aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorGravatar Robert C. Helling <helling@atdotde.de>2015-07-01 12:27:42 +0200
committerGravatar Jan Darowski <jan.darowski@gmail.com>2015-07-03 22:36:59 +0200
commit0180d2eb1e8101eb362efb00edaae9eb9bcb24aa (patch)
tree804480a3a693d383caf648448e7607e34b6b1fcc
parentecd0e3e170e5a8ec96be8d19d095e7c75c63c825 (diff)
downloadsubsurface-0180d2eb1e8101eb362efb00edaae9eb9bcb24aa.tar.gz
VPM-B: use an analytic solution for nucleon inner pressure instead of binary root search
According to mathematica In[4]:= f[x_] := x^3 - b x^2 - c In[18]:= Solve[f[x] == 0, x] Out[18]= {{x -> 1/3 (b + ( 2^(1/3) b^2)/(2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^( 1/3) + (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3)/ 2^(1/3))}, {x -> b/3 - ((1 + I Sqrt[3]) b^2)/( 3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^( 1/3)) - ((1 - I Sqrt[3]) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}, {x -> b/3 - ((1 - I Sqrt[3]) b^2)/( 3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^( 1/3)) - ((1 + I Sqrt[3]) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}} For the values of b and c encounterd in the algorithm, the first solution is in fact the only real one that we are after. So we can use this solution instead of doing a binary search for the root of the cubic. Signed-off-by: Robert C. Helling <helling@atdotde.de> Signed-off-by: Jan Darowski <jan.darowski@gmail.com>
-rw-r--r--deco.c44
1 files changed, 18 insertions, 26 deletions
diff --git a/deco.c b/deco.c
index b8aae27a0..70430bb66 100644
--- a/deco.c
+++ b/deco.c
@@ -209,38 +209,30 @@ double he_factor(int period_in_seconds, int ci)
// Calculates the nucleons inner pressure during the impermeable period
double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure)
{
- double onset_radius;
- double current_radius;
- double A, B, C, low_bound, high_bound, root;
- double valH, valL;
- int ci;
- const int max_iters = 10;
+ double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
- // const, depends only on config.
- onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
+ // A*r^3 + B*r^2 + C == 0
+ // Solved with the help of mathematica
- // A*r^3 + B*r^2 + C = 0
- A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
- B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
- C = onset_tension * pow(onset_radius, 3);
+ double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
+ double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
+ double C = onset_tension * pow(onset_radius, 3);
- // According to the algorithm's authors...
- low_bound = B / A;
- high_bound = onset_radius;
+ double BA = B/A;
+ double CA = C/A;
- valH = high_bound * high_bound * (A * high_bound - B) - C;
- valL = low_bound * low_bound * (A * low_bound - B) - C;
+ double discriminant = CA * (4 * BA * BA * BA + 27 * CA);
- // Binary search for equations root.
- for (ci = 0; ci < max_iters; ++ci) {
- current_radius = (high_bound + low_bound) *0.5;
- root = (current_radius * current_radius * (A * current_radius - B)) - C;
- if (root >= 0.0)
- high_bound = current_radius;
- else
- low_bound = current_radius;
+ // Let's make sure we have a real solution:
+ if (discriminant < 0.0) {
+ // This should better not happen
+ report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C);
+ return 0.0;
}
- return onset_tension * (pow(onset_radius, 3) / pow(current_radius, 3));
+ double denominator = pow(BA * BA * BA + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0);
+ double current_radius = (BA + BA * BA / denominator + denominator) / 3.0;
+
+ return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius);
}
// Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed