next;
}
entry->sec = time;
entry->depth = depth;
entry->running_sum = (entry - 1)->running_sum + (time - (entry - 1)->sec) * (depth + (entry - 1)->depth) / 2;
entry->stopdepth = sample->stopdepth.mm;
entry->stoptime = sample->stoptime.seconds;
entry->ndl = sample->ndl.seconds;
entry->tts = sample->tts.seconds;
entry->in_deco = sample->in_deco;
entry->cns = sample->cns;
if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) {
entry->o2pressure.mbar = entry->o2setpoint.mbar = sample->setpoint.mbar; // for rebreathers
entry->o2sensor[0].mbar = sample->o2sensor[0].mbar; // for up to three rebreather O2 sensors
entry->o2sensor[1].mbar = sample->o2sensor[1].mbar;
entry->o2sensor[2].mbar = sample->o2sensor[2].mbar;
} else {
entry->pressures.o2 = sample->setpoint.mbar / 1000.0;
}
if (sample->pressure[0].mbar)
set_plot_pressure_data(pi, idx, SENSOR_PR, sample->sensor[0], sample->pressure[0].mbar);
if (sample->pressure[1].mbar)
set_plot_pressure_data(pi, idx, SENSOR_PR, sample->sensor[1], sample->pressure[1].mbar);
if (sample->temperature.mkelvin)
entry->temperature = lasttemp = sample->temperature.mkelvin;
else
entry->temperature = lasttemp;
entry->heartbeat = sample->heartbeat;
entry->bearing = sample->bearing.degrees;
entry->sac = sample->sac.mliter;
if (sample->rbt.seconds)
entry->rbt = sample->rbt.seconds;
/* skip events that happened at this time */
while (ev && (int)ev->time.seconds == time)
ev = ev->next;
lasttime = time;
lastdepth = depth;
idx++;
if (time > maxtime)
break;
}
/* Add any remaining events */
while (ev) {
struct plot_data *entry = plot_data + idx;
int time = ev->time.seconds;
if (time > lasttime) {
insert_entry(pi, idx, ev->time.seconds, 0, 0);
lasttime = time;
idx++;
entry++;
}
ev = ev->next;
}
/* Add two final surface events */
plot_data[idx++].sec = lasttime + 1;
plot_data[idx++].sec = lasttime + 2;
pi->nr = idx;
}
/*
* Calculate the sac rate between the two plot entries 'first' and 'last'.
*
* Everything in between has a cylinder pressure for at least some of the cylinders.
*/
static int sac_between(struct dive *dive, struct plot_info *pi, int first, int last, const bool gases[])
{
int i, airuse;
double pressuretime;
if (first == last)
return 0;
/* Get airuse for the set of cylinders over the range */
airuse = 0;
for (i = 0; i < pi->nr_cylinders; i++) {
pressure_t a, b;
cylinder_t *cyl;
int cyluse;
if (!gases[i])
continue;
a.mbar = get_plot_pressure(pi, first, i);
b.mbar = get_plot_pressure(pi, last, i);
cyl = get_cylinder(dive, i);
cyluse = gas_volume(cyl, a) - gas_volume(cyl, b);
if (cyluse > 0)
airuse += cyluse;
}
if (!airuse)
return 0;
/* Calculate depthpressure integrated over time */
pressuretime = 0.0;
do {
struct plot_data *entry = pi->entry + first;
struct plot_data *next = entry + 1;
int depth = (entry->depth + next->depth) / 2;
int time = next->sec - entry->sec;
double atm = depth_to_atm(depth, dive);
pressuretime += atm * time;
} while (++first < last);
/* Turn "atmseconds" into "atmminutes" */
pressuretime /= 60;
/* SAC = mliter per minute */
return lrint(airuse / pressuretime);
}
/* Is there pressure data for all gases? */
static bool all_pressures(struct plot_info *pi, int idx, const bool gases[])
{
int i;
for (i = 0; i < pi->nr_cylinders; i++) {
if (gases[i] && !get_plot_pressure(pi, idx, i))
return false;
}
return true;
}
/* Which of the set of gases have pressure data? Returns false if none of them. */
static bool filter_pressures(struct plot_info *pi, int idx, const bool gases_in[], bool gases_out[])
{
int i;
bool has_pressure = false;
for (i = 0; i < pi->nr_cylinders; i++) {
gases_out[i] = gases_in[i] && get_plot_pressure(pi, idx, i);
has_pressure |= gases_out[i];
}
return has_pressure;
}
/*
* Try to do the momentary sac rate for this entry, averaging over one
* minute. This is premature optimization, but instead of allocating
* an array of gases, the caller passes in scratch memory in the last
* argument.
*/
static void fill_sac(struct dive *dive, struct plot_info *pi, int idx, const bool gases_in[], bool gases[])
{
struct plot_data *entry = pi->entry + idx;
int first, last;
int time;
if (entry->sac)
return;
/*
* We may not have pressure data for all the cylinders,
* but we'll calculate the SAC for the ones we do have.
*/
if (!filter_pressures(pi, idx, gases_in, gases))
return;
/*
* Try to go back 30 seconds to get 'first'.
* Stop if the cylinder pressure data set changes.
