diff options
author | James Young <18669334+noroadsleft@users.noreply.github.com> | 2020-03-15 20:29:11 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-03-15 20:29:11 -0700 |
commit | b272c035ba7fa8555a88c922b3e94c3f3817c4ff (patch) | |
tree | a5c9a1f6e4a1d9c02b72a12e33b2f9e69b5bf85b /docs/feature_stenography.md | |
parent | 5f1f370463d818a5283a17001ad832073efc45a4 (diff) | |
download | qmk_firmware-b272c035ba7fa8555a88c922b3e94c3f3817c4ff.tar.gz |
[Docs] Random Fixes (#8340)
* fix CLI section links in the Summary
* fix heading in Pointing Device doc
* fix headings in PS/2 Mouse Support doc
* add explicit section ids to I2C Master Driver doc
* reformat GPIO Controls table
Much like the I2C Master Driver doc, I found this a bit less than ideal to read. (The table was actually wider than the space available for it.)
Reformatted so each GPIO function is an H3 heading, followed by a paragraph and a table of each architecture's old-style function.
* migrate changes from I2C Master Driver doc to Japanese translation
* add explicit anchors to I2C Master Driver docs
* fix code block language markers
The language markers are case-sensitive; using the wrong case means the syntax highlighting doesn't work.
Good: ```c
Bad: ```C
* restore Japanese I2C Master Driver doc to current master
Can't update the internal tracking references accurately until the changes to the English doc are committed to master.
* add explicit anchors to edited files
* change ChibiOS/ARM to ARM/ChibiOS
Because ARM/ATSAM is also a thing that exists.
* fix code block language markers again
Used the wrong markers in a few spots. Also these are apparently always supposed to be lowercase.
* add section anchors to cli.md
* restore table formatting on GPIO Control doc
* remove changes to _summary.md
Diffstat (limited to 'docs/feature_stenography.md')
-rw-r--r-- | docs/feature_stenography.md | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/docs/feature_stenography.md b/docs/feature_stenography.md index 4d7374a03..099993f85 100644 --- a/docs/feature_stenography.md +++ b/docs/feature_stenography.md @@ -1,16 +1,16 @@ -# Stenography in QMK +# Stenography in QMK :id=stenography-in-qmk [Stenography](https://en.wikipedia.org/wiki/Stenotype) is a method of writing most often used by court reports, closed-captioning, and real-time transcription for the deaf. In stenography words are chorded syllable by syllable with a mixture of spelling, phonetic, and shortcut (briefs) strokes. Professional stenographers can reach 200-300 WPM without any of the strain usually found in standard typing and with far fewer errors (>99.9% accuracy). The [Open Steno Project](http://www.openstenoproject.org/) has built an open-source program called Plover that provides real-time translation of steno strokes into words and commands. It has an established dictionary and supports -## Plover with QWERTY Keyboard +## Plover with QWERTY Keyboard :id=plover-with-qwerty-keyboard Plover can work with any standard QWERTY keyboard, although it is more efficient if the keyboard supports NKRO (n-key rollover) to allow Plover to see all the pressed keys at once. An example keymap for Plover can be found in `planck/keymaps/default`. Switching to the `PLOVER` layer adjusts the position of the keyboard to support the number bar. To use Plover with QMK just enable NKRO and optionally adjust your layout if you have anything other than a standard layout. You may also want to purchase some steno-friendly keycaps to make it easier to hit multiple keys. -## Plover with Steno Protocol +## Plover with Steno Protocol :id=plover-with-steno-protocol Plover also understands the language of several steno machines. QMK can speak a couple of these languages, TX Bolt and GeminiPR. An example layout can be found in `planck/keymaps/steno`. @@ -20,26 +20,26 @@ In this mode Plover expects to speak with a steno machine over a serial port so > Note: Due to hardware limitations you may not be able to run both a virtual serial port and mouse emulation at the same time. -### TX Bolt +### TX Bolt :id=tx-bolt TX Bolt communicates the status of 24 keys over a very simple protocol in variable-sized (1-5 byte) packets. -### GeminiPR +### GeminiPR :id=geminipr GeminiPR encodes 42 keys into a 6-byte packet. While TX Bolt contains everything that is necessary for standard stenography, GeminiPR opens up many more options, including supporting non-English theories. -## Configuring QMK for Steno +## Configuring QMK for Steno :id=configuring-qmk-for-steno Firstly, enable steno in your keymap's Makefile. You may also need disable mousekeys, extra keys, or another USB endpoint to prevent conflicts. The builtin USB stack for some processors only supports a certain number of USB endpoints and the virtual serial port needed for steno fills 3 of them. -```Makefile +```makefile STENO_ENABLE = yes MOUSEKEY_ENABLE = no ``` In your keymap create a new layer for Plover. You will need to include `keymap_steno.h`. See `planck/keymaps/steno/keymap.c` for an example. Remember to create a key to switch to the layer as well as a key for exiting the layer. If you would like to switch modes on the fly you can use the keycodes `QK_STENO_BOLT` and `QK_STENO_GEMINI`. If you only want to use one of the protocols you may set it up in your initialization function: -```C +```c void matrix_init_user() { steno_set_mode(STENO_MODE_GEMINI); // or STENO_MODE_BOLT } @@ -49,37 +49,37 @@ Once you have your keyboard flashed launch Plover. Click the 'Configure...' butt On the display tab click 'Open stroke display'. With Plover disabled you should be able to hit keys on your keyboard and see them show up in the stroke display window. Use this to make sure you have set up your keymap correctly. You are now ready to steno! -## Learning Stenography +## Learning Stenography :id=learning-stenography * [Learn Plover!](https://sites.google.com/site/learnplover/) * [QWERTY Steno](http://qwertysteno.com/Home/) * [Steno Jig](https://joshuagrams.github.io/steno-jig/) * More resources at the Plover [Learning Stenography](https://github.com/openstenoproject/plover/wiki/Learning-Stenography) wiki -## Interfacing with the code +## Interfacing with the code :id=interfacing-with-the-code The steno code has three interceptible hooks. If you define these functions, they will be called at certain points in processing; if they return true, processing continues, otherwise it's assumed you handled things. -```C +```c bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[6]); ``` This function is called when a chord is about to be sent. Mode will be one of `STENO_MODE_BOLT` or `STENO_MODE_GEMINI`. This represents the actual chord that would be sent via whichever protocol. You can modify the chord provided to alter what gets sent. Remember to return true if you want the regular sending process to happen. -```C +```c bool process_steno_user(uint16_t keycode, keyrecord_t *record) { return true; } ``` This function is called when a keypress has come in, before it is processed. The keycode should be one of `QK_STENO_BOLT`, `QK_STENO_GEMINI`, or one of the `STN_*` key values. -```C +```c bool postprocess_steno_user(uint16_t keycode, keyrecord_t *record, steno_mode_t mode, uint8_t chord[6], int8_t pressed); ``` This function is called after a key has been processed, but before any decision about whether or not to send a chord. If `IS_PRESSED(record->event)` is false, and `pressed` is 0 or 1, the chord will be sent shortly, but has not yet been sent. This is where to put hooks for things like, say, live displays of steno chords or keys. -## Keycode Reference +## Keycode Reference :id=keycode-reference As defined in `keymap_steno.h`. |