aboutsummaryrefslogtreecommitdiffstats
path: root/core/deco.c
blob: d2678a922c1e808dfb2d3706561d9c1ba999c0c1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/* calculate deco values
 * based on Bühlmann ZHL-16b
 * based on an implemention by heinrichs weikamp for the DR5
 * the original file was given to Subsurface under the GPLv2
 * by Matthias Heinrichs
 *
 * The implementation below is a fairly complete rewrite since then
 * (C) Robert C. Helling 2013 and released under the GPLv2
 *
 * add_segment()	- add <seconds> at the given pressure, breathing gasmix
 * deco_allowed_depth() - ceiling based on lead tissue, surface pressure, 3m increments or smooth
 * set_gf()		- set Buehlmann gradient factors
 * set_vpmb_conservatism() - set VPM-B conservatism value
 * clear_deco()
 * cache_deco_state()
 * restore_deco_state()
 * dump_tissues()
 */
#include <math.h>
#include <string.h>
#include "dive.h"
#include <assert.h>
#include "core/planner.h"
#include "qthelperfromc.h"

#define cube(x) (x * x * x)

// Subsurface appears to produce marginally less conservative plans than our benchmarks
// Introduce 1.2% additional conservatism
#define subsurface_conservatism_factor 1.0


extern bool in_planner();
extern int plot_depth;

extern pressure_t first_ceiling_pressure;

//! Option structure for Buehlmann decompression.
struct buehlmann_config {
	double satmult;			//! safety at inert gas accumulation as percentage of effect (more than 100).
	double desatmult;		//! safety at inert gas depletion as percentage of effect (less than 100).
	int last_deco_stop_in_mtr;	//! depth of last_deco_stop.
	double gf_high;			//! gradient factor high (at surface).
	double gf_low;			//! gradient factor low (at bottom/start of deco calculation).
	double gf_low_position_min;	//! gf_low_position below surface_min_shallow.
	bool gf_low_at_maxdepth;	//! if true, gf_low applies at max. depth instead of at deepest ceiling.
};

struct buehlmann_config buehlmann_config = {
	.satmult = 1.0,
	.desatmult = 1.0,
	.last_deco_stop_in_mtr =  0,
	.gf_high = 0.75,
	.gf_low = 0.35,
	.gf_low_position_min = 1.0,
	.gf_low_at_maxdepth = false
};

//! Option structure for VPM-B decompression.
struct vpmb_config {
	double crit_radius_N2;            //! Critical radius of N2 nucleon (microns).
	double crit_radius_He;            //! Critical radius of He nucleon (microns).
	double crit_volume_lambda;        //! Constant corresponding to critical gas volume (bar * min).
	double gradient_of_imperm;        //! Gradient after which bubbles become impermeable (bar).
	double surface_tension_gamma;     //! Nucleons surface tension constant (N / bar = m2).
	double skin_compression_gammaC;   //! Skin compression gammaC (N / bar = m2).
	double regeneration_time;         //! Time needed for the bubble to regenerate to the start radius (min).
	double other_gases_pressure;      //! Always present pressure of other gasses in tissues (bar).
	short conservatism;		  //! VPM-B conservatism level (0-4)
};

struct vpmb_config vpmb_config = {
	.crit_radius_N2 = 0.55,
	.crit_radius_He = 0.45,
	.crit_volume_lambda = 199.58,
	.gradient_of_imperm = 8.30865,		// = 8.2 atm
	.surface_tension_gamma = 0.18137175,	// = 0.0179 N/msw
	.skin_compression_gammaC = 2.6040525,	// = 0.257 N/msw
	.regeneration_time = 20160.0,
	.other_gases_pressure = 0.1359888,
	.conservatism = 3
};

const double buehlmann_N2_a[] = { 1.1696, 1.0, 0.8618, 0.7562,
				  0.62, 0.5043, 0.441, 0.4,
				  0.375, 0.35, 0.3295, 0.3065,
				  0.2835, 0.261, 0.248, 0.2327 };

const double buehlmann_N2_b[] = { 0.5578, 0.6514, 0.7222, 0.7825,
				  0.8126, 0.8434, 0.8693, 0.8910,
				  0.9092, 0.9222, 0.9319, 0.9403,
				  0.9477, 0.9544, 0.9602, 0.9653 };

const double buehlmann_N2_t_halflife[] = { 5.0, 8.0, 12.5, 18.5,
					   27.0, 38.3, 54.3, 77.0,
					   109.0, 146.0, 187.0, 239.0,
					   305.0, 390.0, 498.0, 635.0 };

