1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
|
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "dive.h"
#include "file.h"
#include "units.h"
#include "gettext.h"
#include "cochran.h"
#include "divelist.h"
#include <libdivecomputer/parser.h>
#define POUND 0.45359237
#define FEET 0.3048
#define INCH 0.0254
#define GRAVITY 9.80665
#define ATM 101325.0
#define BAR 100000.0
#define FSW (ATM / 33.0)
#define MSW (BAR / 10.0)
#define PSI ((POUND * GRAVITY) / (INCH * INCH))
// Some say 0x4a14 and 0x4b14 are the right number for this offset
// This works with CAN files from Analyst 4.01v and computers
// such as Commander, Gemini, EMC-16, and EMC-20H
#define LOG_ENTRY_OFFSET 0x4914
enum cochran_type {
TYPE_GEMINI,
TYPE_COMMANDER,
TYPE_EMC
};
struct config {
enum cochran_type type;
unsigned int logbook_size;
unsigned int sample_size;
} config;
// Convert 4 bytes into an INT
#define array_uint16_le(p) ((unsigned int) (p)[0] \
+ ((p)[1]<<8) )
#define array_uint32_le(p) ((unsigned int) (p)[0] \
+ ((p)[1]<<8) + ((p)[2]<<16) \
+ ((p)[3]<<24))
/*
* The Cochran file format is designed to be annoying to read. It's roughly:
*
* 0x00000: room for 65534 4-byte words, giving the starting offsets
* of the dives themselves.
*
* 0x3fff8: the size of the file + 1
* 0x3ffff: 0 (high 32 bits of filesize? Bogus: the offsets into the file
* are 32-bit, so it can't be a large file anyway)
*
* 0x40000: byte 0x46
* 0x40001: "block 0": 256 byte encryption key
* 0x40101: the random modulus, or length of the key to use
* 0x40102: block 1: Version and date of Analyst and a feature string identifying
* the computer features and the features of the file
* 0x40138: Computer configuration page 1, 512 bytes
* 0x40338: Computer configuration page 2, 512 bytes
* 0x40538: Misc data (tissues) 1500 bytes
* 0x40b14: Ownership data 512 bytes ???
*
* 0x4171c: Ownership data 512 bytes ??? <copy>
*
* 0x45415: Time stamp 17 bytes
* 0x45426: Computer configuration page 1, 512 bytes <copy>
* 0x45626: Computer configuration page 2, 512 bytes <copy>
*
*/
static unsigned int partial_decode(unsigned int start, unsigned int end,
const unsigned char *decode, unsigned offset, unsigned mod,
const unsigned char *buf, unsigned int size, unsigned char *dst)
{
unsigned i, sum = 0;
for (i = start; i < end; i++) {
unsigned char d = decode[offset++];
if (i >= size)
break;
if (offset == mod)
offset = 0;
d += buf[i];
if (dst)
dst[i] = d;
sum += d;
}
return sum;
}
#ifdef COCHRAN_DEBUG
#define hexchar(n) ("0123456789abcdef"[(n) & 15])
static int show_line(unsigned offset, const unsigned char *data,
unsigned size, int show_empty)
{
unsigned char bits;
int i, off;
char buffer[120];
if (size > 16)
size = 16;
bits = 0;
memset(buffer, ' ', sizeof(buffer));
off = sprintf(buffer, "%06x ", offset);
for (i = 0; i < size; i++) {
char *hex = buffer + off + 3 * i;
char *asc = buffer + off + 50 + i;
unsigned char byte = data[i];
hex[0] = hexchar(byte >> 4);
hex[1] = hexchar(byte);
bits |= byte;
if (byte < 32 || byte > 126)
byte = '.';
asc[0] = byte;
asc[1] = 0;
}
if (bits) {
puts(buffer);
return 1;
}
if (show_empty)
puts("...");
return 0;
}
static void cochran_debug_write(const unsigned char *data, unsigned size)
{
return;
int show = 1, i;
for (i = 0; i < size; i += 16)
show = show_line(i, data + i, size - i, show);
}
static void cochran_debug_sample(const char *s, unsigned int seconds)
{
switch (config.type) {
case TYPE_GEMINI:
switch (seconds % 4) {
case 0:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 1:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 2:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 3:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
}
break;
case TYPE_COMMANDER:
switch (seconds % 2) {
case 0:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
case 1:
printf("Hex: %02x %02x ", s[0], s[1]);
break;
}
break;
case TYPE_EMC:
switch (seconds % 2) {
case 0:
printf("Hex: %02x %02x %02x ", s[0], s[1], s[2]);
break;
case 1:
printf("Hex: %02x %02x %02x ", s[0], s[1], s[2]);
break;
}
break;
}
printf ("%02dh %02dm %02ds: Depth: %-5.2f, ", seconds / 3660,
(seconds % 3660) / 60, seconds % 60, depth);
}
#endif // COCHRAN_DEBUG
static void cochran_parse_header(const unsigned char *decode, unsigned mod,
const unsigned char *in, unsigned size)
{
unsigned char *buf = malloc(size);
/* Do the "null decode" using a one-byte decode array of '\0' */
/* Copies in plaintext, will be overwritten later */
partial_decode(0, 0x0102, (const unsigned char *)"", 0, 1, in, size, buf);
/*
* The header scrambling is different form the dive
* scrambling. Oh yay!
