aboutsummaryrefslogtreecommitdiffstats
path: root/lib/lib8tion/trig8.h
blob: 4907c6ff30a794f6e0ed7e2f57f7e9f06c383c98 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#ifndef __INC_LIB8TION_TRIG_H
#define __INC_LIB8TION_TRIG_H

///@ingroup lib8tion

///@defgroup Trig Fast trig functions
/// Fast 8 and 16-bit approximations of sin(x) and cos(x).
///        Don't use these approximations for calculating the
///        trajectory of a rocket to Mars, but they're great
///        for art projects and LED displays.
///
///        On Arduino/AVR, the 16-bit approximation is more than
///        10X faster than floating point sin(x) and cos(x), while
/// the 8-bit approximation is more than 20X faster.
///@{

#if defined(__AVR__)
#define sin16 sin16_avr
#else
#define sin16 sin16_C
#endif

/// Fast 16-bit approximation of sin(x). This approximation never varies more than
/// 0.69% from the floating point value you'd get by doing
///
///     float s = sin(x) * 32767.0;
///
/// @param theta input angle from 0-65535
/// @returns sin of theta, value between -32767 to 32767.
LIB8STATIC int16_t sin16_avr( uint16_t theta )
{
    static const uint8_t data[] =
    { 0,         0,         49, 0, 6393%256,   6393/256, 48, 0,
      12539%256, 12539/256, 44, 0, 18204%256, 18204/256, 38, 0,
      23170%256, 23170/256, 31, 0, 27245%256, 27245/256, 23, 0,
      30273%256, 30273/256, 14, 0, 32137%256, 32137/256,  4 /*,0*/ };

    uint16_t offset = (theta & 0x3FFF);

    // AVR doesn't have a multi-bit shift instruction,
    // so if we say "offset >>= 3", gcc makes a tiny loop.
    // Inserting empty volatile statements between each
    // bit shift forces gcc to unroll the loop.
    offset >>= 1; // 0..8191
    asm volatile("");
    offset >>= 1; // 0..4095
    asm volatile("");
    offset >>= 1; // 0..2047

    if( theta & 0x4000 ) offset = 2047 - offset;

    uint8_t sectionX4;
    sectionX4 = offset / 256;
    sectionX4 *= 4;

    uint8_t m;

    union {
        uint16_t b;
        struct {
            uint8_t blo;
            uint8_t bhi;
        };
    } u;

    //in effect u.b = blo + (256 * bhi);
    u.blo = data[ sectionX4 ];
    u.bhi = data[ sectionX4 + 1];
    m     = data[ sectionX4 + 2];

    uint8_t secoffset8 = (uint8_t)(offset) / 2;

    uint16_t mx = m * secoffset8;

    int16_t  y  = mx + u.b;
    if( theta & 0x8000 ) y = -y;

    return y;
}

/// Fast 16-bit approximation of sin(x). This approximation never varies more than
/// 0.69% from the floating point value you'd get by doing
///
///     float s = sin(x) * 32767.0;
///
/// @param theta input angle from 0-65535
/// @returns sin of theta, value between -32767 to 32767.
LIB8STATIC int16_t sin16_C( uint16_t theta )
{
    static const uint16_t base[] =
    { 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137 };
    static const uint8_t slope[] =
    { 49, 48, 44, 38, 31, 23, 14, 4 };

    uint16_t offset = (theta & 0x3FFF) >> 3; // 0..2047
    if( theta & 0x4000 ) offset = 2047 - offset;

    uint8_t section = offset / 256; // 0..7
    uint16_t b   = base[section];
    uint8_t  m   = slope[section];

    uint8_t secoffset8 = (uint8_t)(offset) / 2;

    uint16_t mx = m * secoffset8;
    int16_t  y  = mx + b;

    if( theta & 0x8000 ) y = -y;

    return y;
}


/// Fast 16-bit approximation of cos(x). This approximation never varies more than
/// 0.69% from the floating point value you'd get by doing
///
///     float s = cos(x) * 32767.0;
///
/// @param theta input angle from 0-65535
/// @returns sin of theta, value between -32767 to 32767.
LIB8STATIC int16_t cos16( uint16_t theta)
{
    return sin16( theta + 16384);
}

