aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/issi/is31fl3733.c
blob: b913922b07f316294848cb3391ab22eb702668e6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* Copyright 2017 Jason Williams
 * Copyright 2018 Jack Humbert
 * Copyright 2018 Yiancar
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "is31fl3733.h"
#include "i2c_master.h"
#include "wait.h"

// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 00 <-> GND
// 01 <-> SCL
// 10 <-> SDA
// 11 <-> VCC
// ADDR1 represents A1:A0 of the 7-bit address.
// ADDR2 represents A3:A2 of the 7-bit address.
// The result is: 0b101(ADDR2)(ADDR1)
#define ISSI_ADDR_DEFAULT 0x50

#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_COMMANDREGISTER_WRITELOCK 0xFE
#define ISSI_INTERRUPTMASKREGISTER 0xF0
#define ISSI_INTERRUPTSTATUSREGISTER 0xF1

#define ISSI_PAGE_LEDCONTROL 0x00  // PG0
#define ISSI_PAGE_PWM 0x01         // PG1
#define ISSI_PAGE_AUTOBREATH 0x02  // PG2
#define ISSI_PAGE_FUNCTION 0x03    // PG3

#define ISSI_REG_CONFIGURATION 0x00  // PG3
#define ISSI_REG_GLOBALCURRENT 0x01  // PG3
#define ISSI_REG_RESET 0x11          // PG3
#define ISSI_REG_SWPULLUP 0x0F       // PG3
#define ISSI_REG_CSPULLUP 0x10       // PG3

#ifndef ISSI_TIMEOUT
#    define ISSI_TIMEOUT 100
#endif

#ifndef ISSI_PERSISTENCE
#    define ISSI_PERSISTENCE 0
#endif

// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[20];

// These buffers match the IS31FL3733 PWM registers.
// The control buffers match the PG0 LED On/Off registers.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3733_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][192];
bool    g_pwm_buffer_update_required[DRIVER_COUNT] = {false};

uint8_t g_led_control_registers[DRIVER_COUNT][24]             = {{0}, {0}};
bool    g_led_control_registers_update_required[DRIVER_COUNT] = {false};

bool IS31FL3733_write_register(uint8_t addr, uint8_t reg, uint8_t data) {
    // If the transaction fails function returns false.
    g_twi_transfer_buffer[0] = reg;
    g_twi_transfer_buffer[1] = data;

#if ISSI_PERSISTENCE > 0
    for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
        if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) != 0) {
            return false;
        }
    }
#else
    if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 2, ISSI_TIMEOUT) != 0) {
        return false;
    }
#endif
    return true;
}

bool IS31FL3733_write_pwm_buffer(uint8_t addr, uint8_t *pwm_buffer) {
    // Assumes PG1 is already selected.
    // If any of the transactions fails function returns false.
    // Transmit PWM registers in 12 transfers of 16 bytes.
    // g_twi_transfer_buffer[] is 20 bytes

    // Iterate over the pwm_buffer contents at 16 byte intervals.
    for (int i = 0; i < 192; i += 16) {
        g_twi_transfer_buffer[0] = i;
        // Copy the data from i to i+15.
        // Device will auto-increment register for data after the first byte
        // Thus this sets registers 0x00-0x0F, 0x10-0x1F, etc. in one transfer.
        for (int j = 0; j < 16; j++) {
            g_twi_transfer_buffer[1 + j] = pwm_buffer[i + j];
        }

#if ISSI_PERSISTENCE > 0
        for (uint8_t i = 0; i < ISSI_PERSISTENCE; i++) {
            if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) != 0) {
                return false;
            }
        }
#else
        if (i2c_transmit(addr << 1, g_twi_transfer_buffer, 17, ISSI_TIMEOUT) != 0) {
            return false;
        }
#endif
    }
    return true;
}

void IS31FL3733_init(uint8_t addr, uint8_t sync) {
    // In order to avoid the LEDs being driven with garbage data
    // in the LED driver's PWM registers, shutdown is enabled last.
    // Set up the mode and other settings, clear the PWM registers,
    // then disable software shutdown.
    // Sync is passed so set it according to the datasheet.