// 1 - exp(-1 / (halflife * 60) * ln(2))
const double buehlmann_N2_factor_expositon_one_second[] = {
	2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004,
	4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004,
	1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005,
	3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005
};

const double buehlmann_He_a[] = { 1.6189, 1.383, 1.1919, 1.0458,
				  0.922, 0.8205, 0.7305, 0.6502,
				  0.595, 0.5545, 0.5333, 0.5189,
				  0.5181, 0.5176, 0.5172, 0.5119 };

const double buehlmann_He_b[] = { 0.4770, 0.5747, 0.6527, 0.7223,
				  0.7582, 0.7957, 0.8279, 0.8553,
				  0.8757, 0.8903, 0.8997, 0.9073,
				  0.9122, 0.9171, 0.9217, 0.9267 };

const double buehlmann_He_t_halflife[] = { 1.88, 3.02, 4.72, 6.99,
					   10.21, 14.48, 20.53, 29.11,
					   41.20, 55.19, 70.69, 90.34,
					   115.29, 147.42, 188.24, 240.03 };

const double buehlmann_He_factor_expositon_one_second[] = {
	6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003,
	1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004,
	2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004,
	1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005
};

const double vpmb_conservatism_lvls[] = { 1.0, 1.05, 1.12, 1.22, 1.35 };

/* Inspired gas loading equations depend on the partial pressure of inert gas in the alveolar.
 * P_alv = (P_amb - P_H2O + (1 - Rq) / Rq * P_CO2) * f
 * where:
 * P_alv	alveolar partial pressure of inert gas
 * P_amb	ambient pressure
 * P_H2O	water vapour partial pressure = ~0.0627 bar
 * P_CO2	carbon dioxide partial pressure = ~0.0534 bar
 * Rq	respiratory quotient (O2 consumption / CO2 production)
 * f	fraction of inert gas
 *
 * In our calculations, we simplify this to use an effective water vapour pressure
 * WV = P_H20 - (1 - Rq) / Rq * P_CO2
 *
 * Buhlmann ignored the contribution of CO2 (i.e. Rq = 1.0), whereas Schreiner adopted Rq = 0.8.
 * WV_Buhlmann = PP_H2O = 0.0627 bar
 * WV_Schreiner = 0.0627 - (1 - 0.8) / Rq * 0.0534 = 0.0493 bar

 * Buhlmann calculations use the Buhlmann value, VPM-B calculations use the Schreiner value.
*/
#define WV_PRESSURE 0.0627 		// water vapor pressure in bar, based on respiratory quotient Rq = 1.0 (Buhlmann value)
#define WV_PRESSURE_SCHREINER 0.0493	// water vapor pressure in bar, based on respiratory quotient Rq = 0.8 (Schreiner value)

#define DECO_STOPS_MULTIPLIER_MM 3000.0
#define NITROGEN_FRACTION 0.79

double tissue_n2_sat[16];
double tissue_he_sat[16];
int ci_pointing_to_guiding_tissue;
double gf_low_pressure_this_dive;
#define TISSUE_ARRAY_SZ sizeof(tissue_n2_sat)

double tolerated_by_tissue[16];
double tissue_inertgas_saturation[16];
double buehlmann_inertgas_a[16], buehlmann_inertgas_b[16];

double max_n2_crushing_pressure[16];
double max_he_crushing_pressure[16];

double crushing_onset_tension[16];            // total inert gas tension in the t* moment
double n2_regen_radius[16];                   // rs
double he_regen_radius[16];
double max_ambient_pressure;                  // last moment we were descending

double bottom_n2_gradient[16];
double bottom_he_gradient[16];

double initial_n2_gradient[16];
double initial_he_gradient[16];

int sumx, sum1;
long sumxx;
double sumy, sumxy;

double get_crit_radius_He()
{
	if (vpmb_config.conservatism <= 4)
		return vpmb_config.crit_radius_He * vpmb_conservatism_lvls[vpmb_config.conservatism] * subsurface_conservatism_factor;
	return vpmb_config.crit_radius_He;
}

double get_crit_radius_N2()
{
	if (vpmb_config.conservatism <= 4)
		return vpmb_config.crit_radius_N2 * vpmb_conservatism_lvls[vpmb_config.conservatism] * subsurface_conservatism_factor;
	return vpmb_config.crit_radius_N2;
}