*/
first = idx;
time = entry->sec - 30;
while (idx > 0) {
struct plot_data *entry = pi->entry + idx;
struct plot_data *prev = pi->entry + idx - 1;
if (prev->depth < SURFACE_THRESHOLD && entry->depth < SURFACE_THRESHOLD)
break;
if (prev->sec < time)
break;
if (!all_pressures(pi, idx - 1, gases))
break;
idx--;
first = idx;
}
/* Now find an entry a minute after the first one */
last = first;
time = pi->entry[first].sec + 60;
while (++idx < pi->nr) {
struct plot_data *entry = pi->entry + last;
struct plot_data *next = pi->entry + last + 1;
if (next->depth < SURFACE_THRESHOLD && entry->depth < SURFACE_THRESHOLD)
break;
if (next->sec > time)
break;
if (!all_pressures(pi, idx + 1, gases))
break;
last = idx;
}
/* Ok, now calculate the SAC between 'first' and 'last' */
entry->sac = sac_between(dive, pi, first, last, gases);
}
/*
* Create a bitmap of cylinders that match our current gasmix
*/
static void matching_gases(struct dive *dive, struct gasmix gasmix, bool gases[])
{
int i;
for (i = 0; i < dive->cylinders.nr; i++)
gases[i] = same_gasmix(gasmix, get_cylinder(dive, i)->gasmix);
}
static void calculate_sac(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
struct gasmix gasmix = gasmix_invalid;
const struct event *ev = NULL;
bool *gases, *gases_scratch;
gases = calloc(pi->nr_cylinders, sizeof(*gases));
/* This might be premature optimization, but let's allocate the gas array for
* the fill_sac function only once an not once per sample */
gases_scratch = malloc(pi->nr_cylinders * sizeof(*gases));
for (int i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
struct gasmix newmix = get_gasmix(dive, dc, entry->sec, &ev, gasmix);
if (!same_gasmix(newmix, gasmix)) {
gasmix = newmix;
matching_gases(dive, newmix, gases);
}
fill_sac(dive, pi, i, gases, gases_scratch);
}
free(gases);
free(gases_scratch);
}
static void populate_secondary_sensor_data(const struct divecomputer *dc, struct plot_info *pi)
{
UNUSED(dc);
UNUSED(pi);
/* We should try to see if it has interesting pressure data here */
}
/*
* This adds a pressure entry to the plot_info based on the gas change
* information and the manually filled in pressures.
*/
static void add_plot_pressure(struct plot_info *pi, int time, int cyl, pressure_t p)
{
for (int i = 0; i < pi->nr; i++) {
if (i == pi->nr - 1 || pi->entry[i].sec >= time) {
set_plot_pressure_data(pi, i, SENSOR_PR, cyl, p.mbar);
return;
}
}
}
static void setup_gas_sensor_pressure(const struct dive *dive, const struct divecomputer *dc, struct plot_info *pi)
{
int prev, i;
const struct event *ev;
if (pi->nr_cylinders == 0)
return;
int *seen = malloc(pi->nr_cylinders * sizeof(*seen));
int *first = malloc(pi->nr_cylinders * sizeof(*first));
int *last = malloc(pi->nr_cylinders * sizeof(*last));
const struct divecomputer *secondary;
for (i = 0; i < pi->nr_cylinders; i++) {
seen[i] = 0;
first[i] = 0;
last[i] = INT_MAX;
}
prev = explicit_first_cylinder(dive, dc);
seen[prev] = 1;
for (ev = get_next_event(dc->events, "gaschange"); ev != NULL; ev = get_next_event(ev->next, "gaschange")) {
int cyl = ev->gas.index;
int sec = ev->time.seconds;
if (cyl < 0)
continue;
last[prev] = sec;
prev = cyl;
last[cyl] = sec;
if (!seen[cyl]) {
// The end time may be updated by a subsequent cylinder change
first[cyl] = sec;
seen[cyl] = 1;
}
}
last[prev] = INT_MAX;
// Fill in "seen[]" array - mark cylinders we're not interested
// in as negative.
for (i = 0; i < pi->nr_cylinders; i++) {
const cylinder_t *cyl = get_cylinder(dive, i);
int start = cyl->start.mbar;
int end = cyl->end.mbar;
/*
* Fundamentally uninteresting?
*
* A dive computer with no pressure data isn't interesting
* to plot pressures for even if we've seen it..
*/
if (!start || !end || start == end) {
seen[i] = -1;
continue;
}
/* If we've seen it, we're definitely interested */
if (seen[i])
continue;
/* If it's only mentioned by other dc's, ignore it */
for_each_dc(dive, secondary) {
if (has_gaschange_event(dive, secondary, i)) {
seen[i] = -1;
break;
}
}
}
for (i = 0; i < pi->nr_cylinders; i++) {
if (seen[i] >= 0) {
const cylinder_t *cyl = get_cylinder(dive, i);
add_plot_pressure(pi, first[i], i, cyl->start);
add_plot_pressure(pi, last[i], i, cyl->end);
}
}
/*
* Here, we should try to walk through all the dive computers,
* and try to see if they have sensor data different from the
* primary dive computer (dc).
