aboutsummaryrefslogtreecommitdiffstats
path: root/users/dennytom/chording_engine/engine.part.3
blob: cf19008abce77630e2a6101d4babc0fa0de23b5a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
bool are_hashed_keycodes_in_sound(HASH_TYPE keycodes_hash, HASH_TYPE sound) {
    return (keycodes_hash & sound) == keycodes_hash;
}

uint8_t keycode_to_index(uint16_t keycode) {
    return keycode - FIRST_INTERNAL_KEYCODE;
}

void sound_keycode_array(uint16_t keycode) {
    uint8_t index = keycode_to_index(keycode);
    keycode_index++;
    keycodes_buffer_array[index] = keycode_index;
}

void silence_keycode_hash_array(HASH_TYPE keycode_hash) {
    for (int i = 0; i < NUMBER_OF_KEYS; i++) {
        bool index_in_hash = ((HASH_TYPE) 1 << i) & keycode_hash;
        if (index_in_hash) {
            uint8_t current_val = keycodes_buffer_array[i];
            keycodes_buffer_array[i] = 0;
            for (int j = 0; j < NUMBER_OF_KEYS; j++) {
                if (keycodes_buffer_array[j] > current_val) {
                    keycodes_buffer_array[j]--;
                }
            }
            keycode_index--;
        }
    }
}

bool are_hashed_keycodes_in_array(HASH_TYPE keycode_hash) {
    for (int i = 0; i < NUMBER_OF_KEYS; i++) {
        bool index_in_hash = ((HASH_TYPE) 1 << i) & keycode_hash;
        bool index_in_array = (bool) keycodes_buffer_array[i];
        if (index_in_hash && !index_in_array) {
            return false;
        }
    }
    return true;
}

void kill_one_shots(void) {
    struct Chord chord_storage;
    struct Chord* chord_ptr;
    struct Chord* chord;
    
    for (int i = 0; i < NUMBER_OF_CHORDS; i++) {
        chord_ptr = (struct Chord*) pgm_read_word (&list_of_chords[i]);
        memcpy_P(&chord_storage, chord_ptr, sizeof(struct Chord));
        chord = &chord_storage;
        
        if (*chord->state == IN_ONE_SHOT) {
            *chord->state = RESTART;
            chord->function(chord);
            if (*chord->state == RESTART) {
                *chord->state = IDLE;
            }
        }
    }
}

void process_finished_dances(void) {
    struct Chord chord_storage;
    struct Chord* chord_ptr;
    struct Chord* chord;
    
    for (int i = 0; i < NUMBER_OF_CHORDS; i++) {
        chord_ptr = (struct Chord*) pgm_read_word (&list_of_chords[i]);
        memcpy_P(&chord_storage, chord_ptr, sizeof(struct Chord));
        chord = &chord_storage;
        
        if (*chord->state == ACTIVATED) {
            *chord->state = PRESS_FROM_ACTIVE;
            chord->function(chord);
            if (a_key_went_through) {
                kill_one_shots();
            }
            dance_timer = timer_read();
        } else if (*chord->state == IDLE_IN_DANCE) {
            *chord->state = FINISHED;
            chord->function(chord);
            if (*chord->state == FINISHED) {
                *chord->state = RESTART;
                if (*chord->state == RESTART) {
                    *chord->state = IDLE;
                }
            }
        } else if (*chord->state == PRESS_FROM_ACTIVE) {
            *chord->state = FINISHED_FROM_ACTIVE;
            chord->function(chord);
            if (a_key_went_through) {
                kill_one_shots();
            }
            dance_timer = timer_read();
        }
    }
}

uint8_t keycodes_buffer_array_min(uint8_t* first_keycode_index) {
    for (int i = 0; i < NUMBER_OF_KEYS; i++) {
        if (keycodes_buffer_array[i] == 1) {
            if (first_keycode_index != NULL) {
                *first_keycode_index = (uint8_t) i;
            }
            return 1;
        }
    }
    return 0;
}

void remove_subchords(void) {
    struct Chord chord_storage;
    struct Chord* chord_ptr;
    struct Chord* chord;
    
    for (int i = 0; i < NUMBER_OF_CHORDS; i++) {
        chord_ptr = (struct Chord*) pgm_read_word (&list_of_chords[i]);
        memcpy_P(&chord_storage, chord_ptr, sizeof(struct Chord));
        chord = &chord_storage;
        