// Solve another cubic equation, this time
// x^3 - B x - C == 0
// Use trigonometric formula for negative discriminants (see Wikipedia for details)

double solve_cubic2(double B, double C)
{
	double discriminant = 27 * C * C - 4 * cube(B);
	if (discriminant < 0.0) {
		return 2.0 * sqrt(B / 3.0) * cos(acos(3.0 * C * sqrt(3.0 / B) / (2.0 * B)) / 3.0);
	}

	double denominator = pow(9 * C + sqrt(3 * discriminant), 1 / 3.0);

	return pow(2.0 / 3.0, 1.0 / 3.0) * B / denominator + denominator / pow(18.0, 1.0 / 3.0);
}

// This is a simplified formula avoiding radii. It uses the fact that Boyle's law says
// pV = (G + P_amb) / G^3 is constant to solve for the new gradient G.

double update_gradient(double next_stop_pressure, double first_gradient)
{
	double B = cube(first_gradient) / (first_ceiling_pressure.mbar / 1000.0 + first_gradient);
	double C = next_stop_pressure * B;

	double new_gradient = solve_cubic2(B, C);

	if (new_gradient < 0.0)
		report_error("Negative gradient encountered!");
	return new_gradient;
}

double vpmb_tolerated_ambient_pressure(double reference_pressure, int ci)
{
	double n2_gradient, he_gradient, total_gradient;

	if (reference_pressure >= first_ceiling_pressure.mbar / 1000.0 || !first_ceiling_pressure.mbar) {
		n2_gradient = bottom_n2_gradient[ci];
		he_gradient = bottom_he_gradient[ci];
	} else {
		n2_gradient = update_gradient(reference_pressure, bottom_n2_gradient[ci]);
		he_gradient = update_gradient(reference_pressure, bottom_he_gradient[ci]);
	}

	total_gradient = ((n2_gradient * tissue_n2_sat[ci]) + (he_gradient * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]);

	return tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure - total_gradient;
}


double tissue_tolerance_calc(const struct dive *dive, double pressure)
{
	int ci = -1;
	double ret_tolerance_limit_ambient_pressure = 0.0;
	double gf_high = buehlmann_config.gf_high;
	double gf_low = buehlmann_config.gf_low;
	double surface = get_surface_pressure_in_mbar(dive, true) / 1000.0;
	double lowest_ceiling = 0.0;
	double tissue_lowest_ceiling[16];

	for (ci = 0; ci < 16; ci++) {
		buehlmann_inertgas_a[ci] = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
		buehlmann_inertgas_b[ci] = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
	}

	if (decoMode() != VPMB) {
		for (ci = 0; ci < 16; ci++) {

			/* tolerated = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; */

			tissue_lowest_ceiling[ci] = (buehlmann_inertgas_b[ci] * tissue_inertgas_saturation[ci] - gf_low * buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci]) /
						     ((1.0 - buehlmann_inertgas_b[ci]) * gf_low + buehlmann_inertgas_b[ci]);
			if (tissue_lowest_ceiling[ci] > lowest_ceiling)
				lowest_ceiling = tissue_lowest_ceiling[ci];
			if (!buehlmann_config.gf_low_at_maxdepth) {
				if (lowest_ceiling > gf_low_pressure_this_dive)
					gf_low_pressure_this_dive = lowest_ceiling;
			}
		}
		for (ci = 0; ci < 16; ci++) {
			double tolerated;