*/
secondary = &dive->dc;
do {
if (secondary == dc)
continue;
populate_secondary_sensor_data(dc, pi);
} while ((secondary = secondary->next) != NULL);
free(seen);
free(first);
free(last);
}
#ifndef SUBSURFACE_MOBILE
/* calculate DECO STOP / TTS / NDL */
static void calculate_ndl_tts(struct deco_state *ds, const struct dive *dive, struct plot_data *entry, struct gasmix gasmix, double surface_pressure,enum divemode_t divemode)
{
/* should this be configurable? */
/* ascent speed up to first deco stop */
const int ascent_s_per_step = 1;
const int ascent_s_per_deco_step = 1;
/* how long time steps in deco calculations? */
const int time_stepsize = 60;
const int deco_stepsize = 3000;
/* at what depth is the current deco-step? */
int next_stop = ROUND_UP(deco_allowed_depth(
tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)),
surface_pressure, dive, 1), deco_stepsize);
int ascent_depth = entry->depth;
/* at what time should we give up and say that we got enuff NDL? */
/* If iterating through a dive, entry->tts_calc needs to be reset */
entry->tts_calc = 0;
/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
* a ndl for lower values than 3m it would take forever */
if (next_stop == 0) {
if (entry->depth < 3000) {
entry->ndl = MAX_PROFILE_DECO;
return;
}
/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
while (entry->ndl_calc < MAX_PROFILE_DECO &&
deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)),
surface_pressure, dive, 1) <= 0
) {
entry->ndl_calc += time_stepsize;
add_segment(ds, depth_to_bar(entry->depth, dive),
gasmix, time_stepsize, entry->o2pressure.mbar, divemode, prefs.bottomsac);
}
/* we don't need to calculate anything else */
return;
}
/* We are in deco */
entry->in_deco_calc = true;
/* Add segments for movement to stopdepth */
for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_step * ascent_velocity(ascent_depth, entry->running_sum / entry->sec, 0), entry->tts_calc += ascent_s_per_step) {
add_segment(ds, depth_to_bar(ascent_depth, dive),
gasmix, ascent_s_per_step, entry->o2pressure.mbar, divemode, prefs.decosac);
next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth, dive)),
surface_pressure, dive, 1), deco_stepsize);
}
ascent_depth = next_stop;
/* And how long is the current deco-step? */
entry->stoptime_calc = 0;
entry->stopdepth_calc = next_stop;
next_stop -= deco_stepsize;
/* And how long is the total TTS */
while (next_stop >= 0) {
/* save the time for the first stop to show in the graph */
if (ascent_depth == entry->stopdepth_calc)
entry->stoptime_calc += time_stepsize;
entry->tts_calc += time_stepsize;
if (entry->tts_calc > MAX_PROFILE_DECO)
break;
add_segment(ds, depth_to_bar(ascent_depth, dive),
gasmix, time_stepsize, entry->o2pressure.mbar, divemode, prefs.decosac);
if (deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth,dive)), surface_pressure, dive, 1) <= next_stop) {
/* move to the next stop and add the travel between stops */
for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_deco_step * ascent_velocity(ascent_depth, entry->running_sum / entry->sec, 0), entry->tts_calc += ascent_s_per_deco_step)
add_segment(ds, depth_to_bar(ascent_depth, dive),
gasmix, ascent_s_per_deco_step, entry->o2pressure.mbar, divemode, prefs.decosac);
ascent_depth = next_stop;
next_stop -= deco_stepsize;
}
}
}
/* Let's try to do some deco calculations.
*/
static void calculate_deco_information(struct deco_state *ds, const struct deco_state *planner_ds, const struct dive *dive,
const struct divecomputer *dc, struct plot_info *pi, bool print_mode)
{
int i, count_iteration = 0;
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
bool first_iteration = true;
int prev_deco_time = 10000000, time_deep_ceiling = 0;
if (!planner_ds) {
ds->deco_time = 0;
ds->first_ceiling_pressure.mbar = 0;
} else {
ds->deco_time = planner_ds->deco_time;
ds->first_ceiling_pressure = planner_ds->first_ceiling_pressure;
}
struct deco_state *cache_data_initial = NULL;
lock_planner();
/* For VPM-B outside the planner, cache the initial deco state for CVA iterations */
if (decoMode() == VPMB) {
cache_deco_state(ds, &cache_data_initial);
}
/* For VPM-B outside the planner, iterate until deco time converges (usually one or two iterations after the initial)
* Set maximum number of iterations to 10 just in case */
while ((abs(prev_deco_time - ds->deco_time) >= 30) && (count_iteration < 10)) {
int last_ndl_tts_calc_time = 0, first_ceiling = 0, current_ceiling, last_ceiling = 0, final_tts = 0 , time_clear_ceiling = 0;
if (decoMode() == VPMB)
ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
struct gasmix gasmix = gasmix_invalid;
const struct event *ev = NULL, *evd = NULL;
enum divemode_t current_divemode = UNDEF_COMP_TYPE;
for (i = 1; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
int j, t0 = (entry - 1)->sec, t1 = entry->sec;
int time_stepsize = 20;
current_divemode = get_current_divemode(dc, entry->sec, &evd, ¤t_divemode);
gasmix = get_gasmix(dive, dc, t1, &ev, gasmix);
entry->ambpressure = depth_to_bar(entry->depth, dive);
entry->gfline = get_gf(ds, entry->ambpressure, dive) * (100.0 - AMB_PERCENTAGE) + AMB_PERCENTAGE;
if (t0 > t1) {
SSRF_INFO("non-monotonous dive stamps %d %d\n", t0, t1);
int xchg = t1;
t1 = t0;
t0 = xchg;
}
if (t0 != t1 && t1 - t0 < time_stepsize)
time_stepsize = t1 - t0;
for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) {
int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
add_segment(ds, depth_to_bar(depth, dive),