*/
partial_decode(0x0102, 0x010e, decode, 0, mod, in, size, buf);
partial_decode(0x010e, 0x0b14, decode, 0, mod, in, size, buf);
partial_decode(0x0b14, 0x1b14, decode, 0, mod, in, size, buf);
partial_decode(0x1b14, 0x2b14, decode, 0, mod, in, size, buf);
partial_decode(0x2b14, 0x3b14, decode, 0, mod, in, size, buf);
partial_decode(0x3b14, 0x5414, decode, 0, mod, in, size, buf);
partial_decode(0x5414, size, decode, 0, mod, in, size, buf);
// Detect log type
switch (buf[0x133]) {
case '2': // Cochran Commander, version II log format
config.logbook_size = 256;
if (buf[0x132] == 0x10) {
config.type = TYPE_GEMINI;
config.sample_size = 2; // Gemini with tank PSI samples
} else {
config.type = TYPE_COMMANDER;
config.sample_size = 2; // Commander
}
break;
case '3': // Cochran EMC, version III log format
config.type = TYPE_EMC;
config.logbook_size = 512;
config.sample_size = 3;
break;
default:
printf ("Unknown log format v%c\n", buf[0x137]);
free(buf);
exit(1);
break;
}
#ifdef COCHRAN_DEBUG
puts("Header\n======\n\n");
cochran_debug_write(buf, size);
#endif
free(buf);
}
/*
* Bytes expected after a pre-dive event code
*/
static int cochran_predive_event_bytes(unsigned char code)
{
int x = 0;
int gem_event_bytes[15][2] = {{0x00, 10}, {0x02, 17}, {0x08, 18},
{0x09, 18}, {0x0c, 18}, {0x0d, 18},
{0x0e, 18},
{-1, 0}};
int cmdr_event_bytes[15][2] = {{0x00, 16}, {0x01, 20}, {0x02, 17},
{0x03, 16}, {0x06, 18}, {0x07, 18},
{0x08, 18}, {0x09, 18}, {0x0a, 18},
{0x0b, 20}, {0x0c, 18}, {0x0d, 18},
{0x0e, 18}, {0x10, 20},
{-1, 0}};
int emc_event_bytes[15][2] = {{0x00, 18}, {0x01, 22}, {0x02, 19},
{0x03, 18}, {0x06, 20}, {0x07, 20},
{0x0a, 20}, {0x0b, 20}, {0x0f, 18},
{0x10, 20},
{-1, 0}};
switch (config.type) {
case TYPE_GEMINI:
while (gem_event_bytes[x][0] != code && gem_event_bytes[x][0] != -1)
x++;
return gem_event_bytes[x][1];
break;
case TYPE_COMMANDER:
while (cmdr_event_bytes[x][0] != code && cmdr_event_bytes[x][0] != -1)
x++;
return cmdr_event_bytes[x][1];
break;
case TYPE_EMC:
while (emc_event_bytes[x][0] != code && emc_event_bytes[x][0] != -1)
x++;
return emc_event_bytes[x][1];
break;
}
return 0;
}
int cochran_dive_event_bytes(unsigned char event)
{
return (event == 0xAD || event == 0xAB) ? 4 : 0;
}
static void cochran_dive_event(struct divecomputer *dc, const unsigned char *s,
unsigned int seconds, unsigned int *in_deco,
unsigned int *deco_ceiling, unsigned int *deco_time)
{
switch (s[0]) {
case 0xC5: // Deco obligation begins
*in_deco = 1;
add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
break;
case 0xDB: // Deco obligation ends
*in_deco = 0;
add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
break;
case 0xAD: // Raise deco ceiling 10 ft
*deco_ceiling -= 10; // ft
*deco_time = (array_uint16_le(s + 3) + 1) * 60;
break;
case 0xAB: // Lower deco ceiling 10 ft
*deco_ceiling += 10; // ft
*deco_time = (array_uint16_le(s + 3) + 1) * 60;
break;
case 0xA8: // Entered Post Dive interval mode (surfaced)
break;
case 0xA9: // Exited PDI mode (re-submierged)
break;
case 0xBD: // Switched to normal PO2 setting
break;
case 0xC0: // Switched to FO2 21% mode (generally upon surface)
break;
case 0xC1: // "Ascent rate alarm
