aboutsummaryrefslogtreecommitdiffstats
path: root/stats/statsview.cpp
diff options
context:
space:
mode:
authorGravatar Robert C. Helling <helling@atdotde.de>2021-01-12 19:39:25 +0100
committerGravatar Robert C. Helling <helling@atdotde.de>2021-01-14 20:51:23 +0100
commitd6712bc5ac1af3bd1bc42c62d66a0df7be56e68b (patch)
treef8a44afcabe12f30561edc51bd700060b7bc993c /stats/statsview.cpp
parent5775bd7b27f0c71a78cfe526b971c3f1652b4add (diff)
downloadsubsurface-d6712bc5ac1af3bd1bc42c62d66a0df7be56e68b.tar.gz
Plot proper confidence regions
I was coninced that that rather than doing an order of magnitude estimate of the confidence region it's better to have the correct concave shapes that indicate the 95% confidence level for the regression line. It also turned out that the previous expression was missing a factor of 1/sqrt(n). Signed-off-by: Robert C. Helling <helling@atdotde.de>
Diffstat (limited to 'stats/statsview.cpp')
-rw-r--r--stats/statsview.cpp60
1 files changed, 28 insertions, 32 deletions
diff --git a/stats/statsview.cpp b/stats/statsview.cpp
index 405677e56..63e9183b6 100644
--- a/stats/statsview.cpp
+++ b/stats/statsview.cpp
@@ -723,10 +723,10 @@ void StatsView::QuartileMarker::updatePosition()
x + quartileMarkerSize / 2.0, y);
}
-StatsView::RegressionLine::RegressionLine(double a, double b, double width, QBrush brush, QGraphicsScene *scene, StatsAxis *xAxis, StatsAxis *yAxis) :
+StatsView::RegressionLine::RegressionLine(const struct regression_data reg, QBrush brush, QGraphicsScene *scene, StatsAxis *xAxis, StatsAxis *yAxis) :
item(createItemPtr<QGraphicsPolygonItem>(scene)),
xAxis(xAxis), yAxis(yAxis),
- a(a), b(b), width(width)
+ reg(reg)
{
item->setZValue(ZValues::chartFeatures);
item->setPen(Qt::NoPen);
@@ -740,12 +740,14 @@ void StatsView::RegressionLine::updatePosition()
auto [minX, maxX] = xAxis->minMax();
auto [minY, maxY] = yAxis->minMax();
+ // Draw the confidence interval according to http://www2.stat.duke.edu/~tjl13/s101/slides/unit6lec3H.pdf p.5 with t*=2 for 95% confidence
QPolygonF poly;
- poly << QPointF(xAxis->toScreen(minX), yAxis->toScreen(a * minX + b + width))
- << QPointF(xAxis->toScreen(maxX), yAxis->toScreen(a * maxX + b + width))
- << QPointF(xAxis->toScreen(maxX), yAxis->toScreen(a * maxX + b - width))
- << QPointF(xAxis->toScreen(minX), yAxis->toScreen(a * minX + b - width))
- << QPointF(xAxis->toScreen(minX), yAxis->toScreen(a * minX + b + width));
+ for (double x = minX; x <= maxX + 1; x += (maxX - minX) / 100)
+ poly << QPointF(xAxis->toScreen(x),
+ yAxis->toScreen(reg.a * x + reg.b + 2.0 * sqrt(reg.res2 / (reg.n - 2) * (1.0 / reg.n + (x - reg.xavg) * (x - reg.xavg) / (reg.n - 1) * (reg.n -2) / reg.sx2))));
+ for (double x = maxX; x >= minX - 1; x -= (maxX - minX) / 100)
+ poly << QPointF(xAxis->toScreen(x),
+ yAxis->toScreen(reg.a * x + reg.b - 2.0 * sqrt(reg.res2 / (reg.n - 2) * (1.0 / reg.n + (x - reg.xavg) * (x - reg.xavg) / (reg.n - 1) * (reg.n -2) / reg.sx2))));
QRectF box(QPoint(xAxis->toScreen(minX), yAxis->toScreen(minY)), QPoint(xAxis->toScreen(maxX), yAxis->toScreen(maxY)));
item->setPolygon(poly.intersected(box));
@@ -780,15 +782,15 @@ void StatsView::addHistogramMarker(double pos, const QPen &pen, bool isHorizonta
histogramMarkers.emplace_back(pos, isHorizontal, pen, &scene, xAxis, yAxis);
}
-void StatsView::addLinearRegression(double a, double b, double res2, double r2, double minX, double maxX, double minY, double maxY, StatsAxis *xAxis, StatsAxis *yAxis)
+void StatsView::addLinearRegression(const struct regression_data reg, StatsAxis *xAxis, StatsAxis *yAxis)
{
QColor red = QColor(Qt::red);
- red.setAlphaF(r2);
+ red.setAlphaF(reg.r2);
QPen pen(red);
QBrush brush(red);
brush.setStyle(Qt::SolidPattern);
- regressionLines.emplace_back(a, b, sqrt(res2), brush, &scene, xAxis, yAxis);
+ regressionLines.emplace_back(reg, brush, &scene, xAxis, yAxis);
}
// Yikes, we get our data in different kinds of (bin, value) pairs.