gasmix, time_stepsize, entry->o2pressure.mbar, current_divemode, entry->sac);
entry->icd_warning = ds->icd_warning;
if ((t1 - j < time_stepsize) && (j < t1))
time_stepsize = t1 - j;
}
if (t0 == t1) {
entry->ceiling = (entry - 1)->ceiling;
} else {
/* Keep updating the VPM-B gradients until the start of the ascent phase of the dive. */
if (decoMode() == VPMB && last_ceiling >= first_ceiling && first_iteration == true) {
nuclear_regeneration(ds, t1);
vpmb_start_gradient(ds);
/* For CVA iterations, calculate next gradient */
if (!first_iteration || !planner_ds)
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
}
entry->ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, !prefs.calcceiling3m);
if (prefs.calcceiling3m)
current_ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, true);
else
current_ceiling = entry->ceiling;
last_ceiling = current_ceiling;
/* If using VPM-B, take first_ceiling_pressure as the deepest ceiling */
if (decoMode() == VPMB) {
if (current_ceiling >= first_ceiling ||
(time_deep_ceiling == t0 && entry->depth == (entry - 1)->depth)) {
time_deep_ceiling = t1;
first_ceiling = current_ceiling;
ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
if (first_iteration) {
nuclear_regeneration(ds, t1);
vpmb_start_gradient(ds);
/* For CVA calculations, deco time = dive time remaining is a good guess,
but we want to over-estimate deco_time for the first iteration so it
converges correctly, so add 30min*/
if (!planner_ds)
ds->deco_time = pi->maxtime - t1 + 1800;
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
}
}
// Use the point where the ceiling clears as the end of deco phase for CVA calculations
if (current_ceiling > 0)
time_clear_ceiling = 0;
else if (time_clear_ceiling == 0 && t1 > time_deep_ceiling)
time_clear_ceiling = t1;
}
}
entry->surface_gf = 0.0;
entry->current_gf = 0.0;
for (j = 0; j < 16; j++) {
double m_value = ds->buehlmann_inertgas_a[j] + entry->ambpressure / ds->buehlmann_inertgas_b[j];
double surface_m_value = ds->buehlmann_inertgas_a[j] + surface_pressure / ds->buehlmann_inertgas_b[j];
entry->ceilings[j] = deco_allowed_depth(ds->tolerated_by_tissue[j], surface_pressure, dive, 1);
double current_gf = (ds->tissue_inertgas_saturation[j] - entry->ambpressure) / (m_value - entry->ambpressure);
entry->percentages[j] = ds->tissue_inertgas_saturation[j] < entry->ambpressure ?
lrint(ds->tissue_inertgas_saturation[j] / entry->ambpressure * AMB_PERCENTAGE) :
lrint(AMB_PERCENTAGE + current_gf * (100.0 - AMB_PERCENTAGE));
if (current_gf > entry->current_gf)
entry->current_gf = current_gf;
double surface_gf = 100.0 * (ds->tissue_inertgas_saturation[j] - surface_pressure) / (surface_m_value - surface_pressure);
if (surface_gf > entry->surface_gf)
entry->surface_gf = surface_gf;
}
/* should we do more calculations?
* We don't for print-mode because this info doesn't show up there
* If the ceiling hasn't cleared by the last data point, we need tts for VPM-B CVA calculation
* It is not necessary to do these calculation on the first VPMB iteration, except for the last data point */
if ((prefs.calcndltts && !print_mode && (decoMode() != VPMB || !planner_ds || !first_iteration)) ||
(decoMode() == VPMB && !planner_ds && i == pi->nr - 1)) {
/* only calculate ndl/tts on every 30 seconds */
if ((entry->sec - last_ndl_tts_calc_time) < 30 && i != pi->nr - 1) {
struct plot_data *prev_entry = (entry - 1);
entry->stoptime_calc = prev_entry->stoptime_calc;
entry->stopdepth_calc = prev_entry->stopdepth_calc;
entry->tts_calc = prev_entry->tts_calc;
entry->ndl_calc = prev_entry->ndl_calc;
continue;
}
last_ndl_tts_calc_time = entry->sec;
/* We are going to mess up deco state, so store it for later restore */
struct deco_state *cache_data = NULL;
cache_deco_state(ds, &cache_data);
calculate_ndl_tts(ds, dive, entry, gasmix, surface_pressure, current_divemode);
if (decoMode() == VPMB && !planner_ds && i == pi->nr - 1)
final_tts = entry->tts_calc;
/* Restore "real" deco state for next real time step */
restore_deco_state(cache_data, ds, decoMode() == VPMB);
free(cache_data);
}
}
if (decoMode() == VPMB && !planner_ds) {
int this_deco_time;
prev_deco_time = ds->deco_time;
// Do we need to update deco_time?
if (final_tts > 0)
ds->deco_time = last_ndl_tts_calc_time + final_tts - time_deep_ceiling;
else if (time_clear_ceiling > 0)
/* Consistent with planner, deco_time ends after ascending (20s @9m/min from 3m)
* at end of whole minute after clearing ceiling. The deepest ceiling when planning a dive
* comes typically 10-60s after the end of the bottom time, so add 20s to the calculated
* deco time. */
ds->deco_time = ROUND_UP(time_clear_ceiling - time_deep_ceiling + 20, 60) + 20;
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0);
final_tts = 0;
last_ndl_tts_calc_time = 0;
first_ceiling = 0;
first_iteration = false;
count_iteration ++;
this_deco_time = ds->deco_time;
restore_deco_state(cache_data_initial, ds, true);
ds->deco_time = this_deco_time;
} else {
// With Buhlmann iterating isn't needed. This makes the while condition false.
prev_deco_time = ds->deco_time = 0;
}
}
free(cache_data_initial);
#if DECO_CALC_DEBUG & 1
dump_tissues(ds);
#endif
unlock_planner();
}
#endif
/* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on
* the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure,
* calculates the po2 value from the sensor data. Several rules are applied, depending on how many o2 sensors
* there are and the differences among the readings from these sensors.