add_event(dc, seconds, SAMPLE_EVENT_ASCENT,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ascent"));
break;
case 0xC2: // Low battery warning
#ifdef SAMPLE_EVENT_BATTERY
add_event(dc, seconds, SAMPLE_EVENT_BATTERY,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "battery"));
#endif
break;
case 0xC3: // CNS warning
add_event(dc, seconds, SAMPLE_EVENT_OLF,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "OLF"));
break;
case 0xC4: // Depth alarm begin
add_event(dc, seconds, SAMPLE_EVENT_MAXDEPTH,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "maxdepth"));
break;
case 0xC8: // PPO2 alarm begin
add_event(dc, seconds, SAMPLE_EVENT_PO2,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "pO₂"));
break;
case 0xCC: // Low cylinder 1 pressure";
break;
case 0xCD: // Switch to deco blend setting
add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
break;
case 0xCE: // NDL alarm begin
add_event(dc, seconds, SAMPLE_EVENT_RBT,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "rbt"));
break;
case 0xD0: // Breathing rate alarm begin
break;
case 0xD3: // Low gas 1 flow rate alarm begin";
break;
case 0xD6: // Ceiling alarm begin
add_event(dc, seconds, SAMPLE_EVENT_CEILING,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ceiling"));
break;
case 0xD8: // End decompression mode
*in_deco = 0;
add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
break;
case 0xE1: // Ascent alarm end
add_event(dc, seconds, SAMPLE_EVENT_ASCENT,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ascent"));
break;
case 0xE2: // Low transmitter battery alarm
add_event(dc, seconds, SAMPLE_EVENT_TRANSMITTER,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "transmitter"));
break;
case 0xE3: // Switch to FO2 mode
break;
case 0xE5: // Switched to PO2 mode
break;
case 0xE8: // PO2 too low alarm
add_event(dc, seconds, SAMPLE_EVENT_PO2,
SAMPLE_FLAGS_BEGIN, 0,
QT_TRANSLATE_NOOP("gettextFromC", "pO₂"));
break;
case 0xEE: // NDL alarm end
add_event(dc, seconds, SAMPLE_EVENT_RBT,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "rbt"));
break;
case 0xEF: // Switch to blend 2
add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
break;
case 0xF0: // Breathing rate alarm end
break;
case 0xF3: // Switch to blend 1 (often at dive start)
add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
SAMPLE_FLAGS_NONE, 0,
QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
break;
case 0xF6: // Ceiling alarm end
add_event(dc, seconds, SAMPLE_EVENT_CEILING,
SAMPLE_FLAGS_END, 0,
QT_TRANSLATE_NOOP("gettextFromC", "ceiling"));
break;
default:
break;
}
}
/*
* Parse sample data, extract events and build a dive
*/
static void cochran_parse_samples(struct dive *dive, const unsigned char *log,
const unsigned char *samples, int size,
unsigned int *duration, double *max_depth,
double *avg_depth, double *min_temp)
{
const unsigned char *s;
unsigned int offset = 0, seconds = 0;
double depth = 0, temp = 0, depth_sample = 0, psi = 0, sgc_rate = 0;
int ascent_rate = 0;
unsigned int ndl = 0;
unsigned int in_deco = 0, deco_ceiling = 0, deco_time = 0;
struct divecomputer *dc = &dive->dc;
struct sample *sample;
// Initialize stat variables
*max_depth = 0, *avg_depth = 0, *min_temp = 0xFF;
// Get starting depth and temp (tank PSI???)