        if (!(*chord->state == READY || *chord->state == READY_IN_DANCE || *chord->state == READY_LOCKED)) {
            continue;
        }
        
        struct Chord chord_storage_2;
        struct Chord* chord_ptr_2;
        struct Chord* chord_2;
        for (int j = 0; j < NUMBER_OF_CHORDS; j++) {
            if (i == j) {continue;}
            
            chord_ptr_2 = (struct Chord*) pgm_read_word (&list_of_chords[j]);
            memcpy_P(&chord_storage_2, chord_ptr_2, sizeof(struct Chord));
            chord_2 = &chord_storage_2;
            
            if (are_hashed_keycodes_in_sound(chord_2->keycodes_hash, chord->keycodes_hash)) {
                if (*chord_2->state == READY) {
                    *chord_2->state = IDLE;
                }
                if (*chord_2->state == READY_IN_DANCE) {
                    *chord_2->state = IDLE_IN_DANCE;
                }
                if (*chord_2->state == READY_LOCKED) {
                    *chord_2->state = LOCKED;
                }
            }
        }
    }
}

void process_ready_chords(void) {
    uint8_t first_keycode_index = 0;
    while (keycodes_buffer_array_min(&first_keycode_index)) {
        // find ready chords
        struct Chord chord_storage;
        struct Chord* chord_ptr;
        struct Chord* chord;
        
        for (int i = 0; i < NUMBER_OF_CHORDS; i++) {
            chord_ptr = (struct Chord*) pgm_read_word (&list_of_chords[i]);
            memcpy_P(&chord_storage, chord_ptr, sizeof(struct Chord));
            chord = &chord_storage;
            
            // if the chord does not contain the first keycode
            bool contains_first_keycode = ((uint32_t) 1 << first_keycode_index) & chord->keycodes_hash;
            if (!contains_first_keycode) {
                continue;
            }
            
            if (!are_hashed_keycodes_in_array(chord->keycodes_hash)){
                continue;
            }
            
            if (*chord->state == LOCKED) {
                *chord->state = READY_LOCKED;
                continue;
            }
            
            if (!(chord->pseudolayer == current_pseudolayer || chord->pseudolayer == ALWAYS_ON)) {
                continue;
            }
            
            if (*chord->state == IDLE) {
                *chord->state = READY;
                continue;
            }
            
            if (*chord->state == IDLE_IN_DANCE) {
                *chord->state = READY_IN_DANCE;
            }
        }
        
        // remove subchords
        remove_subchords();
        
        // execute logic
        // this should be only one chord
        for (int i = 0; i < NUMBER_OF_CHORDS; i++) {
            chord_ptr = (struct Chord*) pgm_read_word (&list_of_chords[i]);
            memcpy_P(&chord_storage, chord_ptr, sizeof(struct Chord));
            chord = &chord_storage;
            
            if (*chord->state == READY_LOCKED) {
                *chord->state = RESTART;
                chord->function(chord);
                if (*chord->state == RESTART) {
                    *chord->state = IDLE;
                }
                break;
            }
            
            if (*chord->state == READY || *chord->state == READY_IN_DANCE) {
                if (last_chord && last_chord != chord) {
                    process_finished_dances();
                }
                
                bool lock_next_prev_state = lock_next;
                
                *chord->state = ACTIVATED;
                chord->function(chord);
                dance_timer = timer_read();
                
                if (lock_next && lock_next == lock_next_prev_state) {
                    lock_next = false;
                    *chord->state = PRESS_FROM_ACTIVE;
                    chord->function(chord);
                    if (*chord->state == PRESS_FROM_ACTIVE) {
                        *chord->state = LOCKED;
                    }
                    if (a_key_went_through) {
                        kill_one_shots();
                    }
                }
                break;
            }
        }
        
        // silence notes
        silence_keycode_hash_array(chord->keycodes_hash);
    }
}

void deactivate_active_chords(uint16_t keycode) {
    HASH_TYPE hash = (HASH_TYPE)1 << (keycode - SAFE_RANGE);
    bool broken;
    struct Chord chord_storage;
    struct Chord* chord_ptr;
    struct Chord* chord;
    
    for (int i = 0; i < NUMBER_OF_CHORDS; i++) {
        chord_ptr = (struct Chord*) pgm_read_word (&list_of_chords[i]);
        memcpy_P(&chord_storage, chord_ptr, sizeof(struct Chord));
        chord = &chord_storage;
        
