summaryrefslogtreecommitdiffstats
path: root/desktop-widgets/command_base.h
blob: 26744dc87a07c4fedea437b1c9d00472a3c0191f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// SPDX-License-Identifier: GPL-2.0
// Note: this header file is used by the undo-machinery and should not be included elsewhere.

#ifndef COMMAND_BASE_H
#define COMMAND_BASE_H

#include "core/divesite.h"

#include <QUndoCommand>
#include <QCoreApplication>	// For Q_DECLARE_TR_FUNCTIONS
#include <memory>

// The classes derived from Command::Base represent units-of-work, which can be exectuted / undone
// repeatedly. The command objects are collected in a linear list implemented in the QUndoStack class.
// They contain the information that is necessary to either perform or undo the unit-of-work.
// The usage is:
//	constructor: generate information that is needed for executing the unit-of-work
//	redo(): performs the unit-of-work and generates the information that is needed for undo()
//	undo(): undos the unit-of-work and regenerates the initial information needed in redo()
// The needed information is mostly kept in pointers to dives and/or trips, which have to be added
// or removed.
// For this to work it is crucial that
// 1) Pointers to dives and trips remain valid as long as referencing command-objects exist.
// 2) The dive-table is not resorted, because dives are inserted at given indices.
//
// Thus, if a command deletes a dive or a trip, the actual object must not be deleted. Instead,
// the command object removes pointers to the dive/trip object from the backend and takes ownership.
// To reverse such a deletion, the object is re-injected into the backend and ownership is given up.
// Once ownership of a dive is taken, any reference to it was removed from the backend. Thus,
// subsequent redo()/undo() actions cannot access this object and integrity of the data is ensured.
//
// As an example, consider the following course of events: Dive 1 is renumbered and deleted, dive 2
// is added and renumbered. The undo list looks like this (---> non-owning, ***> owning pointers,
// ===> next item in list)
//
//                                        Undo-List
// +-----------------+     +---------------+     +------------+     +-----------------+
// | Renumber dive 1 |====>| Delete dive 1 |====>| Add dive 2 |====>| Renumber dive 2 |
// +------------------     +---------------+     +------------+     +-----------------+
//          |                      *                   |                     |
//          |      +--------+      *                   |    +--------+       |
//          +----->| Dive 1 |<******                   +--->| Dive 2 |<------+
//                 +--------+                               +--------+
//                                                              ^
//                                    +---------+               *
//                                    | Backend |****************
//                                    +---------+
// Two points of note:
// 1) Every dive is owned by either the backend or exactly one command object.
// 2) All references to dive 1 are *before* the owner "delete dive 2", thus the pointer is always valid.
// 3) References by the backend are *always* owning.
//
// The user undos the last two commands. The situation now looks like this:
//
//
//                  Undo-List                                Redo-List
// +-----------------+     +---------------+     +------------+     +-----------------+
// | Renumber dive 1 |====>| Delete dive 1 |     | Add dive 2 |<====| Renumber dive 2 |
// +------------------     +---------------+     +------------+     +-----------------+
//          |                      *                   *                     |
//          |      +--------+      *                   *    +--------+       |
//          +----->| Dive 1 |<******                   ****>| Dive 2 |<------+
//                 +--------+                               +--------+
//
//                                    +---------+
//                                    | Backend |
//                                    +---------+
// Again:
// 1) Every dive is owned by either the backend (here none) or exactly one command object.
// 2) All references to dive 1 are *before* the owner "delete dive 1", thus the pointer is always valid.
// 3) All references to dive 2 are *after* the owner "add dive 2", thus the pointer is always valid.
//
// The user undos one more command:
//
//       Undo-List                                 Redo-List
// +-----------------+     +---------------+     +------------+     +-----------------+
// | Renumber dive 1 |     | Delete dive 1 |<====| Add dive 2 |<====| Renumber dive 2 |
// +------------------     +---------------+     +------------+     +-----------------+
//          |                      |                   *                     |
//          |      +--------+      |                   *    +--------+       |
//          +----->| Dive 1 |<-----+                   ****>| Dive 2 |<------+
//                 +--------+                               +--------+
//                     ^
//                     *              +---------+
//                     ***************| Backend |
//                                    +---------+
// Same points as above.
// The user now adds a dive 3. The redo list will be deleted:
//
//                                      Undo-List
// +-----------------+                                              +------------+
// | Renumber dive 1 |=============================================>| Add dive 3 |
// +------------------                                              +------------+
//          |                                                             |
//          |      +--------+                               +--------+    |
//          +----->| Dive 1 |                               | Dive 3 |<---+
//                 +--------+                               +--------+
//                     ^                                        ^
//                     *              +---------+               *
//                     ***************| Backend |****************
//                                    +---------+
// Note:
// 1) Dive 2 was deleted with the "add dive 2" command, because that was the owner.
// 2) Dive 1 was not deleted, because it is owned by the backend.
//
// To take ownership of dives/trips, the OnwingDivePtr and OwningTripPtr types are used. These
// are simply derived from std::unique_ptr and therefore use well-established semantics.
// Expressed in C-terms: std::unique_ptr<T> is exactly the same as T* with the following
// twists:
// 1) default-initialized to NULL.
// 2) if it goes out of scope (local scope or containing object destroyed), it does:
//	if (ptr) free_function(ptr);
//    whereby free_function can be configured (defaults to delete ptr).
// 3) assignment between two std::unique_ptr<T> compiles only if the source is reset (to NULL).
//    (hence the name - there's a *unique* owner).
// While this sounds trivial, experience shows that this distinctly simplifies memory-management
// (it's not necessary to manually delete all vector items in the destructur, etc).
// Note that Qt's own implementation (QScoperPointer) is not up to the job, because it doesn't implement
// move-semantics and Qt's containers are incompatible, owing to COW semantics.
//
// Usage:
//	OwningDivePtr dPtr;			// Initialize to null-state: not owning any dive.
//	OwningDivePtr dPtr(dive);		// Take ownership of dive (which is of type struct dive *).
//						// If dPtr goes out of scope, the dive will be freed with free_dive().
//	struct dive *d = dPtr.release();	// Give up ownership of dive. dPtr is reset to null.
//	struct dive *d = d.get();		// Get pointer dive, but don't release ownership.
//	dPtr.reset(dive2);			// Delete currently owned dive with free_dive() and get ownership of dive2.
//	dPtr.reset();				// Delete currently owned dive and reset to null.
//	dPtr2 = dPtr1;				// Fails to compile.
//	dPtr2 = std::move(dPtr1);		// dPtr2 takes ownership, dPtr1 is reset to null.
//	OwningDivePtr fun();
//	dPtr1 = fun();				// Compiles. Simply put: the compiler knows that the result of fun() will
//						// be trashed and therefore can be moved-from.
//	std::vector<OwningDivePtr> v:		// Define an empty vector of owning pointers.
//	v.emplace_back(dive);			// Take ownership of dive and add at end of vector
//						// If the vector goes out of scope, all dives will be freed with free_dive().
//	v.clear(v);				// Reset the vector to zero length. If the elements weren't release()d,
//						// the pointed-to dives are freed with free_dive()