			if ((surface / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - surface) * gf_high + surface <
			    (gf_low_pressure_this_dive / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - gf_low_pressure_this_dive) * gf_low + gf_low_pressure_this_dive)
				tolerated = (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high * gf_low_pressure_this_dive - gf_low * surface) -
					     (1.0 - buehlmann_inertgas_b[ci]) * (gf_high - gf_low) * gf_low_pressure_this_dive * surface +
					     buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface) * tissue_inertgas_saturation[ci]) /
					    (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high - gf_low) +
					     (1.0 - buehlmann_inertgas_b[ci]) * (gf_low * gf_low_pressure_this_dive - gf_high * surface) +
					     buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface));
			else
				tolerated = ret_tolerance_limit_ambient_pressure;


			tolerated_by_tissue[ci] = tolerated;

			if (tolerated >= ret_tolerance_limit_ambient_pressure) {
				ci_pointing_to_guiding_tissue = ci;
				ret_tolerance_limit_ambient_pressure = tolerated;
			}
		}
	} else {
		// VPM-B ceiling
		double reference_pressure;

		ret_tolerance_limit_ambient_pressure = pressure;
		// The Boyle compensated gradient depends on ambient pressure. For the ceiling, this should set the ambient pressure.
		do {
			reference_pressure = ret_tolerance_limit_ambient_pressure;
			ret_tolerance_limit_ambient_pressure = 0.0;
			for (ci = 0; ci < 16; ci++) {
				double tolerated = vpmb_tolerated_ambient_pressure(reference_pressure, ci);
				if (tolerated >= ret_tolerance_limit_ambient_pressure) {
					ci_pointing_to_guiding_tissue = ci;
					ret_tolerance_limit_ambient_pressure = tolerated;
				}
				tolerated_by_tissue[ci] = tolerated;
			}
		// We are doing ok if the gradient was computed within ten centimeters of the ceiling.
		} while (fabs(ret_tolerance_limit_ambient_pressure - reference_pressure) > 0.01);

		if (plot_depth) {
			++sum1;
			sumx += plot_depth;
			sumxx += plot_depth * plot_depth;
			double n2_gradient, he_gradient, total_gradient;
			n2_gradient = update_gradient(depth_to_bar(plot_depth, &displayed_dive), bottom_n2_gradient[ci_pointing_to_guiding_tissue]);
			he_gradient = update_gradient(depth_to_bar(plot_depth, &displayed_dive), bottom_he_gradient[ci_pointing_to_guiding_tissue]);
			total_gradient = ((n2_gradient * tissue_n2_sat[ci_pointing_to_guiding_tissue]) + (he_gradient * tissue_he_sat[ci_pointing_to_guiding_tissue]))
					/ (tissue_n2_sat[ci_pointing_to_guiding_tissue] + tissue_he_sat[ci_pointing_to_guiding_tissue]);

			double buehlmann_gradient = (1.0 / buehlmann_inertgas_b[ci_pointing_to_guiding_tissue] - 1.0) * depth_to_bar(plot_depth, &displayed_dive) + buehlmann_inertgas_a[ci_pointing_to_guiding_tissue];
			double gf = (total_gradient - vpmb_config.other_gases_pressure) / buehlmann_gradient;
			sumxy += gf * plot_depth;
			sumy += gf;
			plot_depth = 0;
		}
	}
	return ret_tolerance_limit_ambient_pressure;
}

/*
 * Return buelman factor for a particular period and tissue index.
 *
 * We cache the last factor, since we commonly call this with the
 * same values... We have a special "fixed cache" for the one second
 * case, although I wonder if that's even worth it considering the
 * more general-purpose cache.
 */
struct factor_cache {
	int last_period;
	double last_factor;
};

double n2_factor(int period_in_seconds, int ci)
{
	static struct factor_cache cache[16];

	if (period_in_seconds == 1)
		return buehlmann_N2_factor_expositon_one_second[ci];

	if (period_in_seconds != cache[ci].last_period) {
		cache[ci].last_period = period_in_seconds;
		// ln(2)/60 = 1.155245301e-02
		cache[ci].last_factor = 1 - exp(-period_in_seconds * 1.155245301e-02 / buehlmann_N2_t_halflife[ci]);
	}