    // Unlock the command register.
    IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);

    // Select PG0
    IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL);
    // Turn off all LEDs.
    for (int i = 0x00; i <= 0x17; i++) {
        IS31FL3733_write_register(addr, i, 0x00);
    }

    // Unlock the command register.
    IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);

    // Select PG1
    IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM);
    // Set PWM on all LEDs to 0
    // No need to setup Breath registers to PWM as that is the default.
    for (int i = 0x00; i <= 0xBF; i++) {
        IS31FL3733_write_register(addr, i, 0x00);
    }

    // Unlock the command register.
    IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);

    // Select PG3
    IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_FUNCTION);
    // Set global current to maximum.
    IS31FL3733_write_register(addr, ISSI_REG_GLOBALCURRENT, 0xFF);
    // Disable software shutdown.
    IS31FL3733_write_register(addr, ISSI_REG_CONFIGURATION, (sync << 6) | 0x01);

    // Wait 10ms to ensure the device has woken up.
    wait_ms(10);
}

void IS31FL3733_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) {
    if (index >= 0 && index < DRIVER_LED_TOTAL) {
        is31_led led = g_is31_leds[index];

        g_pwm_buffer[led.driver][led.r]          = red;
        g_pwm_buffer[led.driver][led.g]          = green;
        g_pwm_buffer[led.driver][led.b]          = blue;
        g_pwm_buffer_update_required[led.driver] = true;
    }
}

void IS31FL3733_set_color_all(uint8_t red, uint8_t green, uint8_t blue) {
    for (int i = 0; i < DRIVER_LED_TOTAL; i++) {
        IS31FL3733_set_color(i, red, green, blue);
    }
}

void IS31FL3733_set_led_control_register(uint8_t index, bool red, bool green, bool blue) {
    is31_led led = g_is31_leds[index];

    uint8_t control_register_r = led.r / 8;
    uint8_t control_register_g = led.g / 8;
    uint8_t control_register_b = led.b / 8;
    uint8_t bit_r              = led.r % 8;
    uint8_t bit_g              = led.g % 8;
    uint8_t bit_b              = led.b % 8;

    if (red) {
        g_led_control_registers[led.driver][control_register_r] |= (1 << bit_r);
    } else {
        g_led_control_registers[led.driver][control_register_r] &= ~(1 << bit_r);
    }
    if (green) {
        g_led_control_registers[led.driver][control_register_g] |= (1 << bit_g);
    } else {
        g_led_control_registers[led.driver][control_register_g] &= ~(1 << bit_g);
    }
    if (blue) {
        g_led_control_registers[led.driver][control_register_b] |= (1 << bit_b);
    } else {
        g_led_control_registers[led.driver][control_register_b] &= ~(1 << bit_b);
    }

    g_led_control_registers_update_required[led.driver] = true;
}

void IS31FL3733_update_pwm_buffers(uint8_t addr, uint8_t index) {
    if (g_pwm_buffer_update_required[index]) {
        // Firstly we need to unlock the command register and select PG1.
        IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
        IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_PWM);

        // If any of the transactions fail we risk writing dirty PG0,
        // refresh page 0 just in case.
        if (!IS31FL3733_write_pwm_buffer(addr, g_pwm_buffer[index])){
            g_led_control_registers_update_required[index] = true;
        }
    }
    g_pwm_buffer_update_required[index] = false;
}

void IS31FL3733_update_led_control_registers(uint8_t addr, uint8_t index) {
    if (g_led_control_registers_update_required[index]) {
        // Firstly we need to unlock the command register and select PG0
        IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER_WRITELOCK, 0xC5);
        IS31FL3733_write_register(addr, ISSI_COMMANDREGISTER, ISSI_PAGE_LEDCONTROL);
        for (int i = 0; i < 24; i++) {
            IS31FL3733_write_register(addr, i, g_led_control_registers[index][i]);
        }
    }
    g_led_control_registers_update_required[index] = false;
}