aboutsummaryrefslogtreecommitdiffstats
path: root/Bootloaders/MassStorage/BootloaderMassStorage.c
diff options
context:
space:
mode:
Diffstat (limited to 'Bootloaders/MassStorage/BootloaderMassStorage.c')
-rw-r--r--Bootloaders/MassStorage/BootloaderMassStorage.c263
1 files changed, 263 insertions, 0 deletions
diff --git a/Bootloaders/MassStorage/BootloaderMassStorage.c b/Bootloaders/MassStorage/BootloaderMassStorage.c
new file mode 100644
index 000000000..6c9697b66
--- /dev/null
+++ b/Bootloaders/MassStorage/BootloaderMassStorage.c
@@ -0,0 +1,263 @@
+/*
+ LUFA Library
+ Copyright (C) Dean Camera, 2017.
+
+ dean [at] fourwalledcubicle [dot] com
+ www.lufa-lib.org
+*/
+
+/*
+ Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com)
+
+ Permission to use, copy, modify, distribute, and sell this
+ software and its documentation for any purpose is hereby granted
+ without fee, provided that the above copyright notice appear in
+ all copies and that both that the copyright notice and this
+ permission notice and warranty disclaimer appear in supporting
+ documentation, and that the name of the author not be used in
+ advertising or publicity pertaining to distribution of the
+ software without specific, written prior permission.
+
+ The author disclaims all warranties with regard to this
+ software, including all implied warranties of merchantability
+ and fitness. In no event shall the author be liable for any
+ special, indirect or consequential damages or any damages
+ whatsoever resulting from loss of use, data or profits, whether
+ in an action of contract, negligence or other tortious action,
+ arising out of or in connection with the use or performance of
+ this software.
+*/
+
+/** \file
+ *
+ * Main source file for the Mass Storage class bootloader. This file contains the complete bootloader logic.
+ */
+
+#define INCLUDE_FROM_BOOTLOADER_MASSSTORAGE_C
+#include "BootloaderMassStorage.h"
+
+/** LUFA Mass Storage Class driver interface configuration and state information. This structure is
+ * passed to all Mass Storage Class driver functions, so that multiple instances of the same class
+ * within a device can be differentiated from one another.
+ */
+USB_ClassInfo_MS_Device_t Disk_MS_Interface =
+ {
+ .Config =
+ {
+ .InterfaceNumber = INTERFACE_ID_MassStorage,
+ .DataINEndpoint =
+ {
+ .Address = MASS_STORAGE_IN_EPADDR,
+ .Size = MASS_STORAGE_IO_EPSIZE,
+ .Banks = 1,
+ },
+ .DataOUTEndpoint =
+ {
+ .Address = MASS_STORAGE_OUT_EPADDR,
+ .Size = MASS_STORAGE_IO_EPSIZE,
+ .Banks = 1,
+ },
+ .TotalLUNs = 1,
+ },
+ };
+
+/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
+ * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
+ * started via a forced watchdog reset.
+ */
+bool RunBootloader = true;
+
+/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
+ * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
+ * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
+ * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
+ */
+uint16_t MagicBootKey ATTR_NO_INIT;
+
+/** Indicates if the bootloader is allowed to exit immediately if \ref RunBootloader is \c false. During shutdown all
+ * pending commands must be processed before jumping to the user-application, thus this tracks the main program loop
+ * iterations since a SCSI command from the host was received.
+ */
+static uint8_t TicksSinceLastCommand = 0;
+
+
+/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
+ * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
+ * this will force the user application to start via a software jump.
