1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
#include <string.h>
#include "dive.h"
#include "divelist.h"
#include "file.h"
// Convert bytes into an INT
#define array_uint16_le(p) ((unsigned int) (p)[0] \
+ ((p)[1]<<8) )
#define array_uint32_le(p) ((unsigned int) (p)[0] \
+ ((p)[1]<<8) + ((p)[2]<<16) \
+ ((p)[3]<<24))
#if __WIN32__
static char *strndup (const char *s, size_t n)
{
char *cpy;
size_t len = strlen(s);
if (n < len)
len = n;
if ((cpy = malloc(len + 1)) != NULL) {
cpy[len] = '\0';
memcpy(cpy, s, len);
}
return cpy;
}
#endif
static void parse_dives (int log_version, const unsigned char *buf, unsigned int buf_size)
{
unsigned int ptr = 0;
unsigned char model;
struct dive *dive;
struct divecomputer *dc;
struct sample *sample;
while (ptr < buf_size) {
dive = alloc_dive();
dc = &dive->dc;
// Model 0=Xen, 1,2=Xeo, 4=Lynx, other=Liquivision
model = *(buf + ptr);
switch (model) {
case 0:
dc->model = "Xen";
break;
case 1:
case 2:
dc->model = "Xeo";
break;
case 4:
dc->model = "Lynx";
break;
default:
dc->model = "LiquiVision";
break;
}
ptr++;
// Dive location, assemble Location and Place
unsigned int len, place_len;
len = array_uint32_le(buf + ptr);
ptr += 4;
place_len = array_uint32_le(buf + ptr + len);
if (len && place_len) {
dive->location = malloc(len + place_len + 4);
memset(dive->location, 0, len + place_len + 4);
memcpy(dive->location, buf + ptr, len);
memcpy(dive->location + len, ", ", 2);
memcpy(dive->location + len + 2, buf + ptr + len + 4, place_len);
} else if (len) {
dive->location = strndup(buf + ptr, len);
} else if (place_len) {
dive->location = strndup(buf + ptr + len + 4, place_len);
}
ptr += len + 4 + place_len;
// Dive comment
len = array_uint32_le(buf + ptr);
ptr += 4;
// Blank notes are better than the default text
if (len && strncmp(buf + ptr, "Comment ...", 11)) {
dive->notes = strndup(buf + ptr, len);
}
ptr += len;
dive->id = array_uint32_le(buf + ptr);
ptr += 4;
dive->number = array_uint16_le(buf + ptr) + 1;
ptr += 2;
dive->duration.seconds = array_uint32_le(buf + ptr); // seconds
ptr += 4;
dive->maxdepth.mm = array_uint16_le(buf + ptr) * 10; // cm->mm
ptr += 2;
dive->meandepth.mm = array_uint16_le(buf + ptr) * 10; // cm->mm
ptr += 2;
dive->when = array_uint32_le(buf + ptr);
ptr += 4;
//unsigned int end_time = array_uint32_le(buf + ptr);
ptr += 4;
//unsigned int sit = array_uint32_le(buf + ptr);
ptr += 4;
//if (sit == 0xffffffff) {
//}
dive->surface_pressure.mbar = array_uint16_le(buf + ptr); // ???
ptr += 2;
//unsigned int rep_dive = array_uint16_le(buf + ptr);
ptr += 2;
dive->mintemp.mkelvin = C_to_mkelvin((float)array_uint16_le(buf + ptr)/10);// C->mK
ptr += 2;
dive->maxtemp.mkelvin = C_to_mkelvin((float)array_uint16_le(buf + ptr)/10);// C->mK
ptr += 2;
dive->salinity = *(buf + ptr); // ???
ptr += 1;
unsigned int sample_count = array_uint32_le(buf + ptr);
ptr += 4;
// Sample interval
unsigned char sample_interval;
sample_interval = 1;
unsigned char intervals[6] = {1,2,5,10,30,60};
if (*(buf + ptr) < 6)
sample_interval = intervals[*(buf + ptr)];
ptr += 1;
float start_cns = 0;
unsigned char dive_mode = 0, algorithm = 0;
if (array_uint32_le(buf + ptr) != sample_count) {
// Xeo, with CNS and OTU
start_cns = *(float *) (buf + ptr);
ptr += 4;
dive->cns = *(float *) (buf + ptr); // end cns
ptr += 4;
dive->otu = *(float *) (buf + ptr);
ptr += 4;
dive_mode = *(buf + ptr++); // 0=Deco, 1=Gauge, 2=None
algorithm = *(buf + ptr++); // 0=ZH-L16C+GF
sample_count = array_uint32_le(buf + ptr);
}
// we aren't using the start_cns, dive_mode, and algorithm, yet
(void)start_cns;
(void)dive_mode;
(void)algorithm;
ptr += 4;
// Parse dive samples
const unsigned char *ds = buf + ptr;
const unsigned char *ts = buf + ptr + sample_count * 2 + 4;
const unsigned char *ps = buf + ptr + sample_count * 4 + 4;
unsigned int ps_count = array_uint32_le(ps);
ps += 4;
// Bump ptr
ptr += sample_count * 4 + 4;
// Handle events
unsigned int event;
unsigned int ps_ptr;
ps_ptr = 0;
unsigned int d = 0, e;
int event_time, mbar, sensor;