///////////////////////////////////////////////////////////////////////

// sin8 & cos8
//        Fast 8-bit approximations of sin(x) & cos(x).
//        Input angle is an unsigned int from 0-255.
//        Output is an unsigned int from 0 to 255.
//
//        This approximation can vary to to 2%
//        from the floating point value you'd get by doing
//          float s = (sin( x ) * 128.0) + 128;
//
//        Don't use this approximation for calculating the
//        "real" trigonometric calculations, but it's great
//        for art projects and LED displays.
//
//        On Arduino/AVR, this approximation is more than
//        20X faster than floating point sin(x) and cos(x)

#if defined(__AVR__) && !defined(LIB8_ATTINY)
#define sin8 sin8_avr
#else
#define sin8 sin8_C
#endif


const uint8_t b_m16_interleave[] = { 0, 49, 49, 41, 90, 27, 117, 10 };

/// Fast 8-bit approximation of sin(x). This approximation never varies more than
/// 2% from the floating point value you'd get by doing
///
///     float s = (sin(x) * 128.0) + 128;
///
/// @param theta input angle from 0-255
/// @returns sin of theta, value between 0 and 255
LIB8STATIC uint8_t  sin8_avr( uint8_t theta)
{
    uint8_t offset = theta;

    asm volatile(
                 "sbrc %[theta],6         \n\t"
                 "com  %[offset]           \n\t"
                 : [theta] "+r" (theta), [offset] "+r" (offset)
                 );

    offset &= 0x3F; // 0..63

    uint8_t secoffset  = offset & 0x0F; // 0..15
    if( theta & 0x40) secoffset++;

    uint8_t m16; uint8_t b;

    uint8_t section = offset >> 4; // 0..3
    uint8_t s2 = section * 2;

    const uint8_t* p = b_m16_interleave;
    p += s2;
    b   = *p;
    p++;
    m16 = *p;

    uint8_t mx;
    uint8_t xr1;
    asm volatile(
                 "mul %[m16],%[secoffset]   \n\t"
                 "mov %[mx],r0              \n\t"
                 "mov %[xr1],r1             \n\t"
                 "eor  r1, r1               \n\t"
                 "swap %[mx]                \n\t"
                 "andi %[mx],0x0F           \n\t"
                 "swap %[xr1]               \n\t"
                 "andi %[xr1], 0xF0         \n\t"
                 "or   %[mx], %[xr1]        \n\t"
                 : [mx] "=d" (mx), [xr1] "=d" (xr1)
                 : [m16] "d" (m16), [secoffset] "d" (secoffset)
                 );

    int8_t y = mx + b;
    if( theta & 0x80 ) y = -y;

    y += 128;

    return y;
}


/// Fast 8-bit approximation of sin(x). This approximation never varies more than
/// 2% from the floating point value you'd get by doing
///
///     float s = (sin(x) * 128.0) + 128;
///
/// @param theta input angle from 0-255
/// @returns sin of theta, value between 0 and 255
LIB8STATIC uint8_t sin8_C( uint8_t theta)
{
    uint8_t offset = theta;
    if( theta & 0x40 ) {
        offset = (uint8_t)255 - offset;
    }
    offset &= 0x3F; // 0..63

    uint8_t secoffset  = offset & 0x0F; // 0..15
    if( theta & 0x40) secoffset++;

    uint8_t section = offset >> 4; // 0..3
    uint8_t s2 = section * 2;
    const uint8_t* p = b_m16_interleave;
    p += s2;
    uint8_t b   =  *p;
    p++;
    uint8_t m16 =  *p;

    uint8_t mx = (m16 * secoffset) >> 4;

    int8_t y = mx + b;
    if( theta & 0x80 ) y = -y;

    y += 128;

    return y;
}

/// Fast 8-bit approximation of cos(x). This approximation never varies more than
/// 2% from the floating point value you'd get by doing
///
///     float s = (cos(x) * 128.0) + 128;
///
/// @param theta input angle from 0-255
/// @returns sin of theta, value between 0 and 255
LIB8STATIC uint8_t cos8( uint8_t theta)
{
    return sin8( theta + 64);
}

///@}
#endif