aboutsummaryrefslogtreecommitdiffstats
path: root/tmk_core/protocol/lufa/adafruit_ble.cpp
blob: bee6bb2c193a68039700052856dde1045351ed9d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
#include "adafruit_ble.h"
#include <stdio.h>
#include <stdlib.h>
#include <alloca.h>
#include <util/delay.h>
#include <util/atomic.h>
#include "debug.h"
#include "pincontrol.h"
#include "timer.h"
#include "action_util.h"
#include "ringbuffer.hpp"
#include <string.h>

// These are the pin assignments for the 32u4 boards.
// You may define them to something else in your config.h
// if yours is wired up differently.
#ifndef AdafruitBleResetPin
#define AdafruitBleResetPin D4
#endif

#ifndef AdafruitBleCSPin
#define AdafruitBleCSPin    B4
#endif

#ifndef AdafruitBleIRQPin
#define AdafruitBleIRQPin   E6
#endif


#define SAMPLE_BATTERY
#define ConnectionUpdateInterval 1000 /* milliseconds */

static struct {
  bool is_connected;
  bool initialized;
  bool configured;

#define ProbedEvents 1
#define UsingEvents 2
  bool event_flags;

#ifdef SAMPLE_BATTERY
  uint16_t last_battery_update;
  uint32_t vbat;
#endif
  uint16_t last_connection_update;
} state;

// Commands are encoded using SDEP and sent via SPI
// https://github.com/adafruit/Adafruit_BluefruitLE_nRF51/blob/master/SDEP.md

#define SdepMaxPayload 16
struct sdep_msg {
  uint8_t type;
  uint8_t cmd_low;
  uint8_t cmd_high;
  struct __attribute__((packed)) {
    uint8_t len:7;
    uint8_t more:1;
  };
  uint8_t payload[SdepMaxPayload];
} __attribute__((packed));

// The recv latency is relatively high, so when we're hammering keys quickly,
// we want to avoid waiting for the responses in the matrix loop.  We maintain
// a short queue for that.  Since there is quite a lot of space overhead for
// the AT command representation wrapped up in SDEP, we queue the minimal
// information here.

enum queue_type {
  QTKeyReport, // 1-byte modifier + 6-byte key report
  QTConsumer,  // 16-bit key code
#ifdef MOUSE_ENABLE
  QTMouseMove, // 4-byte mouse report
#endif
};

struct queue_item {
  enum queue_type queue_type;
  uint16_t added;
  union __attribute__((packed)) {
    struct __attribute__((packed)) {
      uint8_t modifier;
      uint8_t keys[6];
    } key;

    uint16_t consumer;
    struct __attribute__((packed)) {
      int8_t x, y, scroll, pan;
      uint8_t buttons;
    } mousemove;
  };
};

// Items that we wish to send
static RingBuffer<queue_item, 40> send_buf;
// Pending response; while pending, we can't send any more requests.
// This records the time at which we sent the command for which we
// are expecting a response.
static RingBuffer<uint16_t, 2> resp_buf;

static bool process_queue_item(struct queue_item *item, uint16_t timeout);

enum sdep_type {
  SdepCommand = 0x10,
  SdepResponse = 0x20,
  SdepAlert = 0x40,
  SdepError = 0x80,
  SdepSlaveNotReady = 0xfe, // Try again later
  SdepSlaveOverflow = 0xff, // You read more data than is available
};

enum ble_cmd {
  BleInitialize = 0xbeef,
  BleAtWrapper = 0x0a00,
  BleUartTx = 0x0a01,
  BleUartRx = 0x0a02,
};

enum ble_system_event_bits {
  BleSystemConnected = 0,
  BleSystemDisconnected = 1,
  BleSystemUartRx = 8,
  BleSystemMidiRx = 10,
};

// The SDEP.md file says 2MHz but the web page and the sample driver
// both use 4MHz
#define SpiBusSpeed 4000000

#define SdepTimeout 150 /* milliseconds */
#define SdepShortTimeout 10 /* milliseconds */
#define SdepBackOff 25 /* microseconds */
#define BatteryUpdateInterval 10000 /* milliseconds */

static bool at_command(const char *cmd, char *resp, uint16_t resplen,
                       bool verbose, uint16_t timeout = SdepTimeout);
static bool at_command_P(const char *cmd, char *resp, uint16_t resplen,
                         bool verbose = false);

struct SPI_Settings {
  uint8_t spcr, spsr;
};

static struct SPI_Settings spi;