	return cache[ci].last_factor;
}

double he_factor(int period_in_seconds, int ci)
{
	static struct factor_cache cache[16];

	if (period_in_seconds == 1)
		return buehlmann_He_factor_expositon_one_second[ci];

	if (period_in_seconds != cache[ci].last_period) {
		cache[ci].last_period = period_in_seconds;
		// ln(2)/60 = 1.155245301e-02
		cache[ci].last_factor = 1 - exp(-period_in_seconds * 1.155245301e-02 / buehlmann_He_t_halflife[ci]);
	}

	return cache[ci].last_factor;
}

double calc_surface_phase(double surface_pressure, double he_pressure, double n2_pressure, double he_time_constant, double n2_time_constant)
{
	double inspired_n2 = (surface_pressure - ((in_planner() && (decoMode() == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * NITROGEN_FRACTION;

	if (n2_pressure > inspired_n2)
		return (he_pressure / he_time_constant + (n2_pressure - inspired_n2) / n2_time_constant) / (he_pressure + n2_pressure - inspired_n2);

	if (he_pressure + n2_pressure >= inspired_n2){
		double gradient_decay_time = 1.0 / (n2_time_constant - he_time_constant) * log ((inspired_n2 - n2_pressure) / he_pressure);
		double gradients_integral = he_pressure / he_time_constant * (1.0 - exp(-he_time_constant * gradient_decay_time)) + (n2_pressure - inspired_n2) / n2_time_constant * (1.0 - exp(-n2_time_constant * gradient_decay_time));
		return gradients_integral / (he_pressure + n2_pressure - inspired_n2);
	}

	return 0;
}

void vpmb_start_gradient()
{
	int ci;

	for (ci = 0; ci < 16; ++ci) {
		initial_n2_gradient[ci] = bottom_n2_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / n2_regen_radius[ci]);
		initial_he_gradient[ci] = bottom_he_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / he_regen_radius[ci]);
	}
}

void vpmb_next_gradient(double deco_time, double surface_pressure)
{
	int ci;
	double n2_b, n2_c;
	double he_b, he_c;
	double desat_time;
	deco_time /= 60.0;

	for (ci = 0; ci < 16; ++ci) {
		desat_time = deco_time + calc_surface_phase(surface_pressure, tissue_he_sat[ci], tissue_n2_sat[ci], log(2.0) / buehlmann_He_t_halflife[ci], log(2.0) / buehlmann_N2_t_halflife[ci]);

		n2_b = initial_n2_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time);
		he_b = initial_he_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time);

		n2_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_n2_crushing_pressure[ci];
		n2_c = n2_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time);
		he_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_he_crushing_pressure[ci];
		he_c = he_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time);

		bottom_n2_gradient[ci] = 0.5 * ( n2_b + sqrt(n2_b * n2_b - 4.0 * n2_c));
		bottom_he_gradient[ci] = 0.5 * ( he_b + sqrt(he_b * he_b - 4.0 * he_c));
	}
}

// A*r^3 - B*r^2 - C == 0
// Solved with the help of mathematica

double solve_cubic(double A, double B, double C)
{
	double BA = B/A;
	double CA = C/A;

	double discriminant = CA * (4 * cube(BA) + 27 * CA);

	// Let's make sure we have a real solution:
	if (discriminant < 0.0) {
		// This should better not happen
		report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C);
		return 0.0;
	}
	double denominator = pow(cube(BA) + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0);
	return (BA + BA * BA / denominator + denominator) / 3.0;

}


void nuclear_regeneration(double time)
{
	time /= 60.0;
	int ci;
	double crushing_radius_N2, crushing_radius_He;
	for (ci = 0; ci < 16; ++ci) {
		//rm
		crushing_radius_N2 = 1.0 / (max_n2_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_N2());
		crushing_radius_He = 1.0 / (max_he_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_He());
		//rs
		n2_regen_radius[ci] = crushing_radius_N2 + (get_crit_radius_N2() - crushing_radius_N2) * (1.0 - exp (-time / vpmb_config.regeneration_time));
		he_regen_radius[ci] = crushing_radius_He + (get_crit_radius_He() - crushing_radius_He) * (1.0 - exp (-time / vpmb_config.regeneration_time));
	}
}