switch (config.type) {
case TYPE_GEMINI:
depth = (float) (log[CMD_START_DEPTH]
+ log[CMD_START_DEPTH + 1] * 256) / 4;
temp = log[CMD_START_TEMP];
psi = log[CMD_START_PSI] + log[CMD_START_PSI + 1] * 256;
sgc_rate = (float)(log[CMD_START_SGC]
+ log[CMD_START_SGC + 1] * 256) / 2;
break;
case TYPE_COMMANDER:
depth = (float) (log[CMD_START_DEPTH]
+ log[CMD_START_DEPTH + 1] * 256) / 4;
temp = log[CMD_START_TEMP];
break;
case TYPE_EMC:
depth = (float) log [EMC_START_DEPTH] / 256
+ log[EMC_START_DEPTH + 1];
temp = log[EMC_START_TEMP];
break;
}
// Skip past pre-dive events
unsigned int x = 0;
if (samples[x] != 0x40) {
unsigned int c;
while ((samples[x] & 0x80) == 0 && samples[x] != 0x40 && x < size) {
c = cochran_predive_event_bytes(samples[x]) + 1;
#ifdef COCHRAN_DEBUG
printf("Predive event: ", samples[x]);
for (int y = 0; y < c; y++) printf("%02x ", samples[x + y]);
putchar('\n');
#endif
x += c;
}
}
// Now process samples
offset = x;
while (offset < size) {
s = samples + offset;
// Start with an empty sample
sample = prepare_sample(dc);
sample->time.seconds = seconds;
// Check for event
if (s[0] & 0x80) {
cochran_dive_event(dc, s, seconds, &in_deco, &deco_ceiling, &deco_time);
offset += cochran_dive_event_bytes(s[0]) + 1;
continue;
}
// Depth is in every sample
depth_sample = (float)(s[0] & 0x3F) / 4 * (s[0] & 0x40 ? -1 : 1);
depth += depth_sample;
#ifdef COCHRAN_DEBUG
cochran_debug_sample(s, seconds);
#endif
switch (config.type) {
case TYPE_COMMANDER:
switch (seconds % 2) {
case 0: // Ascent rate
ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1: -1);
break;
case 1: // Temperature
temp = s[1] / 2 + 20;
break;
}
break;
case TYPE_GEMINI:
// Gemini with tank pressure and SAC rate.
switch (seconds % 4) {
case 0: // Ascent rate
ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1);
break;
case 2: // PSI change
psi -= (float)(s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1) / 4;
break;
case 1: // SGC rate
sgc_rate -= (float)(s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1) / 2;
break;
case 3: // Temperature
temp = (float)s[1] / 2 + 20;
break;
}
break;
case TYPE_EMC:
switch (seconds % 2) {
case 0: // Ascent rate
ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1: -1);
break;
case 1: // Temperature
temp = (float)s[1] / 2 + 20;
break;
}
// Get NDL and deco information
switch (seconds % 24) {
case 20:
if (in_deco) {
// Fist stop time
//first_deco_time = (s[2] + s[5] * 256 + 1) * 60; // seconds
ndl = 0;
} else {
// NDL
ndl = (s[2] + s[5] * 256 + 1) * 60; // seconds
deco_time = 0;
}
break;
case 22:
if (in_deco) {
// Total stop time
deco_time = (s[2] + s[5] * 256 + 1) * 60; // seconds
ndl = 0;
}
break;
}
}
// Track dive stats
if (depth > *max_depth) *max_depth = depth;
if (temp < *min_temp) *min_temp = temp;
*avg_depth = (*avg_depth * seconds + depth) / (seconds + 1);
sample->depth.mm = depth * FEET * 1000;
sample->ndl.seconds = ndl;
sample->in_deco = in_deco;
sample->stoptime.seconds = deco_time;
sample->stopdepth.mm = deco_ceiling * FEET * 1000;
sample->temperature.mkelvin = C_to_mkelvin((temp - 32) / 1.8);
sample->sensor = 0;
sample->cylinderpressure.mbar = psi * PSI / 100;
finish_sample(dc);
offset += config.sample_size;
seconds++;
}
(void)ascent_rate; // mark the variable as unused
if (seconds > 0)
*duration = seconds - 1;
}
static void cochran_parse_dive(const unsigned char *decode, unsigned mod,
const unsigned char *in, unsigned size)
{
unsigned char *buf = malloc(size);
struct dive *dive;
struct divecomputer *dc;
struct tm tm = {0};
uint32_t csum[5];
double max_depth, avg_depth, min_temp;
unsigned int duration = 0, corrupt_dive = 0;
/*
* The scrambling has odd boundaries. I think the boundaries
* match some data structure size, but I don't know. They were
* discovered the same way we dynamically discover the decode
* size: automatically looking for least random output.