// Initialize 4Mhz MSBFIRST MODE0
void SPI_init(struct SPI_Settings *spi) {
  spi->spcr = _BV(SPE) | _BV(MSTR);
  spi->spsr = _BV(SPI2X);

  static_assert(SpiBusSpeed == F_CPU / 2, "hard coded at 4Mhz");

  ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
    // Ensure that SS is OUTPUT High
    digitalWrite(B0, PinLevelHigh);
    pinMode(B0, PinDirectionOutput);

    SPCR |= _BV(MSTR);
    SPCR |= _BV(SPE);
    pinMode(B1 /* SCK */, PinDirectionOutput);
    pinMode(B2 /* MOSI */, PinDirectionOutput);
  }
}

static inline void SPI_begin(struct SPI_Settings*spi) {
  SPCR = spi->spcr;
  SPSR = spi->spsr;
}

static inline uint8_t SPI_TransferByte(uint8_t data) {
  SPDR = data;
  asm volatile("nop");
  while (!(SPSR & _BV(SPIF))) {
    ; // wait
  }
  return SPDR;
}

static inline void spi_send_bytes(const uint8_t *buf, uint8_t len) {
  if (len == 0) return;
  const uint8_t *end = buf + len;
  while (buf < end) {
    SPDR = *buf;
    while (!(SPSR & _BV(SPIF))) {
      ; // wait
    }
    ++buf;
  }
}

static inline uint16_t spi_read_byte(void) {
  return SPI_TransferByte(0x00 /* dummy */);
}

static inline void spi_recv_bytes(uint8_t *buf, uint8_t len) {
  const uint8_t *end = buf + len;
  if (len == 0) return;
  while (buf < end) {
    SPDR = 0; // write a dummy to initiate read
    while (!(SPSR & _BV(SPIF))) {
      ; // wait
    }
    *buf = SPDR;
    ++buf;
  }
}

#if 0
static void dump_pkt(const struct sdep_msg *msg) {
  print("pkt: type=");
  print_hex8(msg->type);
  print(" cmd=");
  print_hex8(msg->cmd_high);
  print_hex8(msg->cmd_low);
  print(" len=");
  print_hex8(msg->len);
  print(" more=");
  print_hex8(msg->more);
  print("\n");
}
#endif

// Send a single SDEP packet
static bool sdep_send_pkt(const struct sdep_msg *msg, uint16_t timeout) {
  SPI_begin(&spi);

  digitalWrite(AdafruitBleCSPin, PinLevelLow);
  uint16_t timerStart = timer_read();
  bool success = false;
  bool ready = false;

  do {
    ready = SPI_TransferByte(msg->type) != SdepSlaveNotReady;
    if (ready) {
      break;
    }

    // Release it and let it initialize
    digitalWrite(AdafruitBleCSPin, PinLevelHigh);
    _delay_us(SdepBackOff);
    digitalWrite(AdafruitBleCSPin, PinLevelLow);
  } while (timer_elapsed(timerStart) < timeout);

  if (ready) {
    // Slave is ready; send the rest of the packet
    spi_send_bytes(&msg->cmd_low,
                   sizeof(*msg) - (1 + sizeof(msg->payload)) + msg->len);
    success = true;
  }

  digitalWrite(AdafruitBleCSPin, PinLevelHigh);

  return success;
}

static inline void sdep_build_pkt(struct sdep_msg *msg, uint16_t command,
                                  const uint8_t *payload, uint8_t len,
                                  bool moredata) {
  msg->type = SdepCommand;
  msg->cmd_low = command & 0xff;
  msg->cmd_high = command >> 8;
  msg->len = len;
  msg->more = (moredata && len == SdepMaxPayload) ? 1 : 0;

  static_assert(sizeof(*msg) == 20, "msg is correctly packed");

  memcpy(msg->payload, payload, len);
}

// Read a single SDEP packet
static bool sdep_recv_pkt(struct sdep_msg *msg, uint16_t timeout) {
  bool success = false;
  uint16_t timerStart = timer_read();
  bool ready = false;

  do {
    ready = digitalRead(AdafruitBleIRQPin);
    if (ready) {
      break;
    }
    _delay_us(1);
  } while (timer_elapsed(timerStart) < timeout);

  if (ready) {
    SPI_begin(&spi);

    digitalWrite(AdafruitBleCSPin, PinLevelLow);

    do {
      // Read the command type, waiting for the data to be ready
      msg->type = spi_read_byte();
      if (msg->type == SdepSlaveNotReady || msg->type == SdepSlaveOverflow) {
        // Release it and let it initialize
        digitalWrite(AdafruitBleCSPin, PinLevelHigh);
        _delay_us(SdepBackOff);
        digitalWrite(AdafruitBleCSPin, PinLevelLow);
        continue;
      }