*/
static int calculate_ccr_po2(struct plot_data *entry, struct divecomputer *dc)
{
int sump = 0, minp = 999999, maxp = -999999;
int diff_limit = 100; // The limit beyond which O2 sensor differences are considered significant (default = 100 mbar)
int i, np = 0;
for (i = 0; i < dc->no_o2sensors; i++)
if (entry->o2sensor[i].mbar) { // Valid reading
++np;
sump += entry->o2sensor[i].mbar;
minp = MIN(minp, entry->o2sensor[i].mbar);
maxp = MAX(maxp, entry->o2sensor[i].mbar);
}
switch (np) {
case 0: // Uhoh
return entry->o2pressure.mbar;
case 1: // Return what we have
return sump;
case 2: // Take the average
return sump / 2;
case 3: // Voting logic
if (2 * maxp - sump + minp < diff_limit) { // Upper difference acceptable...
if (2 * minp - sump + maxp) // ...and lower difference acceptable
return sump / 3;
else
return (sump - minp) / 2;
} else {
if (2 * minp - sump + maxp) // ...but lower difference acceptable
return (sump - maxp) / 2;
else
return sump / 3;
}
default: // This should not happen
assert(np <= 3);
return 0;
}
}
static void calculate_gas_information_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
{
int i;
double amb_pressure;
struct gasmix gasmix = gasmix_invalid;
const struct event *evg = NULL, *evd = NULL;
enum divemode_t current_divemode = UNDEF_COMP_TYPE;
for (i = 1; i < pi->nr; i++) {
int fn2, fhe;
struct plot_data *entry = pi->entry + i;
gasmix = get_gasmix(dive, dc, entry->sec, &evg, gasmix);
amb_pressure = depth_to_bar(entry->depth, dive);
current_divemode = get_current_divemode(dc, entry->sec, &evd, ¤t_divemode);
fill_pressures(&entry->pressures, amb_pressure, gasmix, (current_divemode == OC) ? 0.0 : entry->o2pressure.mbar / 1000.0, current_divemode);
fn2 = (int)(1000.0 * entry->pressures.n2 / amb_pressure);
fhe = (int)(1000.0 * entry->pressures.he / amb_pressure);
if (dc->divemode == PSCR) { // OC pO2 is calulated for PSCR with or without external PO2 monitoring.
struct gasmix gasmix2 = get_gasmix(dive, dc, entry->sec, &evg, gasmix);
entry->scr_OC_pO2.mbar = (int) depth_to_mbar(entry->depth, dive) * get_o2(gasmix2) / 1000;
}
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
* so there is no difference in calculating between OC and CC
* END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives)
* EAD just uses N₂ ("Air" for nitrox dives) */
pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) };
entry->mod = (double)gas_mod(gasmix, modpO2, dive, 1).mm;
entry->end = (entry->depth + 10000) * (1000 - fhe) / 1000.0 - 10000;
entry->ead = (entry->depth + 10000) * fn2 / (double)N2_IN_AIR - 10000;
entry->eadd = (entry->depth + 10000) *
(entry->pressures.o2 / amb_pressure * O2_DENSITY +
entry->pressures.n2 / amb_pressure * N2_DENSITY +
entry->pressures.he / amb_pressure * HE_DENSITY) /
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 - 10000;
entry->density = gas_density(gasmix, depth_to_mbar(entry->depth, dive));
if (entry->mod < 0)
entry->mod = 0;
if (entry->ead < 0)
entry->ead = 0;
if (entry->end < 0)
entry->end = 0;
if (entry->eadd < 0)
entry->eadd = 0;
}
}
void fill_o2_values(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
/* In the samples from each dive computer, there may be uninitialised oxygen
* sensor or setpoint values, e.g. when events were inserted into the dive log
* or if the dive computer does not report o2 values with every sample. But
* for drawing the profile a complete series of valid o2 pressure values is
* required. This function takes the oxygen sensor data and setpoint values
* from the structures of plotinfo and replaces the zero values with their
* last known values so that the oxygen sensor data are complete and ready
* for plotting. This function called by: create_plot_info_new() */
{
int i, j;
pressure_t last_sensor[3], o2pressure;
pressure_t amb_pressure;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) {
if (i == 0) { // For 1st iteration, initialise the last_sensor values
for (j = 0; j < dc->no_o2sensors; j++)
last_sensor[j].mbar = pi->entry->o2sensor[j].mbar;
} else { // Now re-insert the missing oxygen pressure values
for (j = 0; j < dc->no_o2sensors; j++)
if (entry->o2sensor[j].mbar)
last_sensor[j].mbar = entry->o2sensor[j].mbar;
else
entry->o2sensor[j].mbar = last_sensor[j].mbar;
} // having initialised the empty o2 sensor values for this point on the profile,
amb_pressure.mbar = depth_to_mbar(entry->depth, dive);
o2pressure.mbar = calculate_ccr_po2(entry, dc); // ...calculate the po2 based on the sensor data
entry->o2pressure.mbar = MIN(o2pressure.mbar, amb_pressure.mbar);
} else {