// Calculates the nucleons inner pressure during the impermeable period
double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure)
{
	double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);


	double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
	double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
	double C = onset_tension * pow(onset_radius, 3);

	double current_radius = solve_cubic(A, B, C);

	return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius);
}

// Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed
void calc_crushing_pressure(double pressure)
{
	int ci;
	double gradient;
	double gas_tension;
	double n2_crushing_pressure, he_crushing_pressure;
	double n2_inner_pressure, he_inner_pressure;

	for (ci = 0; ci < 16; ++ci) {
		gas_tension = tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure;
		gradient = pressure - gas_tension;

		if (gradient <= vpmb_config.gradient_of_imperm) {	// permeable situation
			n2_crushing_pressure = he_crushing_pressure = gradient;
			crushing_onset_tension[ci] = gas_tension;
		}
		else {	// impermeable
			if (max_ambient_pressure >= pressure)
				return;

			n2_inner_pressure = calc_inner_pressure(get_crit_radius_N2(), crushing_onset_tension[ci], pressure);
			he_inner_pressure = calc_inner_pressure(get_crit_radius_He(), crushing_onset_tension[ci], pressure);

			n2_crushing_pressure = pressure - n2_inner_pressure;
			he_crushing_pressure = pressure - he_inner_pressure;
		}
		max_n2_crushing_pressure[ci] = MAX(max_n2_crushing_pressure[ci], n2_crushing_pressure);
		max_he_crushing_pressure[ci] = MAX(max_he_crushing_pressure[ci], he_crushing_pressure);
	}
	max_ambient_pressure = MAX(pressure, max_ambient_pressure);
}

/* add period_in_seconds at the given pressure and gas to the deco calculation */
void add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int ccpo2, const struct dive *dive, int sac)
{
	(void) sac;
	int ci;
	struct gas_pressures pressures;

	fill_pressures(&pressures, pressure - ((in_planner() && (decoMode() == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE),
		       gasmix, (double) ccpo2 / 1000.0, dive->dc.divemode);

	if (buehlmann_config.gf_low_at_maxdepth && pressure > gf_low_pressure_this_dive)
		gf_low_pressure_this_dive = pressure;

	for (ci = 0; ci < 16; ci++) {
		double pn2_oversat = pressures.n2 - tissue_n2_sat[ci];
		double phe_oversat = pressures.he - tissue_he_sat[ci];
		double n2_f = n2_factor(period_in_seconds, ci);
		double he_f = he_factor(period_in_seconds, ci);
		double n2_satmult = pn2_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;
		double he_satmult = phe_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;

		tissue_n2_sat[ci] += n2_satmult * pn2_oversat * n2_f;
		tissue_he_sat[ci] += he_satmult * phe_oversat * he_f;
		tissue_inertgas_saturation[ci] = tissue_n2_sat[ci] + tissue_he_sat[ci];

	}
	if(decoMode() == VPMB)
		calc_crushing_pressure(pressure);
	return;
}

void dump_tissues()
{
	int ci;
	printf("N2 tissues:");
	for (ci = 0; ci < 16; ci++)
		printf(" %6.3e", tissue_n2_sat[ci]);
	printf("\nHe tissues:");
	for (ci = 0; ci < 16; ci++)
		printf(" %6.3e", tissue_he_sat[ci]);
	printf("\n");
}

void clear_vpmb_state() {
	int ci;
	for (ci = 0; ci < 16; ci++) {
		max_n2_crushing_pressure[ci] = 0.0;
		max_he_crushing_pressure[ci] = 0.0;
	}
	max_ambient_pressure = 0;
}

void clear_deco(double surface_pressure)
{
	int ci;
	clear_vpmb_state();
	for (ci = 0; ci < 16; ci++) {
		tissue_n2_sat[ci] = (surface_pressure - ((in_planner() && (decoMode() == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * N2_IN_AIR / 1000;
		tissue_he_sat[ci] = 0.0;
		max_n2_crushing_pressure[ci] = 0.0;
		max_he_crushing_pressure[ci] = 0.0;
		n2_regen_radius[ci] = get_crit_radius_N2();
		he_regen_radius[ci] = get_crit_radius_He();
	}
	gf_low_pressure_this_dive = surface_pressure;
	if (!buehlmann_config.gf_low_at_maxdepth)
		gf_low_pressure_this_dive += buehlmann_config.gf_low_position_min;
	max_ambient_pressure = 0.0;
}