      // Read the rest of the header
      spi_recv_bytes(&msg->cmd_low, sizeof(*msg) - (1 + sizeof(msg->payload)));

      // and get the payload if there is any
      if (msg->len <= SdepMaxPayload) {
        spi_recv_bytes(msg->payload, msg->len);
      }
      success = true;
      break;
    } while (timer_elapsed(timerStart) < timeout);

    digitalWrite(AdafruitBleCSPin, PinLevelHigh);
  }
  return success;
}

static void resp_buf_read_one(bool greedy) {
  uint16_t last_send;
  if (!resp_buf.peek(last_send)) {
    return;
  }

  if (digitalRead(AdafruitBleIRQPin)) {
    struct sdep_msg msg;

again:
    if (sdep_recv_pkt(&msg, SdepTimeout)) {
      if (!msg.more) {
        // We got it; consume this entry
        resp_buf.get(last_send);
        dprintf("recv latency %dms\n", TIMER_DIFF_16(timer_read(), last_send));
      }

      if (greedy && resp_buf.peek(last_send) && digitalRead(AdafruitBleIRQPin)) {
        goto again;
      }
    }

  } else if (timer_elapsed(last_send) > SdepTimeout * 2) {
    dprintf("waiting_for_result: timeout, resp_buf size %d\n",
            (int)resp_buf.size());

    // Timed out: consume this entry
    resp_buf.get(last_send);
  }
}

static void send_buf_send_one(uint16_t timeout = SdepTimeout) {
  struct queue_item item;

  // Don't send anything more until we get an ACK
  if (!resp_buf.empty()) {
    return;
  }

  if (!send_buf.peek(item)) {
    return;
  }
  if (process_queue_item(&item, timeout)) {
    // commit that peek
    send_buf.get(item);
    dprintf("send_buf_send_one: have %d remaining\n", (int)send_buf.size());
  } else {
    dprint("failed to send, will retry\n");
    _delay_ms(SdepTimeout);
    resp_buf_read_one(true);
  }
}

static void resp_buf_wait(const char *cmd) {
  bool didPrint = false;
  while (!resp_buf.empty()) {
    if (!didPrint) {
      dprintf("wait on buf for %s\n", cmd);
      didPrint = true;
    }
    resp_buf_read_one(true);
  }
}

static bool ble_init(void) {
  state.initialized = false;
  state.configured = false;
  state.is_connected = false;

  pinMode(AdafruitBleIRQPin, PinDirectionInput);
  pinMode(AdafruitBleCSPin, PinDirectionOutput);
  digitalWrite(AdafruitBleCSPin, PinLevelHigh);

  SPI_init(&spi);

  // Perform a hardware reset
  pinMode(AdafruitBleResetPin, PinDirectionOutput);
  digitalWrite(AdafruitBleResetPin, PinLevelHigh);
  digitalWrite(AdafruitBleResetPin, PinLevelLow);
  _delay_ms(10);
  digitalWrite(AdafruitBleResetPin, PinLevelHigh);

  _delay_ms(1000); // Give it a second to initialize

  state.initialized = true;
  return state.initialized;
}

static inline uint8_t min(uint8_t a, uint8_t b) {
  return a < b ? a : b;
}

static bool read_response(char *resp, uint16_t resplen, bool verbose) {
  char *dest = resp;
  char *end = dest + resplen;

  while (true) {
    struct sdep_msg msg;

    if (!sdep_recv_pkt(&msg, 2 * SdepTimeout)) {
      dprint("sdep_recv_pkt failed\n");
      return false;
    }

    if (msg.type != SdepResponse) {
      *resp = 0;
      return false;
    }

    uint8_t len = min(msg.len, end - dest);
    if (len > 0) {
      memcpy(dest, msg.payload, len);
      dest += len;
    }

    if (!msg.more) {
      // No more data is expected!
      break;
    }
  }

  // Ensure the response is NUL terminated
  *dest = 0;