entry->o2pressure.mbar = 0; // initialise po2 to zero for dctype = OC
}
}
}
#ifdef DEBUG_GAS
/* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat:
* Called in create_plot_info_new()
*/
static void debug_print_profiledata(struct plot_info *pi)
{
FILE *f1;
struct plot_data *entry;
int i;
if (!(f1 = fopen("debug_print_profiledata.dat", "w"))) {
printf("File open error for: debug_print_profiledata.dat\n");
} else {
fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n");
for (i = 0; i < pi->nr; i++) {
entry = pi->entry + i;
fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %d %d %d %d PO2= %f\n", i, get_plot_sensor_pressure(pi, i),
get_plot_interpolated_pressure(pi, i), O2CYLINDER_PRESSURE(entry), INTERPOLATED_O2CYLINDER_PRESSURE(entry),
entry->o2pressure.mbar, entry->o2sensor[0].mbar, entry->o2sensor[1].mbar, entry->o2sensor[2].mbar, entry->pressures.o2);
}
fclose(f1);
}
}
#endif
/*
* Initialize a plot_info structure to all-zeroes
*/
void init_plot_info(struct plot_info *pi)
{
memset(pi, 0, sizeof(*pi));
}
/*
* Create a plot-info with smoothing and ranged min/max
*
* This also makes sure that we have extra empty events on both
* sides, so that you can do end-points without having to worry
* about it.
*
* The old data will be freed. Before the first call, the plot
* info must be initialized with init_plot_info().
*/
void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool fast, const struct deco_state *planner_ds)
{
int o2, he, o2max;
#ifndef SUBSURFACE_MOBILE
struct deco_state plot_deco_state;
init_decompression(&plot_deco_state, dive);
#else
UNUSED(planner_ds);
#endif
free_plot_info_data(pi);
calculate_max_limits_new(dive, dc, pi, planner_ds != NULL);
get_dive_gas(dive, &o2, &he, &o2max);
if (dc->divemode == FREEDIVE){
pi->dive_type = FREEDIVE;
} else if (he > 0) {
pi->dive_type = TRIMIX;
} else {
if (o2)
pi->dive_type = NITROX;
else
pi->dive_type = AIR;
}
populate_plot_entries(dive, dc, pi);
check_setpoint_events(dive, dc, pi); /* Populate setpoints */
setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
if (!fast) {
for (int cyl = 0; cyl < pi->nr_cylinders; cyl++)
populate_pressure_information(dive, dc, pi, cyl);
}
fill_o2_values(dive, dc, pi); /* .. and insert the O2 sensor data having 0 values. */
calculate_sac(dive, dc, pi); /* Calculate sac */
#ifndef SUBSURFACE_MOBILE
calculate_deco_information(&plot_deco_state, planner_ds, dive, dc, pi, false); /* and ceiling information, using gradient factor values in Preferences) */
#endif
calculate_gas_information_new(dive, dc, pi); /* Calculate gas partial pressures */
#ifdef DEBUG_GAS
debug_print_profiledata(pi);
#endif
pi->meandepth = dive->dc.meandepth.mm;
analyze_plot_info(pi);
}
struct divecomputer *select_dc(struct dive *dive)
{
unsigned int max = number_of_computers(dive);
unsigned int i = dc_number;
/* Reset 'dc_number' if we've switched dives and it is now out of range */
if (i >= max)
dc_number = i = 0;
return get_dive_dc(dive, i);
}
static void plot_string(const struct plot_info *pi, int idx, struct membuffer *b)
{
int pressurevalue, mod, ead, end, eadd;
const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
double depthvalue, tempvalue, speedvalue, sacvalue;
int decimals, cyl;
const char *unit;
const struct plot_data *entry = pi->entry + idx;
depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
put_format_loc(b, translate("gettextFromC", "@: %d:%02d\nD: %.1f%s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
for (cyl = 0; cyl < pi->nr_cylinders; cyl++) {
int mbar = get_plot_pressure(pi, idx, cyl);
if (!mbar)
continue;
struct gasmix mix = get_cylinder(&displayed_dive, cyl)->gasmix;
pressurevalue = get_pressure_units(mbar, &pressure_unit);
put_format_loc(b, translate("gettextFromC", "P: %d%s (%s)\n"), pressurevalue, pressure_unit, gasname(mix));
}
if (entry->temperature) {
tempvalue = get_temp_units(entry->temperature, &temp_unit);
put_format_loc(b, translate("gettextFromC", "T: %.1f%s\n"), tempvalue, temp_unit);
}
speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
/* Ascending speeds are positive, descending are negative */
if (entry->speed > 0)
speedvalue *= -1;
put_format_loc(b, translate("gettextFromC", "V: %.1f%s\n"), speedvalue, vertical_speed_unit);
sacvalue = get_volume_units(entry->sac, &decimals, &unit);
if (entry->sac && prefs.show_sac)
put_format_loc(b, translate("gettextFromC", "SAC: %.*f%s/min\n"), decimals, sacvalue, unit);
if (entry->cns)
put_format_loc(b, translate("gettextFromC", "CNS: %u%%\n"), entry->cns);
if (prefs.pp_graphs.po2 && entry->pressures.o2 > 0) {