*
* The boundaries are also this confused "off-by-one" thing,
* the same way the file size is off by one. It's as if the
* cochran software forgot to write one byte at the beginning.
*/
partial_decode(0, 0x0fff, decode, 1, mod, in, size, buf);
partial_decode(0x0fff, 0x1fff, decode, 0, mod, in, size, buf);
partial_decode(0x1fff, 0x2fff, decode, 0, mod, in, size, buf);
partial_decode(0x2fff, 0x48ff, decode, 0, mod, in, size, buf);
/*
* This is not all the descrambling you need - the above are just
* what appears to be the fixed-size blocks. The rest is also
* scrambled, but there seems to be size differences in the data,
* so this just descrambles part of it:
*/
// Decode log entry (512 bytes + random prefix)
partial_decode(0x48ff, 0x4914 + config.logbook_size, decode,
0, mod, in, size, buf);
unsigned int sample_size = size - 0x4914 - config.logbook_size;
int g;
// Decode sample data
partial_decode(0x4914 + config.logbook_size, size, decode,
0, mod, in, size, buf);
#ifdef COCHRAN_DEBUG
// Display pre-logbook data
puts("\nPre Logbook Data\n");
cochran_debug_write(buf, 0x4914);
// Display log book
puts("\nLogbook Data\n");
cochran_debug_write(buf + 0x4914, config.logbook_size + 0x400);
// Display sample data
puts("\nSample Data\n");
#endif
dive = alloc_dive();
dc = &dive->dc;
unsigned char *log = (buf + 0x4914);
switch (config.type) {
case TYPE_GEMINI:
case TYPE_COMMANDER:
if (config.type == TYPE_GEMINI) {
dc->model = "Gemini";
dc->deviceid = buf[0x18c] * 256 + buf[0x18d]; // serial no
fill_default_cylinder(&dive->cylinder[0]);
dive->cylinder[0].gasmix.o2.permille = (log[CMD_O2_PERCENT] / 256
+ log[CMD_O2_PERCENT + 1]) * 10;
dive->cylinder[0].gasmix.he.permille = 0;
} else {
dc->model = "Commander";
dc->deviceid = array_uint32_le(buf + 0x31e); // serial no
for (g = 0; g < 2; g++) {
fill_default_cylinder(&dive->cylinder[g]);
dive->cylinder[g].gasmix.o2.permille = (log[CMD_O2_PERCENT + g * 2] / 256
+ log[CMD_O2_PERCENT + g * 2 + 1]) * 10;
dive->cylinder[g].gasmix.he.permille = 0;
}
}
tm.tm_year = log[CMD_YEAR];
tm.tm_mon = log[CMD_MON] - 1;
tm.tm_mday = log[CMD_DAY];
tm.tm_hour = log[CMD_HOUR];
tm.tm_min = log[CMD_MIN];
tm.tm_sec = log[CMD_SEC];
tm.tm_isdst = -1;
dive->when = dc->when = utc_mktime(&tm);
dive->number = log[CMD_NUMBER] + log[CMD_NUMBER + 1] * 256 + 1;
dc->duration.seconds = (log[CMD_BT] + log[CMD_BT + 1] * 256) * 60;
dc->surfacetime.seconds = (log[CMD_SIT] + log[CMD_SIT + 1] * 256) * 60;
dc->maxdepth.mm = (log[CMD_MAX_DEPTH] +
log[CMD_MAX_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (log[CMD_AVG_DEPTH] +
log[CMD_AVG_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((log[CMD_MIN_TEMP] / 32) - 1.8);
dc->surface_pressure.mbar = ATM / BAR * pow(1 - 0.0000225577
* (double) log[CMD_ALTITUDE] * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * log[CMD_WATER_CONDUCTIVITY];