  // "Parse" the result text; we want to snip off the trailing OK or ERROR line
  // Rewind past the possible trailing CRLF so that we can strip it
  --dest;
  while (dest > resp && (dest[0] == '\n' || dest[0] == '\r')) {
    *dest = 0;
    --dest;
  }

  // Look back for start of preceeding line
  char *last_line = strrchr(resp, '\n');
  if (last_line) {
    ++last_line;
  } else {
    last_line = resp;
  }

  bool success = false;
  static const char kOK[] PROGMEM = "OK";

  success = !strcmp_P(last_line, kOK );

  if (verbose || !success) {
    dprintf("result: %s\n", resp);
  }
  return success;
}

static bool at_command(const char *cmd, char *resp, uint16_t resplen,
                       bool verbose, uint16_t timeout) {
  const char *end = cmd + strlen(cmd);
  struct sdep_msg msg;

  if (verbose) {
    dprintf("ble send: %s\n", cmd);
  }

  if (resp) {
    // They want to decode the response, so we need to flush and wait
    // for all pending I/O to finish before we start this one, so
    // that we don't confuse the results
    resp_buf_wait(cmd);
    *resp = 0;
  }

  // Fragment the command into a series of SDEP packets
  while (end - cmd > SdepMaxPayload) {
    sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, SdepMaxPayload, true);
    if (!sdep_send_pkt(&msg, timeout)) {
      return false;
    }
    cmd += SdepMaxPayload;
  }

  sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, end - cmd, false);
  if (!sdep_send_pkt(&msg, timeout)) {
    return false;
  }

  if (resp == NULL) {
    auto now = timer_read();
    while (!resp_buf.enqueue(now)) {
      resp_buf_read_one(false);
    }
    auto later = timer_read();
    if (TIMER_DIFF_16(later, now) > 0) {
      dprintf("waited %dms for resp_buf\n", TIMER_DIFF_16(later, now));
    }
    return true;
  }

  return read_response(resp, resplen, verbose);
}

bool at_command_P(const char *cmd, char *resp, uint16_t resplen, bool verbose) {
  auto cmdbuf = (char *)alloca(strlen_P(cmd) + 1);
  strcpy_P(cmdbuf, cmd);
  return at_command(cmdbuf, resp, resplen, verbose);
}

bool adafruit_ble_is_connected(void) {
  return state.is_connected;
}

bool adafruit_ble_enable_keyboard(void) {
  char resbuf[128];

  if (!state.initialized && !ble_init()) {
    return false;
  }

  state.configured = false;

  // Disable command echo
  static const char kEcho[] PROGMEM = "ATE=0";
  // Make the advertised name match the keyboard
  static const char kGapDevName[] PROGMEM =
      "AT+GAPDEVNAME=" STR(PRODUCT) " " STR(DESCRIPTION);
  // Turn on keyboard support
  static const char kHidEnOn[] PROGMEM = "AT+BLEHIDEN=1";

  // Adjust intervals to improve latency.  This causes the "central"
  // system (computer/tablet) to poll us every 10-30 ms.  We can't
  // set a smaller value than 10ms, and 30ms seems to be the natural
  // processing time on my macbook.  Keeping it constrained to that
  // feels reasonable to type to.
  static const char kGapIntervals[] PROGMEM = "AT+GAPINTERVALS=10,30,,";

  // Reset the device so that it picks up the above changes
  static const char kATZ[] PROGMEM = "ATZ";

  // Turn down the power level a bit
  static const char kPower[] PROGMEM = "AT+BLEPOWERLEVEL=-12";
  static PGM_P const configure_commands[] PROGMEM = {
    kEcho,
    kGapIntervals,
    kGapDevName,
    kHidEnOn,
    kPower,
    kATZ,
  };

  uint8_t i;
  for (i = 0; i < sizeof(configure_commands) / sizeof(configure_commands[0]);
       ++i) {
    PGM_P cmd;
    memcpy_P(&cmd, configure_commands + i, sizeof(cmd));

    if (!at_command_P(cmd, resbuf, sizeof(resbuf))) {
      dprintf("failed BLE command: %S: %s\n", cmd, resbuf);
      goto fail;
    }
  }

  state.configured = true;