put_format_loc(b, translate("gettextFromC", "pO₂: %.2fbar\n"), entry->pressures.o2);
if (entry->scr_OC_pO2.mbar)
put_format_loc(b, translate("gettextFromC", "SCR ΔpO₂: %.2fbar\n"), entry->scr_OC_pO2.mbar/1000.0 - entry->pressures.o2);
}
if (prefs.pp_graphs.pn2 && entry->pressures.n2 > 0)
put_format_loc(b, translate("gettextFromC", "pN₂: %.2fbar\n"), entry->pressures.n2);
if (prefs.pp_graphs.phe && entry->pressures.he > 0)
put_format_loc(b, translate("gettextFromC", "pHe: %.2fbar\n"), entry->pressures.he);
if (prefs.mod && entry->mod > 0) {
mod = lrint(get_depth_units(lrint(entry->mod), NULL, &depth_unit));
put_format_loc(b, translate("gettextFromC", "MOD: %d%s\n"), mod, depth_unit);
}
eadd = lrint(get_depth_units(lrint(entry->eadd), NULL, &depth_unit));
if (prefs.ead) {
switch (pi->dive_type) {
case NITROX:
if (entry->ead > 0) {
ead = lrint(get_depth_units(lrint(entry->ead), NULL, &depth_unit));
put_format_loc(b, translate("gettextFromC", "EAD: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), ead, depth_unit, eadd, depth_unit, entry->density);
break;
}
case TRIMIX:
if (entry->end > 0) {
end = lrint(get_depth_units(lrint(entry->end), NULL, &depth_unit));
put_format_loc(b, translate("gettextFromC", "END: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), end, depth_unit, eadd, depth_unit, entry->density);
break;
}
case AIR:
if (entry->density > 0) {
put_format_loc(b, translate("gettextFromC", "Density: %.1fg/ℓ\n"), entry->density);
}
case FREEDIVING:
/* nothing */
break;
}
}
if (entry->stopdepth) {
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
if (entry->ndl > 0) {
/* this is a safety stop as we still have ndl */
if (entry->stoptime)
put_format_loc(b, translate("gettextFromC", "Safety stop: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
depthvalue, depth_unit);
else
put_format_loc(b, translate("gettextFromC", "Safety stop: unknown time @ %.0f%s\n"),
depthvalue, depth_unit);
} else {
/* actual deco stop */
if (entry->stoptime)
put_format_loc(b, translate("gettextFromC", "Deco: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
depthvalue, depth_unit);
else
put_format_loc(b, translate("gettextFromC", "Deco: unknown time @ %.0f%s\n"),
depthvalue, depth_unit);
}
} else if (entry->in_deco) {
put_string(b, translate("gettextFromC", "In deco\n"));
} else if (entry->ndl >= 0) {
put_format_loc(b, translate("gettextFromC", "NDL: %umin\n"), DIV_UP(entry->ndl, 60));
}
if (entry->tts)
put_format_loc(b, translate("gettextFromC", "TTS: %umin\n"), DIV_UP(entry->tts, 60));
if (entry->stopdepth_calc && entry->stoptime_calc) {
depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
put_format_loc(b, translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)\n"), DIV_UP(entry->stoptime_calc, 60),
depthvalue, depth_unit);
} else if (entry->in_deco_calc) {
/* This means that we have no NDL left,
* and we have no deco stop,
* so if we just accend to the surface slowly
* (ascent_mm_per_step / ascent_s_per_step)
* everything will be ok. */
put_string(b, translate("gettextFromC", "In deco (calc)\n"));
} else if (prefs.calcndltts && entry->ndl_calc != 0) {
if(entry->ndl_calc < MAX_PROFILE_DECO)
put_format_loc(b, translate("gettextFromC", "NDL: %umin (calc)\n"), DIV_UP(entry->ndl_calc, 60));
else
put_string(b, translate("gettextFromC", "NDL: >2h (calc)\n"));
}
if (entry->tts_calc) {
if (entry->tts_calc < MAX_PROFILE_DECO)
put_format_loc(b, translate("gettextFromC", "TTS: %umin (calc)\n"), DIV_UP(entry->tts_calc, 60));
else
put_string(b, translate("gettextFromC", "TTS: >2h (calc)\n"));
}
if (entry->rbt)
put_format_loc(b, translate("gettextFromC", "RBT: %umin\n"), DIV_UP(entry->rbt, 60));
if (prefs.decoinfo) {
if (entry->current_gf > 0.0)
put_format(b, translate("gettextFromC", "GF %d%%\n"), (int)(100.0 * entry->current_gf));
if (entry->surface_gf > 0.0)
put_format(b, translate("gettextFromC", "Surface GF %.0f%%\n"), entry->surface_gf);
if (entry->ceiling) {
depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
put_format_loc(b, translate("gettextFromC", "Calculated ceiling %.0f%s\n"), depthvalue, depth_unit);
if (prefs.calcalltissues) {
int k;
for (k = 0; k < 16; k++) {
if (entry->ceilings[k]) {
depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
put_format_loc(b, translate("gettextFromC", "Tissue %.0fmin: %.1f%s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
}
}
}
}
}
if (entry->icd_warning)
put_format(b, "%s", translate("gettextFromC", "ICD in leading tissue\n"));
if (entry->heartbeat && prefs.hrgraph)
put_format_loc(b, translate("gettextFromC", "heart rate: %d\n"), entry->heartbeat);
if (entry->bearing >= 0)