        broken = are_hashed_keycodes_in_sound(hash, chord->keycodes_hash);
        if (!broken) {
            continue;
        }
        
        switch (*chord->state) {
            case ACTIVATED:
                *chord->state = DEACTIVATED;
                chord->function(chord);
                
                if (*chord->state == DEACTIVATED) {
                    dance_timer = timer_read();
                    *chord->state = IDLE_IN_DANCE;
                }
                if (*chord->state != IN_ONE_SHOT) {
                    kill_one_shots();
                }
                break;
            case PRESS_FROM_ACTIVE:
            case FINISHED_FROM_ACTIVE:
                *chord->state = RESTART;
                chord->function(chord);
                if (*chord->state == RESTART) {
                    *chord->state = IDLE;
                }
                kill_one_shots();
                break;
            default:
                break;
        }
    }
    
}

void process_command(void) {
    command_mode = 0;
    for (int i = 0; i < COMMAND_MAX_LENGTH; i++) {
        if (command_buffer[i]) {
            register_code(command_buffer[i]);
        }
        send_keyboard_report();
    }
    wait_ms(TAP_TIMEOUT);
    for (int i = 0; i < COMMAND_MAX_LENGTH; i++) {
        if (command_buffer[i]) {
            unregister_code(command_buffer[i]);
        }
        send_keyboard_report();
    }
    for (int i = 0; i < COMMAND_MAX_LENGTH; i++) {
        command_buffer[i] = 0;
    }
    command_ind = 0;
}

void process_leader(void) {
    in_leader_mode = false;
    for (int i = 0; i < NUMBER_OF_LEADER_COMBOS; i++) {
        uint16_t trigger[LEADER_MAX_LENGTH];
        memcpy_P(trigger, leader_triggers[i], LEADER_MAX_LENGTH * sizeof(uint16_t));
        
        if (identical(leader_buffer, trigger)) {
            (*leader_functions[i])();
            break;
        }
    }
    for (int i = 0; i < LEADER_MAX_LENGTH; i++) {
        leader_buffer[i] = 0;
    }
}

bool process_record_user(uint16_t keycode, keyrecord_t *record) {
    if (keycode < FIRST_INTERNAL_KEYCODE || keycode > LAST_INTERNAL_KEYCODE) {
        return true;
    }
    
    if (record->event.pressed) {
        sound_keycode_array(keycode);
    } else {
        process_ready_chords();
        deactivate_active_chords(keycode);
    }
    chord_timer = timer_read();
    leader_timer = timer_read();
    
    return false;
}

void matrix_scan_user(void) {
    bool chord_timer_expired = timer_elapsed(chord_timer) > CHORD_TIMEOUT;
    if (chord_timer_expired && keycodes_buffer_array_min(NULL)) {
        process_ready_chords();
    }
    
    bool dance_timer_expired = timer_elapsed(dance_timer) > DANCE_TIMEOUT;
    if (dance_timer_expired) { // would love to have && in_dance but not sure how
        process_finished_dances();
    }
    
    bool in_command_mode = command_mode == 2;
    if (in_command_mode) {
        process_command();
    }
    
    bool leader_timer_expired = timer_elapsed(leader_timer) > LEADER_TIMEOUT;
    if (leader_timer_expired && in_leader_mode) {
        process_leader();
    }
    
}

void clear(const struct Chord* self) {
    if (*self->state == ACTIVATED) {
        // kill all chords
        struct Chord chord_storage;
        struct Chord* chord_ptr;
        struct Chord* chord;
        
        for (int i = 0; i < NUMBER_OF_CHORDS; i++) {
            chord_ptr = (struct Chord*) pgm_read_word (&list_of_chords[i]);
            memcpy_P(&chord_storage, chord_ptr, sizeof(struct Chord));
            chord = &chord_storage;
            
            *chord->state = IDLE;
            
            if (chord->counter) {
                *chord->counter = 0;
            }
        }
        
        // clear keyboard
        clear_keyboard();
        send_keyboard_report();
        
        // switch to default pseudolayer
        current_pseudolayer = DEFAULT_PSEUDOLAYER;
        
        // clear all keyboard states
        lock_next = false;
        autoshift_mode = true;
        command_mode = 0;
        in_leader_mode = false;
        leader_ind = 0;
        dynamic_macro_mode = false;
        a_key_went_through = false;
        
        for (int i = 0; i < DYNAMIC_MACRO_MAX_LENGTH; i++) {
            dynamic_macro_buffer[i] = 0;
        }
    }
}