  // Check connection status in a little while; allow the ATZ time
  // to kick in.
  state.last_connection_update = timer_read();
fail:
  return state.configured;
}

static void set_connected(bool connected) {
  if (connected != state.is_connected) {
    if (connected) {
      print("****** BLE CONNECT!!!!\n");
    } else {
      print("****** BLE DISCONNECT!!!!\n");
    }
    state.is_connected = connected;

    // TODO: if modifiers are down on the USB interface and
    // we cut over to BLE or vice versa, they will remain stuck.
    // This feels like a good point to do something like clearing
    // the keyboard and/or generating a fake all keys up message.
    // However, I've noticed that it takes a couple of seconds
    // for macOS to to start recognizing key presses after BLE
    // is in the connected state, so I worry that doing that
    // here may not be good enough.
  }
}

void adafruit_ble_task(void) {
  char resbuf[48];

  if (!state.configured && !adafruit_ble_enable_keyboard()) {
    return;
  }
  resp_buf_read_one(true);
  send_buf_send_one(SdepShortTimeout);

  if (resp_buf.empty() && (state.event_flags & UsingEvents) &&
      digitalRead(AdafruitBleIRQPin)) {
    // Must be an event update
    if (at_command_P(PSTR("AT+EVENTSTATUS"), resbuf, sizeof(resbuf))) {
      uint32_t mask = strtoul(resbuf, NULL, 16);

      if (mask & BleSystemConnected) {
        set_connected(true);
      } else if (mask & BleSystemDisconnected) {
        set_connected(false);
      }
    }
  }

  if (timer_elapsed(state.last_connection_update) > ConnectionUpdateInterval) {
    bool shouldPoll = true;
    if (!(state.event_flags & ProbedEvents)) {
      // Request notifications about connection status changes.
      // This only works in SPIFRIEND firmware > 0.6.7, which is why
      // we check for this conditionally here.
      // Note that at the time of writing, HID reports only work correctly
      // with Apple products on firmware version 0.6.7!
      // https://forums.adafruit.com/viewtopic.php?f=8&t=104052
      if (at_command_P(PSTR("AT+EVENTENABLE=0x1"), resbuf, sizeof(resbuf))) {
        at_command_P(PSTR("AT+EVENTENABLE=0x2"), resbuf, sizeof(resbuf));
        state.event_flags |= UsingEvents;
      }
      state.event_flags |= ProbedEvents;

      // leave shouldPoll == true so that we check at least once
      // before relying solely on events
    } else {
      shouldPoll = false;
    }

    static const char kGetConn[] PROGMEM = "AT+GAPGETCONN";
    state.last_connection_update = timer_read();

    if (at_command_P(kGetConn, resbuf, sizeof(resbuf))) {
      set_connected(atoi(resbuf));
    }
  }

#ifdef SAMPLE_BATTERY
  // I don't know if this really does anything useful yet; the reported
  // voltage level always seems to be around 3200mV.  We may want to just rip
  // this code out.
  if (timer_elapsed(state.last_battery_update) > BatteryUpdateInterval &&
      resp_buf.empty()) {
    state.last_battery_update = timer_read();

    if (at_command_P(PSTR("AT+HWVBAT"), resbuf, sizeof(resbuf))) {
      state.vbat = atoi(resbuf);
    }
  }
#endif
}

static bool process_queue_item(struct queue_item *item, uint16_t timeout) {
  char cmdbuf[48];
  char fmtbuf[64];

  // Arrange to re-check connection after keys have settled
  state.last_connection_update = timer_read();

#if 1
  if (TIMER_DIFF_16(state.last_connection_update, item->added) > 0) {
    dprintf("send latency %dms\n",
            TIMER_DIFF_16(state.last_connection_update, item->added));
  }
#endif

  switch (item->queue_type) {
    case QTKeyReport:
      strcpy_P(fmtbuf,
          PSTR("AT+BLEKEYBOARDCODE=%02x-00-%02x-%02x-%02x-%02x-%02x-%02x"));
      snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->key.modifier,
               item->key.keys[0], item->key.keys[1], item->key.keys[2],
               item->key.keys[3], item->key.keys[4], item->key.keys[5]);
      return at_command(cmdbuf, NULL, 0, true, timeout);

    case QTConsumer:
      strcpy_P(fmtbuf, PSTR("AT+BLEHIDCONTROLKEY=0x%04x"));
      snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->consumer);
      return at_command(cmdbuf, NULL, 0, true, timeout);