// Loop through events
for (e = 0; e < ps_count; e++) {
// Get event
event = array_uint16_le(ps + ps_ptr);
ps_ptr += 2;
switch (event) {
case 0x0002: // Unknown
case 0x0004: // Unknown
ps_ptr += 4;
continue;
case 0x0005: // Unknown
ps_ptr += 6;
continue;
case 0x0007: // Gas
// 4 byte time
// 1 byte O2, 1 bye He
ps_ptr += 6;
continue;
case 0x0008:
// 4 byte time
// 2 byte gas set point 2
ps_ptr += 6;
continue;
case 0x000f:
// Tank pressure
event_time = array_uint32_le(ps + ps_ptr);
sensor = 0; //array_uint16_le(ps + ps_ptr + 4);
mbar = array_uint16_le(ps + ps_ptr + 6) * 10; // cb->mb
// 1 byte PSR
// 1 byte ST
ps_ptr += 10;
break;
case 0x0010:
ps_ptr += 26;
continue;
case 0x0015: // Unknown
ps_ptr += 2;
continue;
default:
ps_ptr += 4;
continue;
}
int sample_time, last_time;
int depth_mm, last_depth, temp_mk, last_temp;
while (true) {
sample = prepare_sample(dc);
// Get sample times
sample_time = d * sample_interval;
depth_mm = array_uint16_le(ds + d * 2) * 10; // cm->mm
temp_mk = C_to_mkelvin((float)array_uint16_le(ts + d * 2) / 10); // dC->mK
last_time = (d ? (d - 1) * sample_interval : 0);
if (d == sample_count) {
// We still have events to record
sample->time.seconds = event_time;
sample->depth.mm = array_uint16_le(ds + (d - 1) * 2) * 10; // cm->mm
sample->temperature.mkelvin = C_to_mkelvin((float) array_uint16_le(ts + (d - 1) * 2) / 10); // dC->mK
sample->sensor = sensor;
sample->cylinderpressure.mbar = mbar;
finish_sample(dc);
break;
} else if (event_time > sample_time) {
// Record sample and loop
sample->time.seconds = sample_time;
sample->depth.mm = depth_mm;
sample->temperature.mkelvin = temp_mk;
finish_sample(dc);
d++;
continue;
} else if (event_time == sample_time) {
sample->time.seconds = sample_time;
sample->depth.mm = depth_mm;
sample->temperature.mkelvin = temp_mk;
sample->sensor = sensor;
sample->cylinderpressure.mbar = mbar;
finish_sample(dc);
break;
} else { // Event is prior to sample
sample->time.seconds = event_time;
sample->sensor = sensor;
sample->cylinderpressure.mbar = mbar;
if (last_time == sample_time) {
sample->depth.mm = depth_mm;
sample->temperature.mkelvin = temp_mk;
} else {
// Extrapolate
last_depth = array_uint16_le(ds + (d - 1) * 2) * 10; // cm->mm
last_temp = C_to_mkelvin((float) array_uint16_le(ts + (d - 1) * 2) / 10); // dC->mK
sample->depth.mm = last_depth + (depth_mm - last_depth)
* (event_time - last_time) / sample_interval;
sample->temperature.mkelvin = last_temp + (temp_mk - last_temp)
* (event_time - last_time) / sample_interval;
}
finish_sample(dc);
break;
}
} // while (true);
} // for each event sample
// record trailing depth samples
for ( ;d < sample_count; d++) {
sample = prepare_sample(dc);
sample->time.seconds = d * sample_interval;
sample->depth.mm = array_uint16_le(ds + d * 2) * 10; // cm->mm
sample->temperature.mkelvin =
C_to_mkelvin((float)array_uint16_le(ts + d * 2) / 10);
finish_sample(dc);
}
if (log_version == 3 && model == 4) {
// Advance to begin of next dive
switch (array_uint16_le(ps + ps_ptr)) {
case 0x0000:
ps_ptr += 5;
break;
case 0x0100:
ps_ptr += 7;
break;
case 0x0200:
ps_ptr += 9;
break;
case 0x0300:
ps_ptr += 11;
break;
case 0x0b0b:
ps_ptr += 27;
break;
}
while (*(ps + ps_ptr) != 0x04)
ps_ptr++;
}
// End dive
dive->downloaded = true;
record_dive(dive);
mark_divelist_changed(true);
// Advance ptr for next dive
ptr += ps_ptr + 4;
} // while
save_dives("/tmp/test.xml");
}
int try_to_open_liquivision(const char *filename, struct memblock *mem)
{
void *name;
const unsigned char *buf = mem->buffer;
unsigned int buf_size = mem->size;
unsigned int ptr;
int log_version;
// Get name
unsigned int len = array_uint32_le(buf);
if (len) {
name = malloc(len);
strncpy(name, buf + 4, len);
}
ptr = 4 + len;
unsigned int dive_count = array_uint32_le(buf + ptr);
if (dive_count == 0xffffffff) {
// File version 3.0
log_version = 3;
ptr += 6;
dive_count = array_uint32_le(buf + ptr);
} else {
log_version = 2;
}
ptr += 4;
parse_dives(log_version, buf + ptr, buf_size - ptr);
return 1;
}
|