// We put everything in a namespace, so that we can shorten names without polluting the global namespace
namespace Command {

// Classes used to automatically call free_dive()/free_trip for owning pointers that go out of scope.
struct DiveDeleter {
	void operator()(dive *d) { free_dive(d); }
};
struct TripDeleter {
	void operator()(dive_trip *t) { free_trip(t); }
};
struct DiveSiteDeleter {
	void operator()(dive_site *ds) { free_dive_site(ds); }
};

// Owning pointers to dive and dive_trip objects.
typedef std::unique_ptr<dive, DiveDeleter> OwningDivePtr;
typedef std::unique_ptr<dive_trip, TripDeleter> OwningTripPtr;
typedef std::unique_ptr<dive_site, DiveSiteDeleter> OwningDiveSitePtr;

// This is the base class of all commands.
// It defines the Qt-translation functions
class Base : public QUndoCommand {
	Q_DECLARE_TR_FUNCTIONS(Command)
public:
	// Check whether work is to be done.
	// TODO: replace by setObsolete (>Qt5.9)
	virtual bool workToBeDone() = 0;
};

// Put a command on the undoStack, but test whether there is something to be done
// beforehand by calling the workToBeDone() function. If nothing is to be done,
// the command will be deleted.
void execute(Base *cmd);

} // namespace Command

#endif // COMMAND_BASE_H