#ifdef MOUSE_ENABLE
    case QTMouseMove:
      strcpy_P(fmtbuf, PSTR("AT+BLEHIDMOUSEMOVE=%d,%d,%d,%d"));
      snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->mousemove.x,
          item->mousemove.y, item->mousemove.scroll, item->mousemove.pan);
      if (!at_command(cmdbuf, NULL, 0, true, timeout)) {
        return false;
      }
      strcpy_P(cmdbuf, PSTR("AT+BLEHIDMOUSEBUTTON="));
      if (item->mousemove.buttons & MOUSE_BTN1) {
        strcat(cmdbuf, "L");
      }
      if (item->mousemove.buttons & MOUSE_BTN2) {
        strcat(cmdbuf, "R");
      }
      if (item->mousemove.buttons & MOUSE_BTN3) {
        strcat(cmdbuf, "M");
      }
      if (item->mousemove.buttons == 0) {
        strcat(cmdbuf, "0");
      }
      return at_command(cmdbuf, NULL, 0, true, timeout);
#endif
    default:
      return true;
  }
}

bool adafruit_ble_send_keys(uint8_t hid_modifier_mask, uint8_t *keys,
                            uint8_t nkeys) {
  struct queue_item item;
  bool didWait = false;

  item.queue_type = QTKeyReport;
  item.key.modifier = hid_modifier_mask;
  item.added = timer_read();

  while (nkeys >= 0) {
    item.key.keys[0] = keys[0];
    item.key.keys[1] = nkeys >= 1 ? keys[1] : 0;
    item.key.keys[2] = nkeys >= 2 ? keys[2] : 0;
    item.key.keys[3] = nkeys >= 3 ? keys[3] : 0;
    item.key.keys[4] = nkeys >= 4 ? keys[4] : 0;
    item.key.keys[5] = nkeys >= 5 ? keys[5] : 0;

    if (!send_buf.enqueue(item)) {
      if (!didWait) {
        dprint("wait for buf space\n");
        didWait = true;
      }
      send_buf_send_one();
      continue;
    }

    if (nkeys <= 6) {
      return true;
    }

    nkeys -= 6;
    keys += 6;
  }

  return true;
}

bool adafruit_ble_send_consumer_key(uint16_t keycode, int hold_duration) {
  struct queue_item item;

  item.queue_type = QTConsumer;
  item.consumer = keycode;

  while (!send_buf.enqueue(item)) {
    send_buf_send_one();
  }
  return true;
}

#ifdef MOUSE_ENABLE
bool adafruit_ble_send_mouse_move(int8_t x, int8_t y, int8_t scroll,
                                  int8_t pan, uint8_t buttons) {
  struct queue_item item;

  item.queue_type = QTMouseMove;
  item.mousemove.x = x;
  item.mousemove.y = y;
  item.mousemove.scroll = scroll;
  item.mousemove.pan = pan;
  item.mousemove.buttons = buttons;

  while (!send_buf.enqueue(item)) {
    send_buf_send_one();
  }
  return true;
}
#endif

uint32_t adafruit_ble_read_battery_voltage(void) {
  return state.vbat;
}

bool adafruit_ble_set_mode_leds(bool on) {
  if (!state.configured) {
    return false;
  }

  // The "mode" led is the red blinky one
  at_command_P(on ? PSTR("AT+HWMODELED=1") : PSTR("AT+HWMODELED=0"), NULL, 0);

  // Pin 19 is the blue "connected" LED; turn that off too.
  // When turning LEDs back on, don't turn that LED on if we're
  // not connected, as that would be confusing.
  at_command_P(on && state.is_connected ? PSTR("AT+HWGPIO=19,1")
                                        : PSTR("AT+HWGPIO=19,0"),
               NULL, 0);
  return true;
}

// https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le/ble-generic#at-plus-blepowerlevel
bool adafruit_ble_set_power_level(int8_t level) {
  char cmd[46];
  if (!state.configured) {
    return false;
  }
  snprintf(cmd, sizeof(cmd), "AT+BLEPOWERLEVEL=%d", level);
  return at_command(cmd, NULL, 0, false);
}