@@ -1027,11 +1029,6 @@ static bool is_linear_regression(int sample_size, double cov, double sx2, double
return true; // can't happen, as we tested for sample_size above.
}
-struct regression_data {
- double a,b;
- double res2, r2;
-};
-
// Returns the coefficients a,b of the line y = ax + b
// as well as the variance of the residuals (averaged residual squared) as res2
// and r^2 = 1.0 - variance of data / res2 which is the fraction of the variance of
@@ -1040,17 +1037,18 @@ struct regression_data {
static struct regression_data linear_regression(const std::vector<StatsScatterItem> &v)
{
- if (v.size() < 2)
- return { .a = NaN, .b = NaN, .res2 = 0.0, .r2 = 0.0};
-
+ struct regression_data ret = { .a = NaN, .b = NaN, .res2 = 0.0, .r2 = 0.0, .sx2 = 0.0, .xavg = 0.0};
+ ret.n = v.size();
+ if (ret.n < 2)
+ return ret;
// First, calculate the x and y average
double avg_x = 0.0, avg_y = 0.0;
for (auto [x, y, d]: v) {
avg_x += x;
avg_y += y;
}
- avg_x /= (double)v.size();
- avg_y /= (double)v.size();
+ avg_x /= ret.n;
+ avg_y /= ret.n;
double cov = 0.0, sx2 = 0.0, sy2 = 0.0;
for (auto [x, y, d]: v) {
@@ -1062,15 +1060,16 @@ static struct regression_data linear_regression(const std::vector<StatsScatterIt
bool is_linear = is_linear_regression((int)v.size(), cov, sx2, sy2);
if (fabs(sx2) < 1e-10 || !is_linear) // If t is not statistically significant, do not plot the regression line.
- return { .a = NaN, .b = NaN, .res2 = 0.0, .r2 = 0.0};
- double a = cov / sx2;
- double b = avg_y - a * avg_x;
+ return ret;
+ ret.xavg = avg_x;
+ ret.sx2 = sx2;
+ ret.a = cov / sx2;
+ ret.b = avg_y - ret.a * avg_x;
- double res2 = 0.0;
for (auto [x, y, d]: v)
- res2 += (y - a * x - b) * (y - a * x - b);
- double r2 = sy2 > 0.0 ? 1.0 - res2 / sy2 : 1.0;
- return { .a = a, .b = b, .res2 = res2 / v.size(), .r2 = r2 };
+ ret.res2 += (y - ret.a * x - ret.b) * (y - ret.a * x - ret.b);
+ ret.r2 = sy2 > 0.0 ? 1.0 - ret.res2 / sy2 : 1.0;
+ return ret;
}
void StatsView::plotScatter(const std::vector<dive *> &dives, const StatsVariable *categoryVariable, const StatsVariable *valueVariable)
@@ -1101,9 +1100,6 @@ void StatsView::plotScatter(const std::vector<dive *> &dives, const StatsVariabl
// y = ax + b
struct regression_data reg = linear_regression(points);
- if (!std::isnan(reg.a)) {
- auto [minx, maxx] = axisX->minMax();
- auto [miny, maxy] = axisY->minMax();
- addLinearRegression(reg.a, reg.b, reg.res2, reg.r2, minx, maxx, miny, maxy, xAxis, yAxis);
- }
+ if (!std::isnan(reg.a))
+ addLinearRegression(reg, xAxis, yAxis);
}