SHA1(log + CMD_NUMBER, 2, (unsigned char *)csum);
dc->diveid = csum[0];
if (log[CMD_MAX_DEPTH] == 0xff && log[CMD_MAX_DEPTH + 1] == 0xff)
corrupt_dive = 1;
break;
case TYPE_EMC:
dc->model = "EMC";
dc->deviceid = array_uint32_le(buf + 0x31e); // serial no
for (g = 0; g < 4; g++) {
fill_default_cylinder(&dive->cylinder[g]);
dive->cylinder[g].gasmix.o2.permille =
(log[EMC_O2_PERCENT + g * 2] / 256
+ log[EMC_O2_PERCENT + g * 2 + 1]) * 10;
dive->cylinder[g].gasmix.he.permille =
(log[EMC_HE_PERCENT + g * 2] / 256
+ log[EMC_HE_PERCENT + g * 2 + 1]) * 10;
}
tm.tm_year = log[EMC_YEAR];
tm.tm_mon = log[EMC_MON] - 1;
tm.tm_mday = log[EMC_DAY];
tm.tm_hour = log[EMC_HOUR];
tm.tm_min = log[EMC_MIN];
tm.tm_sec = log[EMC_SEC];
tm.tm_isdst = -1;
dive->when = dc->when = utc_mktime(&tm);
dive->number = log[EMC_NUMBER] + log[EMC_NUMBER + 1] * 256 + 1;
dc->duration.seconds = (log[EMC_BT] + log[EMC_BT + 1] * 256) * 60;
dc->surfacetime.seconds = (log[EMC_SIT] + log[EMC_SIT + 1] * 256) * 60;
dc->maxdepth.mm = (log[EMC_MAX_DEPTH] +
log[EMC_MAX_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (log[EMC_AVG_DEPTH] +
log[EMC_AVG_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((log[EMC_MIN_TEMP] - 32) / 1.8);
dc->surface_pressure.mbar = ATM / BAR * pow(1 - 0.0000225577
* (double) log[EMC_ALTITUDE] * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * (log[EMC_WATER_CONDUCTIVITY] & 0x3);
SHA1(log + EMC_NUMBER, 2, (unsigned char *)csum);
dc->diveid = csum[0];
if (log[EMC_MAX_DEPTH] == 0xff && log[EMC_MAX_DEPTH + 1] == 0xff)
corrupt_dive = 1;
break;
}
cochran_parse_samples(dive, buf + 0x4914, buf + 0x4914
+ config.logbook_size, sample_size,
&duration, &max_depth, &avg_depth, &min_temp);
// Check for corrupt dive
if (corrupt_dive) {
dc->maxdepth.mm = max_depth * FEET * 1000;
dc->meandepth.mm = avg_depth * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((min_temp - 32) / 1.8);
dc->duration.seconds = duration;
}
dive->downloaded = true;
record_dive(dive);
mark_divelist_changed(true);
free(buf);
}
int try_to_open_cochran(const char *filename, struct memblock *mem)
{
unsigned int i;
unsigned int mod;
unsigned int *offsets, dive1, dive2;
unsigned char *decode = mem->buffer + 0x40001;
if (mem->size < 0x40000)
return 0;
offsets = (unsigned int *) mem->buffer;
dive1 = offsets[0];
dive2 = offsets[1];
if (dive1 < 0x40000 || dive2 < dive1 || dive2 > mem->size)
return 0;
mod = decode[0x100] + 1;
cochran_parse_header(decode, mod, mem->buffer + 0x40000, dive1 - 0x40000);
// Decode each dive
for (i = 0; i < 65534; i++) {
dive1 = offsets[i];
dive2 = offsets[i + 1];
if (dive2 < dive1)
break;
if (dive2 > mem->size)
break;
cochran_parse_dive(decode, mod, mem->buffer + dive1,
dive2 - dive1);
}
return 1; // no further processing needed
}
|