void cache_deco_state(char **cached_datap)
{
	char *data = *cached_datap;

	if (!data) {
		data = malloc(2 * TISSUE_ARRAY_SZ + sizeof(double) + sizeof(int));
		*cached_datap = data;
	}
	memcpy(data, tissue_n2_sat, TISSUE_ARRAY_SZ);
	data += TISSUE_ARRAY_SZ;
	memcpy(data, tissue_he_sat, TISSUE_ARRAY_SZ);
	data += TISSUE_ARRAY_SZ;
	memcpy(data, &gf_low_pressure_this_dive, sizeof(double));
	data += sizeof(double);
	memcpy(data, &ci_pointing_to_guiding_tissue, sizeof(int));
}

void restore_deco_state(char *data)
{
	memcpy(tissue_n2_sat, data, TISSUE_ARRAY_SZ);
	data += TISSUE_ARRAY_SZ;
	memcpy(tissue_he_sat, data, TISSUE_ARRAY_SZ);
	data += TISSUE_ARRAY_SZ;
	memcpy(&gf_low_pressure_this_dive, data, sizeof(double));
	data += sizeof(double);
	memcpy(&ci_pointing_to_guiding_tissue, data, sizeof(int));
}

int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, bool smooth)
{
	int depth;
	double pressure_delta;

	/* Avoid negative depths */
	pressure_delta = tissues_tolerance > surface_pressure ? tissues_tolerance - surface_pressure : 0.0;

	depth = rel_mbar_to_depth(pressure_delta * 1000, dive);

	if (!smooth)
		depth = ceil(depth / DECO_STOPS_MULTIPLIER_MM) * DECO_STOPS_MULTIPLIER_MM;

	if (depth > 0 && depth < buehlmann_config.last_deco_stop_in_mtr * 1000)
		depth = buehlmann_config.last_deco_stop_in_mtr * 1000;

	return depth;
}

void set_gf(short gflow, short gfhigh, bool gf_low_at_maxdepth)
{
	if (gflow != -1)
		buehlmann_config.gf_low = (double)gflow / 100.0;
	if (gfhigh != -1)
		buehlmann_config.gf_high = (double)gfhigh / 100.0;
	buehlmann_config.gf_low_at_maxdepth = gf_low_at_maxdepth;
}

void set_vpmb_conservatism(short conservatism)
{
	if (conservatism < 0)
		vpmb_config.conservatism = 0;
	else if (conservatism > 4)
		vpmb_config.conservatism = 4;
	else
		vpmb_config.conservatism = conservatism;
}

double get_gf(double ambpressure_bar, const struct dive *dive)
{
	double surface_pressure_bar = get_surface_pressure_in_mbar(dive, true) / 1000.0;
	double gf_low = buehlmann_config.gf_low;
	double gf_high = buehlmann_config.gf_high;
	double gf;
	if (gf_low_pressure_this_dive > surface_pressure_bar)
		gf = MAX((double)gf_low, (ambpressure_bar - surface_pressure_bar) /
			(gf_low_pressure_this_dive - surface_pressure_bar) * (gf_low - gf_high) + gf_high);
	else
		gf = gf_low;
	return gf;
}

double regressiona()
{
	if (sum1 > 1) {
		double avxy = sumxy / sum1;
		double avx = (double)sumx / sum1;
		double avy = sumy / sum1;
		double avxx = (double) sumxx / sum1;
		return (avxy - avx * avy) / (avxx - avx*avx);
	}
	else
		return 0.0;
}

double regressionb()
{
	if (sum1)
		return sumy / sum1 - sumx * regressiona() / sum1;
	else
		return 0.0;
}

void reset_regression()
{
	sumx = sum1 = 0;
	sumxx = 0L;
	sumy = sumxy = 0.0;
}