put_format_loc(b, translate("gettextFromC", "bearing: %d\n"), entry->bearing);
if (entry->running_sum) {
depthvalue = get_depth_units(entry->running_sum / entry->sec, NULL, &depth_unit);
put_format_loc(b, translate("gettextFromC", "mean depth to here %.1f%s\n"), depthvalue, depth_unit);
}
strip_mb(b);
}
int get_plot_details_new(const struct plot_info *pi, int time, struct membuffer *mb)
{
int i;
/* The two first and the two last plot entries do not have useful data */
if (pi->nr <= 4)
return 0;
for (i = 2; i < pi->nr - 2; i++) {
if (pi->entry[i].sec >= time)
break;
}
plot_string(pi, i, mb);
return i;
}
/* Compare two plot_data entries and writes the results into a string */
void compare_samples(struct plot_info *pi, int idx1, int idx2, char *buf, int bufsize, bool sum)
{
struct plot_data *start, *stop, *data;
const char *depth_unit, *pressure_unit, *vertical_speed_unit;
char *buf2 = malloc(bufsize);
int avg_speed, max_asc_speed, max_desc_speed;
int delta_depth, avg_depth, max_depth, min_depth;
int bar_used, last_pressure, next_pressure, pressurevalue;
int last_sec, delta_time;
bool crossed_tankchange = false;
double depthvalue, speedvalue;
if (bufsize > 0)
buf[0] = '\0';
if (idx1 < 0 || idx2 < 0) {
free(buf2);
return;
}
if (pi->entry[idx1].sec > pi->entry[idx2].sec) {
int tmp = idx2;
idx2 = idx1;
idx1 = tmp;
} else if (pi->entry[idx1].sec == pi->entry[idx2].sec) {
free(buf2);
return;
}
start = pi->entry + idx1;
stop = pi->entry + idx2;
avg_speed = 0;
max_asc_speed = 0;
max_desc_speed = 0;
delta_depth = abs(start->depth - stop->depth);
delta_time = abs(start->sec - stop->sec);
avg_depth = 0;
max_depth = 0;
min_depth = INT_MAX;
bar_used = 0;
last_sec = start->sec;
last_pressure = get_plot_pressure(pi, idx1, 0);
data = start;
for (int i = idx1; i < idx2; ++i) {
data = pi->entry + i;
if (sum)
avg_speed += abs(data->speed) * (data->sec - last_sec);
else
avg_speed += data->speed * (data->sec - last_sec);
avg_depth += data->depth * (data->sec - last_sec);
if (data->speed > max_desc_speed)
max_desc_speed = data->speed;
if (data->speed < max_asc_speed)
max_asc_speed = data->speed;
if (data->depth < min_depth)
min_depth = data->depth;
if (data->depth > max_depth)
max_depth = data->depth;
/* Try to detect gas changes - this hack might work for some side mount scenarios? */
next_pressure = get_plot_pressure(pi, i, 0);
if (next_pressure < last_pressure + 2000)
bar_used += last_pressure - next_pressure;
last_sec = data->sec;
last_pressure = next_pressure;
}
avg_depth /= stop->sec - start->sec;
avg_speed /= stop->sec - start->sec;
snprintf_loc(buf, bufsize, translate("gettextFromC", "ΔT:%d:%02dmin"), delta_time / 60, delta_time % 60);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ΔD:%.1f%s"), buf2, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↓D:%.1f%s"), buf2, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↑D:%.1f%s"), buf2, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s øD:%.1f%s\n"), buf2, depthvalue, depth_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↓V:%.2f%s"), buf2, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↑V:%.2f%s"), buf2, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s øV:%.2f%s"), buf2, speedvalue, vertical_speed_unit);
memcpy(buf2, buf, bufsize);
/* Only print if gas has been used */
if (bar_used) {
pressurevalue = get_pressure_units(bar_used, &pressure_unit);
memcpy(buf2, buf, bufsize);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ΔP:%d%s"), buf2, pressurevalue, pressure_unit);
cylinder_t *cyl = get_cylinder(&displayed_dive, 0);
/* if we didn't cross a tank change and know the cylidner size as well, show SAC rate */
if (!crossed_tankchange && cyl->type.size.mliter) {
double volume_value;
int volume_precision;
const char *volume_unit;
int first = idx1;
int last = idx2;
while (first < last && get_plot_pressure(pi, first, 0) == 0)
first++;
while (last > first && get_plot_pressure(pi, last, 0) == 0)
last--;
pressure_t first_pressure = { get_plot_pressure(pi, first, 0) };
pressure_t stop_pressure = { get_plot_pressure(pi, last, 0) };
int volume_used = gas_volume(cyl, first_pressure) - gas_volume(cyl, stop_pressure);
/* Mean pressure in ATM */
double atm = depth_to_atm(avg_depth, &displayed_dive);
/* milliliters per minute */
int sac = lrint(volume_used / atm * 60 / delta_time);
memcpy(buf2, buf, bufsize);
volume_value = get_volume_units(sac, &volume_precision, &volume_unit);
snprintf_loc(buf, bufsize, translate("gettextFromC", "%s SAC:%.*f%s/min"), buf2, volume_precision, volume_value, volume_unit);
}
}
free(buf2);
}
|