+ */
+void Application_Jump_Check(void)
+{
+ bool JumpToApplication = false;
+
+ #if (BOARD == BOARD_LEONARDO)
+ /* Enable pull-up on the IO13 pin so we can use it to select the mode */
+ PORTC |= (1 << 7);
+ Delay_MS(10);
+
+ /* If IO13 is not jumpered to ground, start the user application instead */
+ JumpToApplication = ((PINC & (1 << 7)) != 0);
+
+ /* Disable pull-up after the check has completed */
+ PORTC &= ~(1 << 7);
+ #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
+ /* Disable JTAG debugging */
+ JTAG_DISABLE();
+
+ /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
+ PORTF |= (1 << 4);
+ Delay_MS(10);
+
+ /* If the TCK pin is not jumpered to ground, start the user application instead */
+ JumpToApplication = ((PINF & (1 << 4)) != 0);
+
+ /* Re-enable JTAG debugging */
+ JTAG_ENABLE();
+ #else
+ /* Check if the device's BOOTRST fuse is set */
+ if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
+ {
+ /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
+ if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
+ JumpToApplication = true;
+
+ /* Clear reset source */
+ MCUSR &= ~(1 << EXTRF);
+ }
+ else
+ {
+ /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
+ * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
+ if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
+ JumpToApplication = true;
+
+ /* Clear reset source */
+ MCUSR &= ~(1 << WDRF);
+ }
+ #endif
+
+ /* Don't run the user application if the reset vector is blank (no app loaded) */
+ bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
+
+ /* If a request has been made to jump to the user application, honor it */
+ if (JumpToApplication && ApplicationValid)
+ {
+ /* Turn off the watchdog */
+ MCUSR &= ~(1 << WDRF);
+ wdt_disable();
+
+ /* Clear the boot key and jump to the user application */
+ MagicBootKey = 0;
+
+ // cppcheck-suppress constStatement
+ ((void (*)(void))0x0000)();
+ }
+}
+
+/** Main program entry point. This routine configures the hardware required by the application, then
+ * enters a loop to run the application tasks in sequence.
+ */
+int main(void)
+{
+ SetupHardware();
+
+ LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
+ GlobalInterruptEnable();
+
+ while (RunBootloader || TicksSinceLastCommand++ < 0xFF)
+ {
+ MS_Device_USBTask(&Disk_MS_Interface);
+ USB_USBTask();
+ }
+
+ /* Disconnect from the host - USB interface will be reset later along with the AVR */
+ USB_Detach();
+
+ /* Unlock the forced application start mode of the bootloader if it is restarted */
+ MagicBootKey = MAGIC_BOOT_KEY;
+
+ /* Enable the watchdog and force a timeout to reset the AVR */
+ wdt_enable(WDTO_250MS);
+
+ for (;;);
+}
+
+/** Configures the board hardware and chip peripherals for the demo's functionality. */
+static void SetupHardware(void)
+{
+ /* Disable watchdog if enabled by bootloader/fuses */
+ MCUSR &= ~(1 << WDRF);
+ wdt_disable();
+
+ /* Disable clock division */
+ clock_prescale_set(clock_div_1);
+
+ /* Relocate the interrupt vector table to the bootloader section */
+ MCUCR = (1 << IVCE);
+ MCUCR = (1 << IVSEL);
+
+ /* Hardware Initialization */
+ LEDs_Init();
+ USB_Init();
+
+ /* Bootloader active LED toggle timer initialization */
+ TIMSK1 = (1 << TOIE1);
+ TCCR1B = ((1 << CS11) | (1 << CS10));
+}
+
+/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
+ISR(TIMER1_OVF_vect, ISR_BLOCK)
+{
+ LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
+}
+
+/** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs. */
+void EVENT_USB_Device_Connect(void)
+{
+ /* Indicate USB enumerating */
+ LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
+}
+
+/** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via
+ * the status LEDs and stops the Mass Storage management task.
+ */
+void EVENT_USB_Device_Disconnect(void)
+{
+ /* Indicate USB not ready */
+ LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
+}
+
+/** Event handler for the library USB Configuration Changed event. */
+void EVENT_USB_Device_ConfigurationChanged(void)
+{
+ bool ConfigSuccess = true;
+
+ /* Setup Mass Storage Data Endpoints */
+ ConfigSuccess &= MS_Device_ConfigureEndpoints(&Disk_MS_Interface);
+
+ /* Indicate endpoint configuration success or failure */
+ LEDs_SetAllLEDs(ConfigSuccess ? LEDMASK_USB_READY : LEDMASK_USB_ERROR);
+}
+
+/** Event handler for the library USB Control Request reception event. */
+void EVENT_USB_Device_ControlRequest(void)
+{
+ MS_Device_ProcessControlRequest(&Disk_MS_Interface);
+}
+
+/** Mass Storage class driver callback function the reception of SCSI commands from the host, which must be processed.
+ *
+ * \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface configuration structure being referenced
+ */
+bool CALLBACK_MS_Device_SCSICommandReceived(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
+{
+ bool CommandSuccess;
+
+ LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
+ CommandSuccess = SCSI_DecodeSCSICommand(MSInterfaceInfo);
+ LEDs_SetAllLEDs(LEDMASK_USB_READY);
+
+ /* Signal that a command was processed, must not exit bootloader yet */
+ TicksSinceLastCommand = 0;
+
+ return CommandSuccess;
+}